JPS6290852A - Zinc alkaline cell - Google Patents
Zinc alkaline cellInfo
- Publication number
- JPS6290852A JPS6290852A JP60230159A JP23015985A JPS6290852A JP S6290852 A JPS6290852 A JP S6290852A JP 60230159 A JP60230159 A JP 60230159A JP 23015985 A JP23015985 A JP 23015985A JP S6290852 A JPS6290852 A JP S6290852A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc alloy
- negative electrode
- mercury
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.
従来の技術
亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.
従来、亜鉛に5〜10重量Q6程度の水銀を添加し、実
泪的に問題のない程度に腐食を抑制することか工業的な
手法として採用されている。しかし近年、低公害化のた
め、電池内の含有水銀量を低減させることが社会的ニー
ズとして高まり、種ケの研究かなされている。例えば、
亜鉛中に鉛、カドミウム、インジウム、ガリウムなどを
添加した合金粉末を用いて耐食性を向上させ、水化率を
低減させる方法が提案されている。これらの腐食抑制効
果は、添加元素の単体の効果以外に複数の添加元素によ
る複合効果も大きく、インジウムと鉛あるいはこれにさ
らにガリウムを添加したもの、さらにはガリウムと鉛を
添加した亜鉛合金なとか従来、有望な系として提案され
ている。Conventionally, it has been adopted as an industrial method to add about 5 to 10 weight Q6 of mercury to zinc to suppress corrosion to an extent that poses no problem in practice. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and extensive research is being carried out. for example,
A method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements, such as indium and lead, or a combination of indium and lead with gallium added thereto, and a zinc alloy with gallium and lead added. It has been proposed as a promising system.
これらはいずれもある程度の耐食性か期待てき、水化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索か必要である。All of these are expected to have some degree of corrosion resistance, and although a reduction in hydration rate can be expected to some extent, it is necessary to search for an alloy system with even better corrosion resistance.
また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することか防食上の効果か大きいという提案かある(特
公昭33−3204号)。Furthermore, with the aim of improving manganese dry batteries, there has been a proposal that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode would have a significant anti-corrosion effect (Japanese Patent Publication No. 33-3204).
発明か解決しようとする問題点
上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
l。Problems to be solved by the invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
l.
Bi、Sb、AI、Ag、Mg、Si、Ni、Mn等を
不純物又は添加物として1又は2種以上を含む場合を包
含して記載されているが、インジウムと鉛を添加元素と
して併用した場合の有効性以外には、上記の雑多な各元
素を不純物として含むのか、有効な元素として添加する
のかの区分は明示されていなく、との元素が防食に有効
なのかさえ不明であり、その適切な添加呈についてはイ
ンジウム。The description includes cases in which one or more types of Bi, Sb, AI, Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of these elements, there is no clear distinction as to whether they are included as impurities or added as effective elements, and it is unclear whether these elements are effective for corrosion prevention. Indium is the most important additive.
鉛層外の記載はない。There is no description of anything outside the lead layer.
これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.
本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。The present invention reduces the hydration rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.
問題点を解決するための手段
本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸素。Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as its main components as an electrolyte, zinc as a negative electrode active material, and manganese dioxide, silver oxide, and oxygen as a positive electrode active material.
酸化水銀なとを用いるいわゆる亜鉛アルカリ系電池の負
極に、亜鉛を主成分とし、インジウムを0゜005〜0
.5重量%、ニッケルを0.01〜0゜5重量%、カル
シウム、ストロンチウム、マグネシウムのうち一種以上
を0.005〜0.2mm%含有する亜鉛合金を用いた
ことを特徴とする。The negative electrode of a so-called zinc-alkaline battery that uses mercury oxide is made of zinc as the main component and indium of 0°005 to 0.
.. It is characterized by using a zinc alloy containing 5% by weight of nickel, 0.01 to 0.5% by weight of nickel, and 0.005 to 0.2mm% of one or more of calcium, strontium, and magnesium.
本発明は、亜鉛合金への添加元素のうちNiに注目して
実験を行い、Niを単独で添加した亜鉛合金は防食性に
乏しいが、他の添加元素との複合効果か大きく、とりわ
け、上記の元素と組合せて適正な量を含有させた場合に
、極めて顕著な腹合的防食効果が得られることを見出し
て完成したものである。The present invention conducted experiments focusing on Ni among the additive elements to zinc alloys, and found that zinc alloys with Ni added alone have poor corrosion resistance, but the combined effect with other additive elements is large, and in particular, the above-mentioned This work was completed after discovering that a very significant anticorrosion effect can be obtained when the appropriate amount is contained in combination with the following elements.
作用
各元素の添加による防食効果、及び、これらの元素の複
合効果についての作用機構は不明確な点か多いか、次の
ように推察される。まず、亜鉛に対するNiの溶解度は
小さいが、噴射法で溶融亜鉛合金を粉体化する際の冷却
速度が102℃/secのオーダて、非常に大きいため
、後述の実施例での適正な含有量の亜鉛合金粉において
はNiが溶体化する可能性がある。従って、亜鉛合金を
表面から水化した場合、水銀との親和性の小さいNiが
亜鉛合金の結晶内への水銀の拡散を抑制して亜鉛合金表
面の水銀濃度を高く維持するのに寄与すると考えられる
。しかし、その反面、亜鉛合金表面のなじみを却って悪
くする懸念もあり、単独の添加では防食効果が小さいも
のと考えられる。Effect The mechanism of action of the anticorrosive effect of the addition of each element and the combined effect of these elements is unclear, or may be surmised as follows. First, although the solubility of Ni in zinc is small, the cooling rate when pulverizing molten zinc alloy by the injection method is on the order of 102°C/sec, which is extremely high. There is a possibility that Ni may be dissolved in the zinc alloy powder. Therefore, when a zinc alloy is hydrated from the surface, it is thought that Ni, which has a low affinity for mercury, suppresses the diffusion of mercury into the zinc alloy crystals and contributes to maintaining a high mercury concentration on the zinc alloy surface. It will be done. However, on the other hand, there is a concern that it may actually worsen the conformability of the zinc alloy surface, and it is thought that the anticorrosion effect is small when added alone.
また、Inは従来から防食効果の大きい添加元素として
知られ、亜鉛合金の水素過電圧を高めるとともに、水銀
となじみ易いため、水化により表面状態を均一化するの
に有効で、さらに、亜鉛合金の表面や結晶粒界に水銀を
固定して表面の表面の水銀濃度を高く維持する役割も期
待される。また、Ca、Sr、Mgは溶融亜鉛合金を噴
射して粉体化した亜鉛合金粉の表面のしわをなくして平
滑1ヒし、表面情を小さくする作用がある。しかし、こ
れらの添加元素は何れも電気化学的に亜鉛より卑なので
亜鉛より優先して腐食し易く、単独の添加では効果が乏
しく、過剰に添加すると逆効果となる。In addition, In has long been known as an additive element with a large anticorrosion effect, increasing the hydrogen overvoltage of zinc alloys, and being compatible with mercury, it is effective in making the surface condition uniform through hydration. It is also expected to play a role in maintaining a high mercury concentration on the surface by fixing mercury on the surface and grain boundaries. Further, Ca, Sr, and Mg have the effect of eliminating wrinkles and smoothing the surface of the zinc alloy powder, which is pulverized by spraying molten zinc alloy, thereby reducing the surface roughness. However, since all of these additive elements are electrochemically more base than zinc, they are more likely to corrode than zinc, and are ineffective when added alone, and have the opposite effect when added in excess.
以上の如く、各添加元素は異なった作用を及ぼし、In
JJ外は単独の添加では効果が乏しいか、本発明の組合
せて元素を添加することにより、Inを単独で添加した
ものよりはるかに浸れた耐食性を有する亜鉛合金か得ら
れる。これは、前述の各元素が互いに長所を活し、短所
を補完し合うことにより、少量の水銀添加で亜鉛合金粉
の表面の水銀の高濃度状態を長期にわたって維持されて
、均一な表面状+II? a大きな水素過電圧が得られ
、しかも表面椿力譜宿小した結果によるものと考えられ
る。As mentioned above, each additive element has a different effect, and In
Addition of elements other than JJ alone is insufficiently effective, or by adding elements in combination according to the present invention, a zinc alloy with corrosion resistance far superior to that obtained by adding In alone can be obtained. This is because each of the above-mentioned elements takes advantage of each other's strengths and complements each other's weaknesses, allowing a high concentration of mercury to be maintained on the surface of the zinc alloy powder over a long period of time with the addition of a small amount of mercury, resulting in a uniform surface condition. ? This is thought to be due to the fact that a large hydrogen overvoltage was obtained and the surface tsubaki force was small.
本発明はこれにより、低水化率の耐食性亜鉛負極を実現
し、放電性能、貯蔵性ともにすくれた低公害の亜鉛アル
カリ電池を提供したものである。The present invention thereby realizes a corrosion-resistant zinc negative electrode with a low hydration rate, and provides a low-pollution zinc-alkaline battery with excellent discharge performance and storage stability.
以下、実施例により詳細に説明する。Hereinafter, this will be explained in detail using examples.
実施例
鋪度99.9972gの亜鉛地金に、次表に示す各種の
元素を添加した各種の亜鉛合金を作成し、約500℃で
溶融して圧縮空気により噴射して粉体化し、50〜15
0メツシユの粒度範囲にふるい分けした。次いで、か性
カリの10重量%水溶液中に上記粉体を投入し、撹拌し
ながら所定量の水銀を滴下して水化した。その後水洗し
、アセトンで置換して乾燥し、炭化亜鉛合金粉を作成し
た。Examples Various zinc alloys were prepared by adding the various elements shown in the following table to a zinc ingot with a hardness of 99.9972 g, melted at about 500°C, and powdered by spraying with compressed air. 15
The particles were sieved to a particle size range of 0 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, replaced with acetone, and dried to produce zinc carbide alloy powder.
さらに本発明の実施例以外の水化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。Furthermore, hydrated zinc powder or zinc hydrated alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.
これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、■はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に炭化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン製のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はステンレス鋼製の正極缶で、その内外面には図
示していないがニッケルメッキが施されている。8はポ
リプロピレン製のガスケットで、正極缶の折り曲げによ
り正極缶と封口板との間に圧縮されている。Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, ■ is a sealing plate made of stainless steel, and its inner surface is coated with copper plating 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc carbide alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. This is a positive electrode can made of nickel, and its inner and outer surfaces are nickel-plated (not shown). A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.
試作した電池は直径11.6mm、高さ5.4間であり
、負極の炭化粉末の重量を193Trurに統一し、水
銀の添加量(水比率)は、亜鉛合金粉に対し、いずれも
1重量%とした。The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm, the weight of the negative electrode carbonized powder is unified to 193 Trur, and the amount of mercury added (water ratio) is 1 weight per zinc alloy powder. %.
試作した電池の亜鉛合金の組成と、60℃で1力月間保
存した後の放電性能と電池総高の変化を次表に示す。放
電性能は、20℃において510Ωで0.9Vを終止電
圧として放電したときの放電持続時間で表わした。The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance was expressed as the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.
また、温度60℃、湿度90%で1力月放置したのち、
目視で漏液状態を判定し、漏液した電池個数を同時に示
した。Also, after leaving it for one month at a temperature of 60℃ and humidity of 90%,
The state of leakage was determined visually, and the number of batteries leaking was also indicated.
この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。Regarding changes in the total battery height in this table, it is normal that the total battery height decreases during the period after the battery is sealed until the stress relationship between each battery component becomes stable over time.
しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では、上記の電池総高の減少力に対抗する電池内圧の上
昇により電池総高を増大させる傾向が強くなる。従って
、貯蔵による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な電池で
は、電池総高が増大するほか、電池内圧の上昇により耐
漏液性が劣化するとともに、腐食による亜鉛の消耗、亜
鉛表面の酸化膜の形成や、水素ガスの内在による放電反
応の阻害等により放電性能が著しく劣化することになり
、放電持続時間も又亜鉛負極の耐食性に依存する要素が
大きい。However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the total height of the battery due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. The discharge performance is significantly deteriorated due to inhibition of the discharge reaction by the zinc negative electrode, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.
さて、表において、本発明の比較例として挙げたNo、
1〜8のうち単独で添加元素を添加した場合(No、1
.2.3,4.5)よりも、二つの元素を添加した場合
(No、6.7.8)の方が亜鉛負極の耐食性、放電性
能とも幾分改善されていしかしIn、 Ni、 Ca、
Sr、 Mttを適切な組合せて適正な含有量だけ併
存させた本発明の実施例(No、 10.11.12.
15.16.17.20.21.23.24゜25、2
6.27.28.29.30)の場合には前記の比較例
に比べ、一段と耐食性、放電性能かすぐれ、添加元素の
複合効果が顕著に示される。−カニ元素を併存させた場
合でも含有量に過不足のある場合(No、 9 、1
3.14.18.19.22.31.32)は比較例と
大差なく、複合効果か乏しい。Now, in the table, No. listed as a comparative example of the present invention,
When the additive element is added alone among 1 to 8 (No, 1
.. However, the corrosion resistance and discharge performance of the zinc negative electrode were improved somewhat when two elements were added (No, 6.7.8) than in the case of In, Ni, Ca, and 2.3, 4.5).
Examples of the present invention (No. 10.11.12.
15.16.17.20.21.23.24゜25,2
In the case of 6.27.28.29.30), the corrosion resistance and discharge performance are even better than in the above-mentioned comparative example, and the combined effects of the added elements are clearly exhibited. - Even if crab elements coexist, there is an excess or deficiency in the content (No, 9, 1
3.14.18.19.22.31.32) are not much different from the comparative example, and the combined effect is poor.
上述の通り、本発明はIn、 Ni、 Ca、 Sr、
八=Igを適切な組合せ、例えば(No、 27.28
.29.30)で示すような適正な含有量で併存させた
亜鉛合金を負極に用いることにより低木化率化に成功し
たものである。各元素の含有量はInが0.005〜0
.5重量%、Niが0.01〜0.5重量%、Ca、S
r、Mgの一種または二種以上の和が0゜005〜0.
2重量%とするのが適切である。As mentioned above, the present invention includes In, Ni, Ca, Sr,
8=Ig in appropriate combination, e.g. (No, 27.28
.. As shown in 29.30), by using a zinc alloy in the negative electrode in an appropriate amount, the reduction in shrub size was successfully achieved. The content of each element is In: 0.005 to 0
.. 5% by weight, Ni 0.01-0.5% by weight, Ca, S
r, the sum of one or more types of Mg is 0°005 to 0.
A suitable amount is 2% by weight.
以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては未化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合はさらに低水比率、場合によ
っては無水化のまま実施することもできる。As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using an unformed zinc negative electrode was explained, but in an open air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied in such a case, the water ratio can be lowered, and depending on the case, it can be carried out without any water.
発明の効果
以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
。Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。
2 ・・・・・・亜鉛負極、4 ・・・・・・セパレー
タ、5・・・・・・酸化銀正極。The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator, 5...Silver oxide positive electrode.
Claims (1)
.01〜0.5重量%、カルシウム、ストロンチウム、
マグネシウムのうち一種以上を0.005〜0.2重量
%含有する亜鉛合金を負極活物質に用いた亜鉛アルカリ
電池。0.005-0.5% by weight of indium, 0% of nickel
.. 01-0.5% by weight, calcium, strontium,
A zinc alkaline battery using a zinc alloy containing 0.005 to 0.2% by weight of one or more types of magnesium as a negative electrode active material.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230159A JPH0622118B2 (en) | 1985-10-16 | 1985-10-16 | Zinc alkaline battery |
EP85308930A EP0185497B1 (en) | 1984-12-12 | 1985-12-09 | Zinc-alkaline battery |
AU51012/85A AU558729B2 (en) | 1984-12-12 | 1985-12-09 | Zinc alloy-alkaline battery including nickel |
DE8585308930T DE3562307D1 (en) | 1984-12-12 | 1985-12-09 | Zinc-alkaline battery |
CN85109759.6A CN1004391B (en) | 1984-12-12 | 1985-12-11 | Zinc-alkali cells |
KR1019850009332A KR890004989B1 (en) | 1984-12-12 | 1985-12-11 | Zinc-alkaline battery |
US07/029,343 US4861688A (en) | 1984-12-12 | 1987-03-19 | Zinc-alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230159A JPH0622118B2 (en) | 1985-10-16 | 1985-10-16 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6290852A true JPS6290852A (en) | 1987-04-25 |
JPH0622118B2 JPH0622118B2 (en) | 1994-03-23 |
Family
ID=16903518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60230159A Expired - Lifetime JPH0622118B2 (en) | 1984-12-12 | 1985-10-16 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0622118B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10468855B2 (en) | 2014-11-11 | 2019-11-05 | Epcos Ag | Arrester |
-
1985
- 1985-10-16 JP JP60230159A patent/JPH0622118B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10468855B2 (en) | 2014-11-11 | 2019-11-05 | Epcos Ag | Arrester |
Also Published As
Publication number | Publication date |
---|---|
JPH0622118B2 (en) | 1994-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6290852A (en) | Zinc alkaline cell | |
JPS6273565A (en) | Zinc alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS6290860A (en) | Zinc alkaline cell | |
JPS6290851A (en) | Zinc alkaline cell | |
JPS6290854A (en) | Zinc alkaline cell | |
JPH0142576B2 (en) | ||
JPS61140066A (en) | Zinc alkali battery | |
JPH0365619B2 (en) | ||
JPS61140064A (en) | Zinc alkali battery | |
JPS6290857A (en) | Zinc alkaline cell | |
JPS61140065A (en) | Zinc alloy battery | |
JPH0365621B2 (en) | ||
JPS61181070A (en) | Zinc alkaline cell | |
JPS6290859A (en) | Zinc alkaline cell | |
JPS61181069A (en) | Zinc alkaline cell | |
JPH0365618B2 (en) | ||
JPS61140063A (en) | Zinc alkali battery | |
JPS61181066A (en) | Zinc alkaline cell | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS6290858A (en) | Zinc alkaline cell | |
JPS6290855A (en) | Zinc alkaline cell | |
JPS61140068A (en) | Zinc alkali battery | |
JPS61140062A (en) | Zinc alkali battery |