JPS63171842A - Zinc alloy for battery and its production - Google Patents

Zinc alloy for battery and its production

Info

Publication number
JPS63171842A
JPS63171842A JP62003828A JP382887A JPS63171842A JP S63171842 A JPS63171842 A JP S63171842A JP 62003828 A JP62003828 A JP 62003828A JP 382887 A JP382887 A JP 382887A JP S63171842 A JPS63171842 A JP S63171842A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
mercury
aluminum
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003828A
Other languages
Japanese (ja)
Inventor
Tadayoshi Hikosaka
彦坂 忠義
Shigeru Oyama
大山 繁
Kenichi Shono
庄野 健一
Hiroshi Terakado
寺門 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP62003828A priority Critical patent/JPS63171842A/en
Publication of JPS63171842A publication Critical patent/JPS63171842A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a low-mercury zinc alloy for battery in which the quantity of H2 gas generated in stably reduced to a greater extent and Hg content is regulated to <=3%, by providing a composition consisting of respectively prescribed amounts of Ga or In, Pb, Al, and Hg and the balance Zn with inevitable impurities. CONSTITUTION:The zinc alloy for battery is constituted of, by weight, 0.001-0.2% Ga or In, 0.01-0.6% Pb, 0.01-0.1% Al, 0.5-3.0% Hg, and the balance Zn with inevitable impurities. In order to obtain this zinc alloy, a method in which mercury is added to a previously prepared zinc alloy containing Ga or In, Pb, and Al to undergo mercuration or other method are adopted. By using the zinc alloy for battery of this invention, the quantity of H2 gas generated in a battery electrolyte can be stably reduced to a greater extent than heretofore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液中で水素ガス発生量が少ないガリウム−
鉛−アルミニウムー亜鉛系またはインジウム−鉛−アル
ミニウムー亜鉛系合金からなる電池用亜鉛合金およびそ
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses gallium, which generates a small amount of hydrogen gas in an electrolyte.
The present invention relates to a zinc alloy for batteries made of a lead-aluminum-zinc alloy or an indium-lead-aluminum-zinc alloy, and a method for producing the same.

〔従来技術〕[Prior art]

従来アルカリ乾電池等の電池の負極材として亜鉛または
亜鉛合金が用いられている。亜鉛は水素過電圧や価格の
面から好んで用いられてきたものであるが、それのみで
は電池の使用時や保存中の水素ガスの多量発生を抑制し
切れず、それに起因して電池からの電解液漏れなどの問
題を生じるものである。
Zinc or zinc alloy has conventionally been used as a negative electrode material for batteries such as alkaline dry batteries. Zinc has been preferred from the viewpoint of hydrogen overvoltage and cost, but zinc alone cannot suppress the generation of large amounts of hydrogen gas during battery use and storage, and due to this, the electrolysis from the battery This causes problems such as liquid leakage.

近年このようなガス発生の抑制のための技術改良として
亜鉛の汞化が行なわれ、さらに廃乾電池の処分等に間す
る公害面の懸念から低汞化ないし無汞化のための亜鉛合
金の開発が行なわれるようになってきている。このよう
な亜鉛合金としてはたとえばガリウム−インジウム−亜
鉛系合金などが知られている(特開昭60−11454
8、特開昭6l−253339) 。
In recent years, as a technological improvement to suppress the generation of such gases, zinc has been converted into hydrogen, and due to concerns about pollution during the disposal of waste dry batteries, zinc alloys have been developed to reduce or eliminate hydrogen. is increasingly being carried out. As such a zinc alloy, for example, a gallium-indium-zinc alloy is known (Japanese Patent Laid-Open No. 11454/1983).
8, Japanese Patent Publication No. 61-253339).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、それらの亜鉛合金によるガス発生の抑制効果は
ある程度評価されるものの、現状では必ずしも満足され
得るものではなく、さらに安定してガス発生量の少ない
電池用の低汞化亜鉛合金が求められている。
However, although the effectiveness of these zinc alloys in suppressing gas generation has been evaluated to some extent, they are not necessarily satisfactory at present, and there is a need for more stable, low-rate zinc alloys for batteries that generate less gas. There is.

従って本発明の目的は、安定的に水素ガス発生率がより
低く、かつ含有水銀量が3%以下の電池用低汞化亜鉛合
金を得ることにある。
Therefore, an object of the present invention is to obtain a low-fragility zinc alloy for batteries, which stably has a lower hydrogen gas generation rate and has a mercury content of 3% or less.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は重量%においてガリ
ウムまたはインジウム0.001〜0.2%、鉛0.0
1〜0.6%、アルミニウム0.001〜0.1%およ
び−水銀0.5〜3.0%を含み残部が亜鉛および不可
避的不純物からなる電池用亜鉛合金を提供するものであ
り、またこのような亜鉛合金を得るために予め調製した
ガリウムまたはインジウム、並びに鉛およびアルミニウ
ムを含む亜鉛合金に水銀を添加し汞化せしめるような方
法またはガリウムまたはインジウムのいずれか、並びに
鉛および亜鉛の何れか1種または2種以上の混合成分を
予め水銀で汞化させ、次いでこれを亜鉛−アルミニウム
合金または前記合金成分の残部を含む亜鉛−アルミニウ
ム合金に添加する方法を提案するものである。
In order to achieve the above object, the present invention provides 0.001 to 0.2% of gallium or indium and 0.0% of lead by weight.
1 to 0.6% of aluminum, 0.001 to 0.1% of aluminum, and 0.5 to 3.0% of mercury, the balance being zinc and unavoidable impurities; To obtain such a zinc alloy, gallium or indium prepared in advance, and a method of adding mercury to a zinc alloy containing lead and aluminum to form a hydrogen atom, or either gallium or indium, or either lead or zinc. The present invention proposes a method in which one or more mixed components are preliminarily oxidized with mercury, and then added to a zinc-aluminum alloy or a zinc-aluminum alloy containing the remainder of the above-mentioned alloy components.

本発明において、ガリウムまたはインジウムの含有量は
0.001〜0.2%、鉛の含有量は0.01〜0,6
%、およびアルミニウムの含有量は0.001〜0.1
%が必要であり、上記の下限未満では水素ガス発生の抑
制効果が不十分であり、また上記の上限値を超えてもそ
れ以上の効果は得られないか、またはガス発生の抑制効
果が逆に劣化することが認められている。
In the present invention, the content of gallium or indium is 0.001 to 0.2%, and the content of lead is 0.01 to 0.6%.
%, and the aluminum content is 0.001-0.1
%, and if it is less than the above lower limit, the effect of suppressing hydrogen gas generation will be insufficient, and even if it exceeds the above upper limit, no further effect will be obtained, or the effect of suppressing gas generation will be reversed. It is recognized that the deterioration occurs.

また水銀の使用量は0.5〜3.0%が必要であり、好
ましくは0.5〜2.0%であって、0.5%未満にな
ると水素ガス発生量が急激に増加し、3.0%以上にな
ってもガス発生量の抑制効果は余り変らない。
In addition, the amount of mercury used must be 0.5 to 3.0%, preferably 0.5 to 2.0%, and if it is less than 0.5%, the amount of hydrogen gas generated will increase rapidly. Even if it exceeds 3.0%, the effect of suppressing the amount of gas generated does not change much.

すなわち本合金において、従来の6〜10%水銀を含む
汞化亜鉛に比較し十分に低汞化の目的が達し得られるこ
とが見出されたものである。
That is, it has been found that this alloy can sufficiently achieve the purpose of lowering the mercury compared to the conventional zinc hydride containing 6 to 10% mercury.

なおガリウムまたはインジウム並びに、鉛、アルミニウ
ムそして水銀の何れか1成分でも欠く場合は所定の効果
が発揮され得ない。
Note that if any one of gallium or indium, lead, aluminum, and mercury is missing, the desired effect cannot be achieved.

本発明の亜鉛合金の製造は、上記成分組成を有するガリ
ウム−鉛−アルミニウムー亜鉛合金またはインジウム−
鉛−アルミニウムー亜鉛合金を得てこれに所定の水銀を
添加し混合させて汞化せしめる方法またはガリウムまた
はインジウム並びに、鉛、および亜鉛のうち1種または
2種以上の金属を予め水銀と混合させた後、亜鉛−アル
ミニウム合金あるいは残部の合金成分を含む亜鉛−アル
ミニウム合金に添加する方法によって行なわれる。
The zinc alloy of the present invention can be manufactured by using a gallium-lead-aluminum-zinc alloy or an indium-lead-aluminum alloy having the above-mentioned composition.
A method in which a lead-aluminum-zinc alloy is obtained, a specified amount of mercury is added thereto, and the mixture is made to form a hydrogen atom, or one or more metals selected from gallium or indium, lead, and zinc are mixed with mercury in advance. After that, it is added to the zinc-aluminum alloy or the zinc-aluminum alloy containing the remaining alloy components.

これにより汞化が均一にかつ効率的に行なわれそれによ
って電池用亜鉛合金としての水素ガス発生の抑制効果が
十分なものとなる。
As a result, hydrogenation is uniformly and efficiently carried out, and as a result, the zinc alloy for batteries has a sufficient effect of suppressing hydrogen gas generation.

〔実施例1〕 噴霧法で製造された粒度48〜150メツシユのガリウ
ム−鉛−アルミニウムー亜鉛合金粉を70℃の10%K
OH溶液内で水銀を滴下混合させることによって汞化さ
せ、第1表に試料1および2として示す本発明組成の亜
鉛合金を得た。
[Example 1] Gallium-lead-aluminum-zinc alloy powder with a particle size of 48 to 150 mesh produced by a spraying method was heated to 10% K at 70°C.
Zinc alloys having the compositions of the present invention shown as Samples 1 and 2 in Table 1 were obtained by dropwise mixing mercury in an OH solution.

また予め成分金属粉の1種または2種を水銀と混合した
ものを70℃の10%KOH溶液中に滴下させて亜鉛−
アルミニウム合金粉または亜鉛−鉛一アルミニウム合金
粉に混合汞化させ、第1表に試料3〜5として示す本発
明組成の亜鉛合金を得た。
In addition, one or two of the component metal powders mixed with mercury were dropped into a 10% KOH solution at 70°C to remove zinc.
Aluminum alloy powder or zinc-lead-aluminum alloy powder was mixed into a slurry to obtain zinc alloys having the compositions of the present invention shown as Samples 3 to 5 in Table 1.

次にこれら亜鉛合金粉を、酸化亜鉛を飽和させた45℃
の40%KOH溶液中に浸漬させて水素ガス発生量を測
定し評価した。その結果を第1表に併せて示した。
Next, these zinc alloy powders were heated at 45℃ saturated with zinc oxide.
It was evaluated by immersing it in a 40% KOH solution and measuring the amount of hydrogen gas generated. The results are also shown in Table 1.

第1表 〔比較例〕 合金組成を本発明組成範囲外としたほかは前記実施例と
同じ方法によって製造された亜鉛合金粉を未化させて第
2表に試料6〜8として示す汞化亜鉛合金粉を得た。
Table 1 [Comparative Example] Zinc alloy powder produced by the same method as in the above example except that the alloy composition was outside the composition range of the present invention was unconsolidated and is shown as Samples 6 to 8 in Table 2. An alloy powder was obtained.

次にこれら亜鉛合金粉を前記実施例と同じ方法によって
水素ガス発生量を測定し評価しな、その結果を第2表に
併せて示した。
Next, these zinc alloy powders were evaluated by measuring the amount of hydrogen gas generated by the same method as in the above example, and the results are also shown in Table 2.

第2表 以上のとおり、比較例の試料における水素ガス発生量が
約2μl/日・gであるのに対し本発明合金の実施例試
料におけるそれは約1μl/日・3であって明らかに改
善されている。
As shown in Table 2 above, the amount of hydrogen gas generated in the comparative sample was approximately 2 μl/day·g, while that in the example sample of the invention alloy was approximately 1 μl/day·3, which was clearly improved. ing.

〔実施例2〕 噴霧法で製造された粒度48〜150メツシユのインジ
ウム−鉛−アルミニウムー亜鉛合金粉を70℃の10%
KOH溶液中で水銀を滴下混合させることによって未化
させ、第3表に試f!110〜14として示す本発明組
成の亜鉛合金を得た。
[Example 2] Indium-lead-aluminum-zinc alloy powder with a particle size of 48 to 150 mesh produced by a spraying method was heated to 10% at 70°C.
Mercury was sterilized by dropwise mixing in a KOH solution, and the test results are shown in Table 3. Zinc alloys having compositions of the present invention shown as 110-14 were obtained.

また予め成分金属粉の1種または2種以上を水銀と混合
したものを70℃の10%KOH溶液中に滴下させて亜
鉛−アルミニウム金金粉または成分金属の残余を含む亜
鉛−アルミニウム舎金粉に混合汞化させ、第3表に試料
15〜23として示す本発明組成の亜鉛合金を得た。
In addition, one or more component metal powders mixed with mercury are dropped into a 10% KOH solution at 70°C and mixed with zinc-aluminum gold powder or zinc-aluminum metal powder containing the remainder of the component metals. The zinc alloys having the compositions of the present invention shown as Samples 15 to 23 in Table 3 were obtained.

次にこれら亜鉛合金粉を酸化亜鉛を飽和させた45℃の
40%KOH溶液中に浸漬させて水素ガス発生量を測定
し評価した。その結果を第3表に併せて示した。
Next, these zinc alloy powders were immersed in a 40% KOH solution at 45° C. saturated with zinc oxide, and the amount of hydrogen gas generated was measured and evaluated. The results are also shown in Table 3.

第3表 本0.05%分だけ水銀中に添加 〔比較例〕 合金組成を本発明組成範囲外としたほかは前記実施例2
と同じ方法によって製造された亜鉛合金粉を汞化させて
第4表に試料24〜28として示した汞化亜鉛合金粉を
得た。
Table 3 Added 0.05% of mercury to mercury [Comparative example] Example 2 above except that the alloy composition was outside the composition range of the present invention
Zinc alloy powders produced in the same manner as above were subjected to filtration to obtain filtrated zinc alloy powders shown as Samples 24 to 28 in Table 4.

次にこれら亜鉛合金粉を前記実施例と同じ方法によって
水素ガス発生量を測定し評価した。その結果を第4表に
併せて示した。
Next, these zinc alloy powders were evaluated by measuring the amount of hydrogen gas generated by the same method as in the above example. The results are also shown in Table 4.

第4表 以上のように、比較例の試料における水素ガス発生量が
約2μl/日・3以上であるのに対し本発明合金の実施
例試料におけるそれは安定的に約1μl/日・2であっ
て明らかに改善されている。
As shown in Table 4 above, the amount of hydrogen gas generated in the comparative sample was about 2 μl/day.3 or more, whereas the amount of hydrogen gas generated in the example sample of the alloy of the present invention was stably about 1 μl/day.2. It has clearly been improved.

〔発明の効果〕〔Effect of the invention〕

本発明組成の電池用亜鉛合金およびその製造法によって
電池電解液中における水素ガス発生量を安定的に従来よ
りもさらに低減させることが可能となった。
By using the zinc alloy for batteries having the composition of the present invention and the method for producing the same, it has become possible to stably reduce the amount of hydrogen gas generated in the battery electrolyte more than ever before.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%において、ガリウムまたはインジウム0.
001〜0.2%、鉛0.01〜0.6%、アルミニウ
ム0.001〜0.1%および水銀0.5〜3.0%を
含み、残部が亜鉛および不可避的不純物からなることを
特徴とする電池用亜鉛合金。
(1) Gallium or indium 0.0% by weight.
001-0.2%, lead 0.01-0.6%, aluminum 0.001-0.1% and mercury 0.5-3.0%, with the balance consisting of zinc and unavoidable impurities. Characteristic zinc alloy for batteries.
(2)ガリウムまたはインジウムのいずれか一方、鉛お
よびアルミニウムを含む亜鉛合金に、水銀を添加し汞化
せしめることによってガリウムまたはインジウム0.0
01〜0.2%、鉛0.01〜0.6%、アルミニウム
0.001〜0.1%および水銀0.5〜3.0%を含
み、残部が亜鉛および不可避的不純物からなる亜鉛合金
を得ることを特徴とする電池用亜鉛合金の製造方法。
(2) By adding mercury to a zinc alloy containing either gallium or indium, lead and aluminum, and making it aqueous, 0.0% of gallium or indium is added.
Zinc alloy containing 0.01 to 0.2%, lead 0.01 to 0.6%, aluminum 0.001 to 0.1%, and mercury 0.5 to 3.0%, with the balance consisting of zinc and inevitable impurities. A method for producing a zinc alloy for batteries, characterized in that it obtains the following:
(3)ガリウムまたはインジウムのいずれか一方並びに
、鉛および亜鉛のうち1種または2種以上を水銀で汞化
し、次いで亜鉛−アルミニウム合金または残部の金属成
分を含む亜鉛−アルミニウム合金に混合せしめてガリウ
ムまたはインジウム0.001〜0.2%、鉛0.01
〜0.6%、アルミニウム0.001〜0.1%および
水銀0.5〜3.0%を含み残部が亜鉛および不可避的
不純物からなる亜鉛合金を得ることを特徴とする電池用
亜鉛合金の製造方法。
(3) Either one of gallium or indium and one or more of lead and zinc are oxidized with mercury, and then mixed with a zinc-aluminum alloy or a zinc-aluminum alloy containing the remaining metal components to form gallium. Or indium 0.001-0.2%, lead 0.01
~0.6% aluminum, 0.001~0.1% aluminum, and 0.5~3.0% mercury, the balance being zinc and inevitable impurities. Production method.
JP62003828A 1987-01-10 1987-01-10 Zinc alloy for battery and its production Pending JPS63171842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003828A JPS63171842A (en) 1987-01-10 1987-01-10 Zinc alloy for battery and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003828A JPS63171842A (en) 1987-01-10 1987-01-10 Zinc alloy for battery and its production

Publications (1)

Publication Number Publication Date
JPS63171842A true JPS63171842A (en) 1988-07-15

Family

ID=11568058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003828A Pending JPS63171842A (en) 1987-01-10 1987-01-10 Zinc alloy for battery and its production

Country Status (1)

Country Link
JP (1) JPS63171842A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method
JPS60175368A (en) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd Zinc-alkaline primary cell
JPS61253339A (en) * 1985-05-02 1986-11-11 Toho Aen Kk Zinc alloy for battery electrode
JPS62123653A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method
JPS60175368A (en) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd Zinc-alkaline primary cell
JPS61253339A (en) * 1985-05-02 1986-11-11 Toho Aen Kk Zinc alloy for battery electrode
JPS62123653A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery

Similar Documents

Publication Publication Date Title
JP3317526B2 (en) Alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP3352965B2 (en) Zinc alloy powder for alkaline batteries with low gas generation
JPS63171842A (en) Zinc alloy for battery and its production
JP3545985B2 (en) Zinc alloy powder and alkaline battery using the same
JPS6164076A (en) Electrochemical battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
EP0162411B1 (en) Process for the production of active anode materials for use in cells
JPH05159786A (en) Manganese dry battery
JPH0361343A (en) Zinc alloy for battery and its production
JPS61253339A (en) Zinc alloy for battery electrode
JPH07123043B2 (en) Lead-free and halogen-free zinc alloy powder for alkaline battery and method for producing the same
JPS63171843A (en) Zinc alloy for battery and its production
JPH05299082A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPS63304571A (en) Zinc alloy for battery and its manufacturing method
JPH05299083A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH0562683A (en) Alkaline battery
JPH0317181B2 (en)
JPS63118036A (en) Zinc alloy for battery
JPS62123653A (en) Zinc-alkaline battery
JP2932285B2 (en) Method for producing zinc alloy powder for alkaline batteries with low gas generation
JPH04368776A (en) Zinc-alloy powder for alkaline battery, and manufacture thereof
JPH06318456A (en) Manufacture of non-amalgamated negative electrode zinc alloy powder for alkaline battery
JPH05299075A (en) Zinc alkaline battery