JPS636747A - Zince alkaline battery - Google Patents

Zince alkaline battery

Info

Publication number
JPS636747A
JPS636747A JP61150307A JP15030786A JPS636747A JP S636747 A JPS636747 A JP S636747A JP 61150307 A JP61150307 A JP 61150307A JP 15030786 A JP15030786 A JP 15030786A JP S636747 A JPS636747 A JP S636747A
Authority
JP
Japan
Prior art keywords
zinc
battery
lead
cadmium
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61150307A
Other languages
Japanese (ja)
Other versions
JPH0719600B2 (en
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Nobuyori Kasahara
笠原 暢順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61150307A priority Critical patent/JPH0719600B2/en
Publication of JPS636747A publication Critical patent/JPS636747A/en
Publication of JPH0719600B2 publication Critical patent/JPH0719600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease amalgamation ratio of negative zinc by containing a specified amount of indium and at least one element selected from lead, cadmium, bismuth, and tellurium, and barium in a zinc alloy to form a negative active material. CONSTITUTION:0.001-0.5wt% indium, 0.01-0.5wt% at least one element selected from lead, cadmium, bismuth, and tellurium, and 0.001-0.5 wt% barium are contained in a zinc alloy to form a negative electrode 2 as a negative active material. The negative electrode 2 is combined with a positive electrode 5 such as silver oxide, and a separator 4 to form a zinc alkaline battery. Corrosion resistant effect is increased by hydrogen overvoltage increasing capability of indium, segregation capability of lead and cadmium in the vicinity of grain boundary of zinc alloy, and affinity of barium with mercury. Therefore, amalgamation ratio is decreased and the battery having low environmental pollution and high performance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline electrolyte as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられる
。従来、亜鉛に5〜10重量%重量%水銀を添加した氷
化亜鉛粉末を用いて水素過電圧を高め、実用的に問題の
ない程度に腐食を抑制することが工業的な手法として採
用されている。
2. Prior Art Conventionally, a common problem with this type of zinc-alkaline battery is corrosion of the negative electrode zinc by the electrolyte during storage. Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using frozen zinc powder, which is made by adding 5 to 10% by weight of mercury to zinc, and to suppress corrosion to a level that causes no practical problems. .

しかし近年、低公害化のため、電池内の含有水銀を低減
させることが社会的なニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛。
However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead in zinc.

カドミウム、インジウム、ガリウムなどを添加した合金
粉末を用いて耐食性を向上させ、水化率を低減させる方
法が提案されている。これらの腐食抑制効果は、添加元
素の単体の効果以外に複数の添加元素による複合効果も
大きく、インジウムと鉛あるいはこれらにガリウムを添
加したもの、さらにはガリウムと鉛を添加した亜鉛合金
などが従来、有望な系として提案されている。
A method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder to which cadmium, indium, gallium, etc. are added. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements.Conventionally, indium and lead, or gallium added to these, and zinc alloys with gallium and lead added, etc. , has been proposed as a promising system.

また、鉛、カドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61−78062号公報)、ガリウムおよび
タリウムにアルミニウムを添加した亜鉛合金(特開昭6
1−78061号公報)、アルミニウムと鉛に銀、ガリ
ウム、タリウム、カドミウムの一種または二種以上を添
加した亜鉛合金(特開昭61−78059号)等がある
In addition, zinc alloys in which gallium and silver are added to lead and cadmium (Japanese Unexamined Patent Publication No. 78062/1982), zinc alloys in which aluminum is added to gallium and thallium (Japanese Unexamined Patent Application Publication No. 1982-78062),
1-78061), and a zinc alloy in which one or more of silver, gallium, thallium, and cadmium are added to aluminum and lead (Japanese Patent Application Laid-Open No. 1982-78059).

発明が解決しようとする問題点 上記の提案の亜鉛合金はいずれもある程度の耐食性は期
待でき氷化率の低減もある程度見込めるものの、これら
の元素の組み合わせの効果については現状では末だ十分
でなく、有効な組み合わせKよる合金組成を解明するこ
とはなお今後の課題である。
Problems to be Solved by the InventionAlthough all of the zinc alloys proposed above can be expected to have a certain degree of corrosion resistance and a certain degree of reduction in the rate of icing, the effects of the combination of these elements are currently insufficient. Elucidating the alloy composition based on the effective combination K remains a future challenge.

本発明はこのような問題点を解決するもので、負極亜鉛
の耐蝕性を劣化させることなく、水化率を低減させ、低
公害で放電性能、貯蔵性能、耐漏液性などの総合性能の
すぐれた亜鉛アルカリ電池を提供することを目的とする
ものである。
The present invention solves these problems, and reduces the hydration rate without deteriorating the corrosion resistance of negative electrode zinc, resulting in low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance. The object of the present invention is to provide a zinc-alkaline battery with a high temperature.

問題点を解決するための手段 本発明は、インジウム(In)を0.001〜0.5重
量%、鉛(pb)、カドミウム(Cd)、ビスマス含有
する亜鉛合金を負極活物質に用いたものであり、これに
より亜鉛アルカリ電池の含有水銀の低減化を実現したも
のである。
Means for Solving the Problems The present invention uses a zinc alloy containing 0.001 to 0.5% by weight of indium (In), lead (PB), cadmium (Cd), and bismuth as a negative electrode active material. As a result, the amount of mercury contained in zinc-alkaline batteries has been reduced.

作  用 本発明の亜鉛合金における各添加元素の作用機構は不明
確であるが、防食に関する相乗効果は下記のように推察
される。
Function Although the mechanism of action of each additive element in the zinc alloy of the present invention is unclear, the synergistic effect regarding corrosion prevention is inferred as follows.

まず、Inは水素過電圧を高める作用と、水銀との親和
性が大きいため、水化のため(添加した水銀を亜鉛合金
の表面や粒界に固定し、少量の水銀の添加で亜鉛合金の
表面や粒界の水銀濃度を高く維持する作用とによシ大き
な防食効果があるものと考えられる。また、Pb、Cd
などは亜鉛合金の結晶粒界の近傍に偏析し易く、亜鉛合
金を表面から水化した場合に、表面層の水銀が粒界を通
じて亜鉛合金内部に拡散するのを抑制し、表面の水銀濃
度を高く維持することに寄与するものと考えられる。さ
らにBaは水銀との親和性が大きいので、Inの防食作
用と類似の作用効果が期待され、Inの作用を補う役割
を果すものと推定される。
First, since In has the effect of increasing hydrogen overvoltage and has a high affinity with mercury, In has the effect of increasing hydrogen overvoltage and has a high affinity for mercury. It is thought that Pb, Cd
etc., which tend to segregate near the grain boundaries of zinc alloys, and when zinc alloys are hydrated from the surface, they suppress the diffusion of mercury in the surface layer into the zinc alloy through the grain boundaries, reducing the mercury concentration on the surface. This is thought to contribute to maintaining a high level. Furthermore, since Ba has a high affinity with mercury, it is expected to have a similar anticorrosion effect to that of In, and is presumed to play a role in supplementing the effect of In.

以上のように本発明に用いる亜鉛合金は、少量の水銀で
水化することにより亜鉛合金の表面の水銀濃度を高く維
持するために、各元素が特有の作用で補完し合って複合
的な防食効果が得られたものと考えられる。本発明はこ
の亜鉛合金中の添加元素の組合せと、その含有量を実験
的に検討し、低水化率で、十分な耐食性と放電性能を兼
ね備えた低公害で実用性の高い亜鉛アルカリ電池を実現
するに有効な手段を完成したものである。
As described above, the zinc alloy used in the present invention has a complex anti-corrosion effect in which each element complements each other with its unique action in order to maintain a high mercury concentration on the surface of the zinc alloy by hydrating it with a small amount of mercury. It is thought that this was effective. The present invention has experimentally investigated the combination of additive elements in this zinc alloy and their content, and has developed a low-pollution, highly practical zinc-alkaline battery that has a low hydration rate, sufficient corrosion resistance, and discharge performance. We have completed an effective means to achieve this.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約SOO°Cで
溶融して圧縮空気により噴射して粉体化し、60〜15
0メツシユの粒度範囲てふるい分けした。次いで、か性
カリの10重量%水溶液中に上記粉体を投入し、攪拌し
ながら所定量の水銀を滴下して水化した。その後水洗し
、アセトンで置換して乾燥し、水化亜鉛合金粉を作成し
た。
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to a zinc ingot with a purity of 99.997%, melted at about SOO°C, and powdered by spraying with compressed air. ~15
The particles were sieved in a particle size range of 0 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder.

さらに本発明の実施例以外の氷化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Further, frozen zinc powder or hydrated zinc alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メツキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性のポリプロピ
レン製セパレータ、6は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7は内外面にニッケルメッキを施したステンレス鋼
製の正極缶である。8はポリプロピレン製のガスケット
で、正極缶7の開口部の折り曲げにより正極缶7と封口
板1との間に圧縮されている。試作した電池は直径11
.6M、高さ6.4騰で、負極の氷化粉末の重量を19
31vに統一し、水銀の添加量←水化率)は亜鉛合金粉
に対しいずれも1.0重量%とじた。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc hydrate alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene separator, 6 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is an inner and outer surface. This is a positive electrode can made of stainless steel with nickel plating. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 by bending the opening of the positive electrode can 7 . The prototype battery has a diameter of 11
.. 6M, height 6.4, weight of frozen powder of negative electrode 19
The amount of mercury added (hydration rate) was 1.0% by weight based on the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60°Cで1力月保
存した後の放電性能と電池総高の変化、及び目視判定で
の漏液電池の個数を次表に示す。放電性能は、20°C
において51C1負荷で0.9vを終止電圧として放電
した時の放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, the changes in discharge performance and total battery height after storage at 60°C for one month, and the number of leaking batteries as determined by visual inspection. Discharge performance is 20°C
It is expressed as the discharge duration when discharged with a 51C1 load and a final voltage of 0.9V.

この表において、電池総高の変化は電池封口後、各電池
構成要素間への応力の関係が安定化するまででの期間は
経時的に電池総高が減少するのが通例である。しかし、
亜鉛負極の腐食に伴う水素ガス発生の多い電池では上記
の電池総高の減少に対抗する電池内圧の上昇により、電
池総高を増大させる傾向が強くなる。従って、貯蔵によ
る電池総高の増減により亜鉛負極の耐食性を評価するこ
とができる。また、耐食性が不十分な電池では電池総高
が増大するほか、電池内圧の上昇により、耐漏液性が劣
化するとともに、腐食による亜鉛の消耗。
In this table, the total battery height generally decreases over time after the battery is sealed until the stress relationship between each battery component becomes stable. but,
In a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-mentioned decrease in the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the total height of the battery due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also have their leakage resistance deteriorate due to an increase in battery internal pressure, and zinc will be depleted due to corrosion.

亜鉛表面の酸化膜の形成、水素ガスの内在による放電反
応の阻害等により、放電性能が著しく劣化することにな
り、耐漏液性、放電持続時間とも亜鉛負極の耐食性に大
きく依存する。
The formation of an oxide film on the zinc surface, the inhibition of the discharge reaction due to the presence of hydrogen gas, etc. cause the discharge performance to deteriorate significantly, and both the leakage resistance and the discharge duration greatly depend on the corrosion resistance of the zinc negative electrode.

この表に見られるように、In も単独で添加した蔦1
に対し、Pb又はCd又はBi又はToを併存させた4
2,3,4.6の場合はいづれも耐食性が良く、特にp
bの複合効果が大きい。しかしこれらはいづれも1.0
重量%という低水化率では、実用的に満足すべき特性が
得られておらず、耐食性が十分とは云えない。
As seen in this table, Ivy 1 which also added In alone
4 in which Pb or Cd or Bi or To was co-existing.
2, 3, and 4.6 all have good corrosion resistance, especially p
The combined effect of b is large. However, these are all 1.0
At a water conversion rate as low as % by weight, practically satisfactory properties are not obtained, and corrosion resistance cannot be said to be sufficient.

これらの従来例に対し、Inと、Pb、Cd、Bi。In contrast to these conventional examples, In, Pb, Cd, and Bi.

Teの一種以上を併存させ、さらにこれにBaを併存さ
せた逼6〜32のうち、各添加元素の含有量が適切なも
のでは、すぐれた特性を示しており、これはBaと他元
素との複合効果によるもので、例えばf2とJFL9、
ノに3と422、f4と425、f6と&28との対比
により明らかである。また、各元素の適切な含有量は、
Inが0.001〜0.5重量%、Pb、Cd、Bi、
7eより選ばれた一種以上の元素の含有量の和が0.0
1〜0.5重量%、Baが0.001〜0.5重量%の
範囲で各々含有されている亜鉛合金が有効であり、各添
加元素の含有量が上記より過剰、又は不足の場合は従来
例と大差ないか、逆効果の特性値を示している。以上の
如く、本発明はIn、Baを必須の添加元素とし、さら
にこれにP)1.Cd、Te、Biのうち一種以上を必
須添加元素とず、さらにこれにPb、Cd、Te、Bi
のうち一種以上を必須添加元素とし、各々の適切な量を
含有させた亜鉛合金を負極rこ用いることにより、低水
化率で放電性能、貯蔵性、耐漏液性など、実用性能のす
ぐれた低公害の亜鉛アルカリ電池を完成したものである
Among 6 to 32, in which one or more types of Te and Ba are co-existed, those with an appropriate content of each additional element exhibit excellent characteristics, which is due to the combination of Ba and other elements. This is due to the combined effect of f2 and JFL9, for example.
This is clear from the comparison between 3 and 422, f4 and 425, and f6 and &28. In addition, the appropriate content of each element is
In is 0.001 to 0.5% by weight, Pb, Cd, Bi,
The sum of the contents of one or more elements selected from 7e is 0.0
A zinc alloy containing 1 to 0.5% by weight and 0.001 to 0.5% by weight of Ba is effective, and if the content of each additional element is excessive or insufficient than the above, It shows characteristic values that are not much different from the conventional example or have the opposite effect. As described above, the present invention uses In and Ba as essential additive elements, and further includes P)1. At least one of Cd, Te, and Bi is an essential additive element, and in addition, Pb, Cd, Te, and Bi are added.
By using a negative electrode containing one or more of these as essential additives and a zinc alloy containing appropriate amounts of each element, we have achieved excellent practical performance such as discharge performance, storage performance, and leakage resistance with a low water conversion rate. This is a completed low-pollution zinc-alkaline battery.

なお、実施例において、添加元素を添加する方法として
は溶融亜鉛地金中に添加する方法を採ったが、アマルガ
ム化し易いInやBaを添加する場合には、予め添加元
素を溶解させて、水化と同時に添加する方法を採ること
もできる。また、亜鉛よりイオン化傾向の小さいInを
添加する場合、例えば塩化インジウムなどの溶液中にお
いてZnとの置換反応で、亜鉛合金の表面に析出させて
合金化することもでき、いづれの方法を採っても、本発
明と同様の効果を得ることができ、本発明の実施態様に
包含される。
In the examples, the method of adding additive elements was to add them to the molten zinc base metal, but when adding In or Ba, which easily forms into amalgam, the additive elements should be dissolved in advance and added to the molten zinc ingot. It is also possible to adopt a method of adding at the same time as oxidation. In addition, when adding In, which has a smaller ionization tendency than zinc, it can be precipitated on the surface of the zinc alloy through a substitution reaction with Zn in a solution such as indium chloride to form an alloy. Also, the same effects as the present invention can be obtained and are included in the embodiments of the present invention.

また、実施例においては、1.0重量%の氷化亜鉛負極
を用いた電池について説明したが、極めて厳密な貯蔵性
能や耐漏液性を要求される場合は3重量%程度を上限と
し、1.0重量%以上の氷化率を適用するのか適切な場
合があり、逆に排気装置を備えた空気電池や、水素吸収
機構を備えた密閉形の亜鉛アルカリ電池などにおいては
、水素ガスの発生許容量は比較的多いので、LO重量%
未溝の氷化率、場合によっては無水化のまま実施するこ
ともできる。
In addition, in the example, a battery using a 1.0% by weight frozen zinc negative electrode was explained, but if very strict storage performance or leakage resistance is required, the upper limit is about 3% by weight, and 1.0% by weight is used. There are cases in which it is appropriate to apply a freezing rate of 0% by weight or more.On the other hand, in air batteries equipped with an exhaust device or sealed zinc-alkaline batteries equipped with a hydrogen absorption mechanism, hydrogen gas is generated. Since the allowable amount is relatively large, LO weight%
It is also possible to carry out the process with an unhydrated ice rate, or in some cases, with anhydrous conditions.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低域でき、
低公害の亜鉛アルカリ電池を得るために極めて効果的で
ある。
Effects of the Invention As described above, the present invention can lower the hydration rate of negative electrode zinc,
It is extremely effective for obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
−−t、−鈷負毬 李−1パレータ 5−−一駿代銀ミ褪
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
--t, -Koragemari Li-1 Paleta 5--Ichishundai Ginmi Tadashi

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.001〜0.5重量%、鉛、カドミウ
ム、ビスマス、テルルのうち一種以上を0.01〜0.
6重量%、バリウムを0.001〜0.5重量%含有す
る亜鉛合金を負極活物質に用いた亜鉛アルカリ電池。
0.001 to 0.5% by weight of indium and 0.01 to 0.5% by weight of one or more of lead, cadmium, bismuth, and tellurium.
A zinc-alkaline battery using a zinc alloy containing 6% by weight and 0.001 to 0.5% by weight of barium as a negative electrode active material.
JP61150307A 1986-06-26 1986-06-26 Zinc alkaline battery Expired - Lifetime JPH0719600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150307A JPH0719600B2 (en) 1986-06-26 1986-06-26 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150307A JPH0719600B2 (en) 1986-06-26 1986-06-26 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS636747A true JPS636747A (en) 1988-01-12
JPH0719600B2 JPH0719600B2 (en) 1995-03-06

Family

ID=15494146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150307A Expired - Lifetime JPH0719600B2 (en) 1986-06-26 1986-06-26 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0719600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Also Published As

Publication number Publication date
JPH0719600B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPS636747A (en) Zince alkaline battery
JPS636749A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS63133450A (en) Zinc alkaline battery
JPS6290860A (en) Zinc alkaline cell
JPS60175369A (en) Zinc-alkaline primary cell
JPS63178452A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPS60177553A (en) Zinc alkaline primary battery
JPS63178453A (en) Zinc alkaline battery
JPS6177265A (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPS6290855A (en) Zinc alkaline cell
JPS6290857A (en) Zinc alkaline cell
JPS61203563A (en) Alkaline zinc battery
JPS61181064A (en) Zinc alkaline cell
JPS636748A (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPH0534778B2 (en)
JPS61140064A (en) Zinc alkali battery
JPH0622117B2 (en) Zinc alkaline battery
JPS6290851A (en) Zinc alkaline cell