JPS60175368A - Zinc-alkaline primary cell - Google Patents

Zinc-alkaline primary cell

Info

Publication number
JPS60175368A
JPS60175368A JP59030550A JP3055084A JPS60175368A JP S60175368 A JPS60175368 A JP S60175368A JP 59030550 A JP59030550 A JP 59030550A JP 3055084 A JP3055084 A JP 3055084A JP S60175368 A JPS60175368 A JP S60175368A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
mercury
primary cell
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59030550A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Tsukasa Ohira
大平 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59030550A priority Critical patent/JPS60175368A/en
Priority to PCT/JP1985/000066 priority patent/WO1985003810A1/en
Priority to BR8505281A priority patent/BR8505281A/en
Priority to US06/935,166 priority patent/US4735876A/en
Priority to AU39383/85A priority patent/AU557244B2/en
Priority to KR1019850700210A priority patent/KR890002672B1/en
Priority to DE8585901061T priority patent/DE3567130D1/en
Priority to EP85901061A priority patent/EP0172255B1/en
Priority to CN85106643.7A priority patent/CN1004778B/en
Publication of JPS60175368A publication Critical patent/JPS60175368A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce the amalgamation factor of negative-electrode zinc and make a primary cell to have low environmental pollution by adding Al or Mg; one or more of Pb, Cd, Sn; and Al, Ag, In, etc. to Zn to form amalgamated zinc alloy for use as a negative-electrode active material. CONSTITUTION:An alloy made by adding at least either Al or Mg, one or more of Pb, Cd, Sn, one or more of Ga, Tl, Ag, In to the main component Zn is pulverized, then it is amalgamated. This amalgamated zinc alloy is used as a negative electrode active material. Accordingly, the amalgamation factor is reduced and a zinc-alkaline primary cell having low environmental pollution and excellent in performance such as storage characteristic, leakage resistance can be obtained without deteriorating the corrosion resistance and discharge performance of the negative-electrode zinc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活や質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素等を用いる亜鉛アルカリ−次電池の負極
の改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, alkaline aqueous solution as an electrolyte, manganese dioxide, silver oxide,
This invention relates to an improvement of the negative electrode of a zinc alkaline secondary battery using mercury oxide, oxygen, etc.

従来例の構成とその問題点 上記の亜鉛アルカリ電池の共通した問題点として、保存
中の負極亜鉛の電解液による腐食が挙げられる。従来、
亜鉛に6〜10%程度の水銀を添加した氷化亜鉛粉末を
用いて水素過電圧を高め、実用的に問題のない程度に腐
食を抑制することが工業的な手法として採用されている
。しかし近年、低公害化のため、電池内の含有水銀量を
低減させることが社会的ニーズとして高まり、種々の研
究がなされている。例えば、亜鉛中に鉛、カドミウム、
インジウムなどを添加した合金粉末を用いて耐食性を向
上させ、氷化率を低減させる方法が提案されている。こ
れは腐食抑制に越効来があるが、氷化率を低減させるこ
とにより強放電性能が悪化するという逆効果が見られる
。これらの提案において、低汞化率とした場合に強放電
性能が劣化する原因は不明確であるが、放電生成物が活
性な亜鉛の表面を被い、放電反応に必要な水酸イオンの
亜鉛表面への供給をさまたげる度合が水銀含量の多い場
合に比較して大きいためと考えられ、耐食性と強放電性
能を兼ね備えた低水化率亜鉛負極の確立が、今後の重要
課題とされている。
Conventional Structure and Problems A common problem with the above-mentioned zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage. Conventionally,
It has been adopted as an industrial method to increase the hydrogen overvoltage by using frozen zinc powder, which is made by adding about 6 to 10% mercury to zinc, and to suppress corrosion to a level that causes no practical problems. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead, cadmium,
A method has been proposed in which alloy powder containing indium or the like is used to improve corrosion resistance and reduce the rate of icing. Although this is highly effective in suppressing corrosion, it has the opposite effect of deteriorating strong discharge performance by reducing the icing rate. In these proposals, the cause of the deterioration of strong discharge performance when the rate of discharge is lowered is unclear, but the discharge products cover the surface of active zinc, and the zinc hydroxide ions necessary for the discharge reaction are This is thought to be because the degree to which the supply to the surface is hindered is greater than when the mercury content is high, and the establishment of a low hydration rate zinc negative electrode that has both corrosion resistance and strong discharge performance is considered an important future issue.

発明の目的 本発明は負極亜鉛の耐食性、放電性能を劣化させること
なく氷化率を低減させ、低公害で、放電性能、貯蔵性、
耐漏液性などの性能のすぐれた亜鉛アルカリ−決定池を
提供することを目的とする。
Purpose of the Invention The present invention reduces the freezing rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose of the present invention is to provide a zinc-alkali determination pond with excellent performance such as leakage resistance.

発明の構成 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
る、いわゆる亜鉛アルカリ電池系の負極に、アルミニウ
ムまたはマグネシウムの少なくともいずれかの元素と、
カドミウム。
Structure of the Invention The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components as an electrolyte, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as a positive electrode active material. At least one element of aluminum or magnesium is used in the negative electrode of a so-called zinc-alkaline battery system.
cadmium.

鉛、錫より々る群から選ばれた一種以上の元素と、ガリ
ウム、タリウム、銀、インジウムからなる群より選ばれ
た一種以上の元素とを添加した氷化亜鉛合金を用いるこ
とを特徴とするものである。
It is characterized by using a glazed zinc alloy to which one or more elements selected from the group consisting of lead, tin, and one or more elements selected from the group consisting of gallium, thallium, silver, and indium are added. It is something.

本発明はまず、放電反応生成物が活性な亜鉛表面を被い
、水酸イオンの供給を阻害し、大電流での放電反応が円
滑に進行しない傾向が特に氷化率の低い亜鉛を用いる場
合に顕著に表われる問題をアルミニウム、マグネシウム
より選ばれた元素を亜鉛に添加して合金化することによ
り解決し、鉛。
The present invention first addresses the problem that when using zinc with a low freezing rate, discharge reaction products tend to cover the active zinc surface, inhibiting the supply of hydroxide ions, and preventing the discharge reaction from proceeding smoothly at large currents. We solved this problem by alloying zinc with an element selected from aluminum and magnesium.

カドミウム、錫より選ばれた元素と、ガリウム。Cadmium, an element selected from tin, and gallium.

タリウム、銀、インジウムより選ばれた元素とを添加し
て合金化することにより亜鉛の防食性を増し、低木化率
の亜鉛負極を実現したものである。
By adding and alloying an element selected from thallium, silver, and indium, the anticorrosion properties of zinc are increased, and a zinc negative electrode with a low bushing rate is realized.

上記のアルミニウム、マグネシウムの作用効果は後述の
実施例において明白であるが、その作用機構の解明は不
十分である。推定するに、負極亜鉛中に合金として含ま
れている亜鉛より卑な電位を有するアルミニウム、マグ
ネシウムが亜鉛とともに放電し、その放電生成物が亜鉛
の放電生成物の電解液中への溶解を促進させるか、未溶
解の放電生成物の層が緻密化して亜鉛表面が不働態化す
る作用を緩和する役割を果すことにより、亜鉛の活性表
面に水酸イオンが豊富に供給される状態が亜鉛が消耗し
尽す壕で継続して確保され、亜鉛の放電利用率が高まる
ものと考えられる。又、鉛、カドミウム、錫を合金元素
として添加した場合、及びガリウム、タリウム、銀、イ
ンジウムよりなる群から選ばれた元素を亜鉛に合金元素
として添加した場合、いづれの場合にも氷化亜鉛合金の
防食効果があることは経験的に知られている通りである
が、その作用機構については定説がない。しかし前者の
群の元素は水銀との親和力が比較的小さく、後者の群の
元素は水銀との親和力が比較的大きい性質を有するので
、各々の群の元素の作用機構が異るものと考えられ、本
発明はこれらの元素の複合効果で防食性を高めた上で、
さらにアルミニウム、マグネシウムの添加効果を複合さ
せて放電性能と保存性にすぐれた低張化率亜鉛負極を実
現したものである。すなわち、表面から氷化した亜鉛合
金中の水銀が、結晶粒界を通じて表面層から内部に拡散
するのを抑制して表面の水銀濃度を高く維持するために
水銀との親和性の比較的小さい元素が結晶粒界に存在す
ることが効果的で、さらに、抑制されたなりに粒界に拡
散した水銀を粒界に固定して結晶粒内に拡散するのを抑
止するために水銀との親和性の犬なる元素が粒界に存在
するのが効果的であると考えられる。これにより、亜鉛
合金の腐食が優先的に進行する合金の表面及び粒界に高
濃度の水銀を固定でき、水素過電圧を高めることができ
るので、少量の水銀で効果的な防食を果すことができる
ものと推定される。以上の如く、本発明は、放電性能を
向上させる添加元素と、防食の作用機構の異る上船の2
種類の添加元素とを添加したことによる相乗効果により
低木化率で耐食性が良く、放電性能にもすぐれた亜鉛負
極を実現したものである。以下、実施例により詳細に説
明する。
Although the effects of aluminum and magnesium mentioned above are clear in the examples described below, the mechanism of action is not fully understood. It is estimated that aluminum and magnesium, which are contained as an alloy in the negative electrode zinc and have a more base potential than zinc, are discharged together with zinc, and the discharge products promote the dissolution of the zinc discharge products into the electrolyte. Alternatively, the layer of undissolved discharge products densifies and plays a role in alleviating the effect of passivating the zinc surface, resulting in a state in which hydroxide ions are abundantly supplied to the active surface of zinc, causing zinc to be depleted. It is thought that the discharge utilization rate of zinc will increase as it continues to be secured in the trench where it is exhausted. In addition, when lead, cadmium, and tin are added as alloying elements, and when an element selected from the group consisting of gallium, thallium, silver, and indium is added to zinc as an alloying element, in either case, a frozen zinc alloy is produced. Although it is known from experience that it has an anticorrosive effect, there is no established theory regarding its mechanism of action. However, since the elements in the former group have a relatively small affinity for mercury, and the elements in the latter group have a relatively large affinity for mercury, it is thought that the mechanisms of action of the elements in each group are different. , the present invention improves corrosion resistance through the combined effect of these elements, and
Furthermore, by combining the effects of adding aluminum and magnesium, a low tonicity zinc negative electrode with excellent discharge performance and storage stability was realized. In other words, elements with a relatively low affinity for mercury are used to suppress the diffusion of mercury in the zinc alloy, which has frozen from the surface, from the surface layer into the interior through grain boundaries and to maintain a high mercury concentration on the surface. The presence of mercury at the grain boundaries is effective, and in addition, the mercury that has diffused into the grain boundaries is fixed at the grain boundaries and inhibited from diffusing into the grains. It is thought that it is effective for the dog element to exist at the grain boundaries. This allows a high concentration of mercury to be fixed on the surface and grain boundaries of the zinc alloy, where corrosion preferentially progresses, and increases the hydrogen overvoltage, making it possible to achieve effective corrosion protection with a small amount of mercury. It is estimated that As described above, the present invention has two elements: an additive element that improves the discharge performance, and an anti-corrosion effect on a ship that has a different mechanism of action.
The synergistic effect of adding different types of additive elements has resulted in a zinc negative electrode that has a low bushing rate, good corrosion resistance, and excellent discharge performance. Hereinafter, it will be explained in detail using examples.

実施例の説明 純度、99.997 %の亜鉛地金にアルミニウム。Description of examples Aluminum on zinc base metal with a purity of 99.997%.

マグネシウムのうち少なくとも一種の元素と、鉛。At least one element of magnesium and lead.

カドミウム、錫の群のうち一種以上の元素と、ガリウム
、タリウム、銀、インジウムの群のうち一種以上の元素
とを添加した各種の合金を作成し、約5o○℃で溶融し
て圧縮空気により噴射して粉体化し、60〜150メツ
シユの粒度範囲にフルイ別けした。次いで濃度10φの
か性カリ水溶液中に上記粉体を投入し、攪拌しながら所
定量の水銀を滴下して氷化した。その後水洗し、アセト
ンで置換して乾燥し、氷化亜鉛合金粉を作成した。
Various alloys are prepared by adding one or more elements from the group of cadmium and tin, and one or more elements from the group of gallium, thallium, silver, and indium. It was pulverized by spraying and sieved into particle sizes ranging from 60 to 150 mesh. Next, the above powder was put into a caustic potassium aqueous solution having a concentration of 10φ, and a predetermined amount of mercury was added dropwise while stirring to freeze it. Thereafter, it was washed with water, substituted with acetone, and dried to produce a frozen zinc alloy powder.

さらに比較例として、鉛、カドミウム、錫のうちから選
んだ元素とガリウム、タリウム、銀、インジウムのうち
から選んだ元素のみを添加した亜鉛合金とアルミニウム
、マグネシウムのうちから選んだ元素のみを添加した亜
鉛合金を溶融噴射して粉体化し、上記と同法で氷化粉末
を作成した。
Furthermore, as a comparative example, a zinc alloy was added with only an element selected from lead, cadmium, and tin and an element selected from gallium, thallium, silver, and indium, and a zinc alloy was added with only an element selected from aluminum and magnesium. Zinc alloy was melted and injected into powder, and frozen powder was created using the same method as above.

これらの氷化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレススチール製の
封口板であり、その内面には銅メッキ1′が施され、2
は濃度40%のか性カリ水溶液に酸化亜鉛を飽和させた
電解液をカルボキシルメチルセルロースによりゲル化し
、このゲル中に氷化粉末を分散させた亜鉛負極、3はセ
ルロース系の保液利、4は多孔性ポリプロピレン製のセ
パレーク、6は酸化銀に黒鉛を混合して加圧成型した正
極、6′は鉄にニッケルメッキを施した正極IJ 7グ
、6はステンレススチール製の正極缶であり、内外面に
ニッケルメッキが施されている。7はポリプロピレン製
のガスケットで、正極缶の折り曲げにより密封している
。試作した電池は直径11.6mm、高さ6.4瀧で負
極の氷化粉末の重量を193■に統一した。
The button-shaped silver oxide battery shown in the figure was manufactured using these frozen powders. In the figure, 1 is a sealing plate made of stainless steel, the inner surface of which is coated with copper plating 1', and 2.
3 is a zinc negative electrode made by gelling an electrolytic solution of 40% caustic potassium aqueous solution saturated with zinc oxide with carboxymethyl cellulose and dispersing frozen powder in this gel, 3 is a cellulose-based liquid storage container, and 4 is a porous electrode. 6 is a positive electrode made of silver oxide mixed with graphite and pressure molded, 6' is a positive electrode made of iron plated with nickel, IJ7 is a positive electrode can made of stainless steel, and 6 is a positive electrode can made of stainless steel. is nickel plated. 7 is a gasket made of polypropylene, which is sealed by bending the positive electrode can. The prototype battery had a diameter of 11.6 mm, a height of 6.4 mm, and the weight of the frozen powder of the negative electrode was unified to 193 square meters.

試作した電池の内訳と60℃で1力月保存した後の放電
試験(20℃、610に)、0.9V終止)の結果(n
−3の平均値)と電池総高の保存による変化量を測定し
た結果(n=20の平均値)とを次表に示す。尚、水銀
の添加量(氷化率)は亜鉛合金粉に対しいずれも1φと
した。
Details of the prototype battery and the results of the discharge test (20℃, 610V) after storage at 60℃ for 1 month (0.9V final) (n
-3 average value) and the results of measuring the amount of change in battery total height due to storage (average value of n=20) are shown in the following table. In addition, the amount of mercury added (freezing rate) was set to 1φ with respect to the zinc alloy powder.

この表に見られる如く、本発明を適用した場合(i〜工
)はいずれも放電性能が良好で、ガス発生による電池膨
張も少ない。一方、従来例のうち、防食のための元素の
みを組合せて添加した場合(c−h)は電池の膨張は少
なく、ガス発生は抑制されているが、510Q負荷とい
う強負荷放電での持続時間が本発明品に比較して短かい
。さらに、負極の放電反応を円滑化するだめの元素のみ
を添加した場合(a、b)は防食性が不十分で電池の膨
張が大きく、しかも、保存中の自己消耗と内蔵水素ガス
による放電反応阻害により、保存後の放電性能も著しく
劣化している。上記の如く、a〜Fの従来の方法では1
%の氷化率では不十分で、実用性を備えさせるにはさら
に氷化率を高める必要があると考えられる。ixrの場
合、1%以下の低張化率で保存性、放電性能にすぐれた
実用性の高い亜鉛アルカリ電池が得られている。本発明
は、a、bの方法と、C〜hの方法との欠点を補完し、
それらの相乗効果により極めて効果的に解決したもので
ある。
As can be seen from this table, in all cases where the present invention was applied (I to Steps), the discharge performance was good and the battery expansion due to gas generation was small. On the other hand, among the conventional examples, when only a combination of anticorrosion elements were added (c-h), the expansion of the battery was small and gas generation was suppressed, but the duration of discharge under a heavy load of 510Q load is shorter than that of the product of the present invention. Furthermore, when only elements that smooth the discharge reaction of the negative electrode are added (a, b), the corrosion protection is insufficient and the battery expands significantly, and furthermore, self-depletion during storage and discharge reaction due to built-in hydrogen gas occur. Due to inhibition, the discharge performance after storage is also significantly degraded. As mentioned above, in the conventional method of a to F, 1
It is thought that a freezing rate of % is insufficient and it is necessary to further increase the freezing rate to make it practical. In the case of ixr, a highly practical zinc-alkaline battery with a low tension ratio of 1% or less and excellent storage stability and discharge performance has been obtained. The present invention complements the drawbacks of methods a and b and methods C to h,
This problem was solved very effectively due to their synergistic effect.

発明の効果 以上のように本発明は、負極亜鉛の氷化率を低減し、低
公害の亜鉛アルカリ−決定池を得るに極めて効果的であ
る。
Effects of the Invention As described above, the present invention is extremely effective in reducing the freezing rate of negative electrode zinc and obtaining a low-pollution zinc alkaline determination pond.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の効果を検討するため製作したボタン形酸化
銀電池の断面図である。 1・・−・封口板、2・・・亜鉛負極、3・・・・保液
仰、4・・セパレータ、5−・・・・酸化銀正極、6′
・・・・・正極リング、6・・−正極缶、7・・・・・
ガスケット。
The figure is a cross-sectional view of a button-shaped silver oxide battery manufactured to examine the effects of the present invention. 1...Sealing plate, 2...Zinc negative electrode, 3...Liquid retaining top, 4...Separator, 5-...Silver oxide positive electrode, 6'
...Positive electrode ring, 6...-Positive electrode can, 7...
gasket.

Claims (1)

【特許請求の範囲】[Claims] 亜鉛を主成分とし、アルミニウムまたはマグネシウムの
少なくともいずれかの元素と、鉛、カドミウム、錫から
なる群よシ選ばれた一種以上の元素と、ガリウム、タリ
ウム、銀、インジウムからなる群より選ばれた一種以上
の元素とを添加した氷化亜鉛合金を、負極活物質に用い
たことを特徴とする亜鉛アルカリ−次電池。
The main component is zinc, at least one element of aluminum or magnesium, one or more elements selected from the group consisting of lead, cadmium, and tin, and selected from the group consisting of gallium, thallium, silver, and indium. A zinc alkaline secondary battery characterized in that a glazed zinc alloy to which one or more elements are added is used as a negative electrode active material.
JP59030550A 1984-02-20 1984-02-20 Zinc-alkaline primary cell Pending JPS60175368A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP59030550A JPS60175368A (en) 1984-02-20 1984-02-20 Zinc-alkaline primary cell
PCT/JP1985/000066 WO1985003810A1 (en) 1984-02-20 1985-02-18 Zinc alkali cell
BR8505281A BR8505281A (en) 1984-02-20 1985-02-18 ALKALINE ZINC BATTERY
US06/935,166 US4735876A (en) 1984-02-20 1985-02-18 Zinc-alkaline battery
AU39383/85A AU557244B2 (en) 1984-02-20 1985-02-18 Zinc alkali cell
KR1019850700210A KR890002672B1 (en) 1984-02-20 1985-02-18 Zn-alkali battery
DE8585901061T DE3567130D1 (en) 1984-02-20 1985-02-18 Zinc alkaline battery
EP85901061A EP0172255B1 (en) 1984-02-20 1985-02-18 Zinc alkaline battery
CN85106643.7A CN1004778B (en) 1984-02-20 1985-08-19 Zinc-alkaline battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59030550A JPS60175368A (en) 1984-02-20 1984-02-20 Zinc-alkaline primary cell
CN85106643.7A CN1004778B (en) 1984-02-20 1985-08-19 Zinc-alkaline battery

Publications (1)

Publication Number Publication Date
JPS60175368A true JPS60175368A (en) 1985-09-09

Family

ID=25742016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030550A Pending JPS60175368A (en) 1984-02-20 1984-02-20 Zinc-alkaline primary cell

Country Status (2)

Country Link
JP (1) JPS60175368A (en)
CN (1) CN1004778B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253339A (en) * 1985-05-02 1986-11-11 Toho Aen Kk Zinc alloy for battery electrode
JPS63118036A (en) * 1986-11-07 1988-05-23 Dowa Mining Co Ltd Zinc alloy for battery
JPS63171842A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
US7229715B2 (en) * 2003-06-17 2007-06-12 The Gillette Company Anode for battery
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759166B2 (en) * 2002-05-06 2004-07-06 The Gillette Company Alkaline cell with improved cathode
US6753109B2 (en) * 2002-05-06 2004-06-22 The Gillette Company Alkaline cell with improved cathode
JP3935005B2 (en) * 2002-07-12 2007-06-20 日立マクセル株式会社 Alkaline battery and manufacturing method thereof
US7049030B2 (en) * 2003-03-06 2006-05-23 The Gillette Company Battery
CN1328803C (en) * 2003-12-05 2007-07-25 宁波光华电池有限公司 Environment-friendly zinc-manganese battery cathode can
CN100452489C (en) * 2004-11-05 2009-01-14 松栢电池厂有限公司 Dry battery cathode and manufacturing method thereof, and zinc-manganese dry battery using same
CN100452495C (en) * 2004-11-16 2009-01-14 松栢电池厂有限公司 Zinc manganese dry battory zinc metal sheet and its manufacturing method
CN100452494C (en) * 2004-11-16 2009-01-14 松栢电池厂有限公司 Zinc granule for zinc-manganese dry cell and method for manufacturing same
JP4222488B2 (en) * 2005-11-02 2009-02-12 日立マクセル株式会社 Alkaline battery
EP2720304B1 (en) * 2012-10-15 2018-03-28 VARTA Microbattery GmbH Electrochemical cell with zinc indium electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253339A (en) * 1985-05-02 1986-11-11 Toho Aen Kk Zinc alloy for battery electrode
JPH0459374B2 (en) * 1985-05-02 1992-09-22 Toho Zinc Co Ltd
JPS63118036A (en) * 1986-11-07 1988-05-23 Dowa Mining Co Ltd Zinc alloy for battery
JPS63171842A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
US7229715B2 (en) * 2003-06-17 2007-06-12 The Gillette Company Anode for battery
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution

Also Published As

Publication number Publication date
CN1004778B (en) 1989-07-12
CN85106643A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
JPS60175368A (en) Zinc-alkaline primary cell
JPS60175369A (en) Zinc-alkaline primary cell
JPS60177553A (en) Zinc alkaline primary battery
JPS636749A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
KR890002672B1 (en) Zn-alkali battery
JPH0142576B2 (en)
JPS60165052A (en) Zinc alkaline primary battery
JPS60177552A (en) Zinc alkaline primary battery
JPS63133450A (en) Zinc alkaline battery
JPH0365617B2 (en)
JPS61140068A (en) Zinc alkali battery
JPH0622118B2 (en) Zinc alkaline battery
JPS60177551A (en) Zinc alkaline primary battery
JPS63178452A (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPS6273565A (en) Zinc alkaline battery
JPH01307160A (en) Alkaline battery
JPH0365621B2 (en)
JPS6290857A (en) Zinc alkaline cell
JPS6290859A (en) Zinc alkaline cell
JPS636748A (en) Zinc alkaline battery
JPS60114548A (en) Zinc alloy for electrode