JPS6290851A - Zinc alkaline cell - Google Patents

Zinc alkaline cell

Info

Publication number
JPS6290851A
JPS6290851A JP60230158A JP23015885A JPS6290851A JP S6290851 A JPS6290851 A JP S6290851A JP 60230158 A JP60230158 A JP 60230158A JP 23015885 A JP23015885 A JP 23015885A JP S6290851 A JPS6290851 A JP S6290851A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
zinc alloy
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60230158A
Other languages
Japanese (ja)
Other versions
JPH0642369B2 (en
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60230158A priority Critical patent/JPH0642369B2/en
Publication of JPS6290851A publication Critical patent/JPS6290851A/en
Publication of JPH0642369B2 publication Critical patent/JPH0642369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an overall efficiency of excellent discharge, preservation, and antileakage properties and the like with little environmental pollution, by applying a zinc alloy containing Zn as the main component, and specific ratio of In, Mg, Ca, and Te as a negative electrode. CONSTITUTION:For a negative electrode 2 of a zinc alkaline type cell, a zinc alloy containing Zn as the main component, 0.005-0.5wt% of In, 0.005-0.2wt% of Mg, and 0.01-0.5wt% of at least either Ca or Te is used as an active substance. Mg fanctions to smooth the surface of the zinc alloy powder and reduce the surface area. Although Mg is more easily corroded than Zn, In is compounded with Mg to negate the bad influence of Mg. Moreover, by adding Ca or Te to Zn added with In and Mg, the anticorrosion of the alloy can be remarkably improved. In such a composition, an anticorrosive zinc anode with a low mercurating rate is realized, and a zinc alkaline cell of excellent discharge and preservative properties with little environmental pollution can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物賃上して二酸化マンガン、酸化銀、
酸化水銀2酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide,
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury dioxygen oxide, nickel hydroxide, and the like.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解;tηによる腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion due to electrolysis of the negative electrode zinc during storage;

従来、亜鉛に5〜10重量?。程度の水銀を添加し、実
用的に問題のない程度に、腐食を抑制することか工業的
な手法として採用されている。しかし近年、低公害化の
ため、電池内の含有水銀量を低減させることか社会的ニ
ーズとして高まり、種々の研究がなされている。例えば
、亜鉛中に鉛、カドミウム、インジウム、ガリウムなと
を添加した合金粉末を用いて耐食性を向上させ、水化率
を低減させる方法か提案されている。これらの腐食抑制
効果は、添加元素の単体の効果以外に複数の添加元素に
よる複合効果も大きく、インジウムと鉛あるいはこれに
さらにガリウムを添加したもの、さらにはガリウムと鉛
を添加した亜鉛合金なとか従来、有望な糸上して提案さ
れている。
Conventionally, 5 to 10 weight is added to zinc? . It has been adopted as an industrial method to suppress corrosion by adding a certain amount of mercury to a level that poses no practical problems. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, it has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements, such as indium and lead, or a combination of indium and lead with gallium added thereto, and a zinc alloy with gallium and lead added. Until now, promising threads have been proposed.

これらはいずれもある程度の耐食性か期待でき、水化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索か必要である。
All of these can be expected to have a certain degree of corrosion resistance, and a reduction in the hydration rate to some extent can be expected, but it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することか防食上の効果か大きいきいう提案かある(特
公昭33−3204号)。
In addition, with the aim of mainly improving manganese dry batteries, there has been a proposal to use zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode, which has a significant anti-corrosion effect (Japanese Patent Publication No. 3204/1983).

発明か解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。
Problems to be solved by the invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.

Bi、Sb、A1.Ag、Mg、Si、Ni、Mn等を
不純物又は添加物として1又は2m以上を含む場合を包
含して記載されているが、インジウムと鉛を添加元素と
して併用した場合の有効性以外には、上記の雑多な各元
素を不純物として含むのか、有効な元素として添加する
のかの区分は明示されていなく、との元素か防食に有効
なのかさえ不明であり、その適切な添加量についてはイ
ンジウム。
Bi, Sb, A1. Although it is described including cases in which 1 or 2 m or more of Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, other than the effectiveness when indium and lead are used together as additive elements, It is not clear whether each of the miscellaneous elements mentioned above is added as an impurity or as an effective element, and it is not even clear whether the elements are effective for corrosion prevention, and the appropriate amount of addition is unknown.

鉛以外の記載はない。There is no mention of anything other than lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水比率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的上する。
The present invention reduces the water ratio without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、インジウムをQ、005〜0.5重量%、マグネ
シウムを0゜005〜0.2MM%、カルシウム、テル
ルのうち少なくとも一種を0.01〜0.5重量%含有
する亜鉛合金を用いたことを特徴とする。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. contains zinc as the main component, indium Q, 005 to 0.5% by weight, magnesium 0°005 to 0.2MM%, and at least one of calcium and tellurium. It is characterized by using a zinc alloy containing 0.01 to 0.5% by weight.

作用 各元素の添加による防食効果、及びこれらの元素の複合
効果についての作用機構は不明確な点が多いが、次のよ
うに推察される。
Action The mechanism of action of the anticorrosion effect of the addition of each element and the combined effect of these elements is unclear, but it is inferred as follows.

Mgは溶融亜鉛合金を噴射して粉体化した亜鉛合金粉の
表面の凹凸を減少して平滑化し、表面積を小さくする作
用がある。
Mg has the effect of reducing surface irregularities and smoothing the surface of the zinc alloy powder, which is pulverized by spraying molten zinc alloy, thereby reducing the surface area.

しかし、Mgは電気化学的に亜鉛より卑なので、亜鉛よ
り優先して腐食し易く、単独の添加では効果が乏しく、
過剰な添加するとかえって逆効果となる。
However, since Mg is electrochemically more base than zinc, it is more likely to corrode than zinc, and adding it alone has little effect.
Adding too much will actually have the opposite effect.

また、Inは従来から防食効果の大きい添加元素として
知られ、亜t1)合金の水素過電圧を高めるとともに、
水銀となじみ易いため、水化により表面状態を均一化す
るのに有効で、MgとInを複合させることにより、M
gの悪影響が打ち消され、Mg、Inの複合効果、つま
り比表面積の減少の効果および水素過電圧を上昇させる
効果を合わせもたせることにより、耐食性の向上かみら
れる上意われる。
In addition, In has been known as an additive element with a large anticorrosion effect, and it increases the hydrogen overvoltage of sub-T1) alloys, and
Because it is easily compatible with mercury, it is effective in making the surface condition uniform by hydration, and by combining Mg and In, Mg
This is because the negative effects of g are canceled out, and the combined effect of Mg and In, that is, the effect of reducing the specific surface area and the effect of increasing the hydrogen overvoltage, is improved, thereby improving corrosion resistance.

さらに、このIn、Mgを添加した亜鉛にCa。Furthermore, Ca is added to the zinc to which In and Mg are added.

Teを添加する七、その合金の耐食性はさらに向上する
か、これは、Ca、Teが水銀に対し親和性か低く、亜
鉛合金粉の内部へ、Hgが拡散するのを阻止しているも
のと考える。
7. Does adding Te further improve the corrosion resistance of the alloy? This is because Ca and Te have a low affinity for mercury and prevent Hg from diffusing into the zinc alloy powder. think.

上記のように亜鉛にIn、Mg、Ca、Teの所定量を
複合添加させることにより、負極に用いる亜鉛合金の耐
食性を著しく改善したものである。これにより、低水化
率の耐食性亜鉛負極を実現し、放電性能、貯蔵性ともに
ずくれた低公害の亜j1)アルカリ電池を提1)↓した
ものである。
As mentioned above, by adding predetermined amounts of In, Mg, Ca, and Te to zinc in combination, the corrosion resistance of the zinc alloy used for the negative electrode is significantly improved. As a result, a corrosion-resistant zinc negative electrode with a low hydration rate was realized, and a low-pollution alkaline battery with excellent discharge performance and storage performance was created.

以下、実施例により詳細に説明する。Hereinafter, this will be explained in detail using examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500℃で溶
融して圧縮空気により噴射して粉体化し、50〜150
メツシユの粒度範囲にふるい分けした。次いで、か性カ
リの10重量%水溶液中に上記粉体を投入し、撹拌しな
から所定量の水銀を滴下して水化した。その後水洗し、
アセトンで置換して乾燥し、水化亜鉛合金粉を作成した
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%, melted at about 500°C, and powdered by spraying with compressed air. 150
It was sieved into a mesh particle size range. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and while stirring, a predetermined amount of mercury was added dropwise to hydrate it. Then wash with water,
The mixture was replaced with acetone and dried to produce zinc hydrate alloy powder.

さらに本発明の実施例以外の禾化亜鉛扮、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Further, zinc hydride powder or zinc hydrate alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には鋼メッキ1′か施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル1ヒし、こ
のゲル中に水化11討()合金粉末を分散させた亜鉛負
極である。3はセルロース系の保液材、4は多孔性ポリ
プロピレン製のセパレータ、5は酸化銀に黒鉛を混合し
て加圧成形した正極、6は鉄にニッケルメッキを施した
正極リング、7はステンレス鋼製の正極缶で、内外面に
は図示していないがニッケルメッキが施されている。8
はポリプロピレン製のガスケットで、正極缶の折り曲げ
により正極缶と封口板との間に圧縮されている。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, 1 is a sealing plate made of stainless steel, and its inner surface is plated with steel 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethyl cellulose, and dispersing hydrated alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. This is a positive electrode can made of nickel, and the inside and outside surfaces are nickel plated (not shown). 8
is a polypropylene gasket that is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.

試作した電池は直径11.6mm、高さ5.4mmであ
り、負極の水化粉末の重量を193mgに統一し、水銀
の添加量(水化率)は、亜鉛合金粉に対し、いずれも2
重量%とした。
The prototype battery had a diameter of 11.6 mm and a height of 5.4 mm, the weight of the hydrated powder of the negative electrode was unified to 193 mg, and the amount of mercury added (hydration rate) was 2% to the zinc alloy powder.
It was expressed as weight%.

試作した電池の亜鉛合金の組成と、60℃で1力月間保
存した後の放電性能と電池総高の変化を次表に示す。放
電性能は、20℃において510Ωで0.9Vを終止電
圧として放電したときの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance was expressed as the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.

また、温度60℃、湿度90%で1力月放置したのち目
視て漏液状態を判定し、漏液した電池個数を同時に示し
た。
Further, after being left at a temperature of 60° C. and a humidity of 90% for one month, the state of leakage was visually determined, and the number of batteries leaking was also indicated.

この表における、電池総高の変1ヒについては、電池封
口後、経時的に各電池構成要素間への応力の関係が安定
化するまでの期間は電池総高が減少するのが通例である
。しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電
池では、上記の電池総高の減少力に対抗する電池内圧の
上昇により電池総高を増大させる傾向が強くなる。従っ
て、貯蔵による電池総高の増減により亜鉛負極の耐食性
を評価することができる。また、耐食性が不十分な電池
では、電池総高が増大するほか、電池内圧の上昇により
耐漏液性が劣化するとともに、腐食による亜鉛の消耗、
亜鉛表面の酸化膜の形成や、水素ガスの内在による放電
反応の阻害等により放電性能か著しく劣化することにな
り、放電持続時間も又亜鉛負極の耐食性に依存する要素
が大きい。
Regarding changes in the total battery height in this table, it is normal for the total battery height to decrease during the period after the battery is sealed until the stress relationship between each battery component stabilizes over time. . However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the total height of the battery due to storage. In addition, in batteries with insufficient corrosion resistance, the total height of the battery increases, the leakage resistance deteriorates due to an increase in battery internal pressure, and zinc is depleted due to corrosion.
The discharge performance deteriorates significantly due to the formation of an oxide film on the zinc surface and the inhibition of the discharge reaction due to the presence of hydrogen gas, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.

さて、表において、本発明の比較例として挙げたNo、
1〜6のうち単独で添加元素を添加した場合(No、l
、2,3.4)よりも、二つの元素を添加した場合(N
o、5.6>の方が亜鉛負極の耐食性、放電性能とも幾
分改善されている。
Now, in the table, No. listed as a comparative example of the present invention,
When an additive element is added alone among 1 to 6 (No, l
, 2, 3.4), when two elements are added (N
o, 5.6>, the corrosion resistance and discharge performance of the zinc negative electrode are somewhat improved.

しかしIn、Mg、Ca、Teを適切な組合せて適正な
含有量だけ併存させた本発明の実施例(NO98、9、
12,13,14,1?、 18.19.20.23.
24゜26、27)の場合には前記の比較例に比べ、一
段と耐食性、放電性能がすぐれ、添加元素の複合効果が
顕著に示される。−カニ元素を併存させた場合でも含有
量に過不足のある場合(No、  7.10.11゜1
5、16.21.22.25)は比較例と大差なく、複
合効果か乏しい。
However, the examples of the present invention (NO98, 9,
12, 13, 14, 1? , 18.19.20.23.
In the case of 24°26, 27), the corrosion resistance and discharge performance are even better than those of the comparative example, and the combined effect of the added elements is clearly exhibited. - Even if crab elements coexist, there is an excess or deficiency in the content (No, 7.10.11゜1
5, 16, 21, 22, 25) are not much different from the comparative example, and the combined effect is poor.

上述の通り、本発明はIn、Mg、Ca、Teを適切な
組合せ、例えば(No、 26.27>で示すような適
正な含有量で併存させた亜鉛合金を負極に用いることに
より低水化率化に成功したものであり、各元素の含有量
はInがo、oos〜0.5重量%、Mgが0.005
〜0.2重量%、Ca、 Teの一種または二種の和か
0.OI〜0.5重量%とするのが適切である。
As mentioned above, the present invention achieves low water content by using a zinc alloy in which In, Mg, Ca, and Te coexist in an appropriate combination, for example, in an appropriate content as shown in (No, 26.27>) for the negative electrode. The content of each element is 0.5% by weight for In and 0.005% by weight for Mg.
~0.2% by weight, the sum of one or two of Ca and Te, or 0.2% by weight. A suitable range is OI to 0.5% by weight.

以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性か向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては炭化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合はさらに低木化率、場合によ
っては無水化のまま実施することもてきる。
As described above, the present invention has discovered that the corrosion resistance of zinc alloys used for negative electrodes can be improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkali material with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc carbide negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it is possible to carry out the process with a lower tree reduction ratio, and in some cases, with anhydrous state.

発明の効果 以上のように本発明は、負極亜鉛の泉比率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the spring ratio of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2 ・・・・・・亜鉛負極、4 ・・・・・・セパレー
タ、5・・・・・・酸化銀正極。 代理人の氏名 弁理士 中尾敏男 ほか1名2− 亜鉛
負極 4−−一丸/lルータ 5− #代銀JT+兎
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator, 5...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2- Zinc negative electrode 4--Ichimaru/l router 5- #Saigin JT+Usagi

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.005〜0.5重量%、マグネシウム
を0.005〜0.2重量%、カルシウム、テルルのう
ち少なくとも一種を0.01〜0.5重量%含有する亜
鉛合金を負極活物質に用いた亜鉛アルカリ電池。
A zinc alloy containing 0.005 to 0.5% by weight of indium, 0.005 to 0.2% by weight of magnesium, and 0.01 to 0.5% by weight of at least one of calcium and tellurium is used as the negative electrode active material. Zinc alkaline battery used.
JP60230158A 1985-10-16 1985-10-16 Zinc alkaline battery Expired - Lifetime JPH0642369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230158A JPH0642369B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230158A JPH0642369B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6290851A true JPS6290851A (en) 1987-04-25
JPH0642369B2 JPH0642369B2 (en) 1994-06-01

Family

ID=16903501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230158A Expired - Lifetime JPH0642369B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0642369B2 (en)

Also Published As

Publication number Publication date
JPH0642369B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPS6290851A (en) Zinc alkaline cell
JPH0622119B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPS6290852A (en) Zinc alkaline cell
JPS6273565A (en) Zinc alkaline battery
JPS6290860A (en) Zinc alkaline cell
JPH0142576B2 (en)
JPS61203563A (en) Alkaline zinc battery
JPS61140065A (en) Zinc alloy battery
JPS61140066A (en) Zinc alkali battery
JPS61181066A (en) Zinc alkaline cell
JPS6290859A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPS61181069A (en) Zinc alkaline cell
JPS61181067A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery
JPH0365618B2 (en)
JPH0143429B2 (en)
JPS61181070A (en) Zinc alkaline cell
JPS61181068A (en) Zinc alkaline cell
JPS6290855A (en) Zinc alkaline cell
JPS6290857A (en) Zinc alkaline cell
JPS61181065A (en) Zinc alkaline cell
JPS63133450A (en) Zinc alkaline battery
JPS6290856A (en) Zinc alkaline cell