JPS6290854A - Zinc alkaline cell - Google Patents
Zinc alkaline cellInfo
- Publication number
- JPS6290854A JPS6290854A JP60230161A JP23016185A JPS6290854A JP S6290854 A JPS6290854 A JP S6290854A JP 60230161 A JP60230161 A JP 60230161A JP 23016185 A JP23016185 A JP 23016185A JP S6290854 A JPS6290854 A JP S6290854A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- negative electrode
- zinc alloy
- elements
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負fiの改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improving the negative fi of zinc alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.
従来の技IE
亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。Conventional Techniques A common problem with zinc-alkaline batteries is corrosion of the negative electrode zinc by electrolyte during storage.
従来、亜鉛に5〜IO重量%程度の水銀を添加し、実用
的に問題のない程度に腐食を抑制することが工業的な手
法として採用されている。しかし近年、低公害化のため
、電池内の含有水銀量を低減させることが社会的ニーズ
として高まり、種々の研究がなされている。例えば、亜
鉛中に鉛、カドミウム、インジウム、ガリウムなどを添
加した合金粉末を用いて耐食性を向上させ、水化率を低
減させる方法が提案されている。これらの腐食抑制効果
は、添加元素の単体の効果以外に複数の添加元素による
複合効果も大きく、インジウムと鉛あるいはこれにさら
にガリウムを添加したもの、さらにはガリウムと鉛を添
加した亜鉛合金などが従来、有望な系として提案されて
いる。Conventionally, it has been adopted as an industrial method to add about 5 to IO weight % of mercury to zinc to suppress corrosion to a practically acceptable level. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, a method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system.
これらはいずれもある程度の耐食性が期待でき、水化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。All of these can be expected to have a certain degree of corrosion resistance and can also be expected to reduce the hydration rate to some extent, but it is necessary to search for an alloy system with even better corrosion resistance.
また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。Furthermore, with the aim of mainly improving manganese dry batteries, there has been a proposal that using zinc or a zinc alloy in which indium is added to a zinc alloy for the negative electrode is highly effective in preventing corrosion (Japanese Patent Publication No. 33-3204).
発明が解決しようとする問題点
上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.
Bi、Sb、A1.Ag、Mg、Si、Ni、M口等を
不純物又は添加物としてl又は2種以上を含む場合を包
含して記載されているが、インジウムと鉛を添加元素と
して併用した場合の有効性以外には、上記の雑多な各元
素を不純物として含むのか、有効な元素として添加する
のかの区分は明示されていなく、どの元素が防食に有効
なのかさえ不明であり、その適切な添加量についてはイ
ンジウム。Bi, Sb, A1. Although it is described including the case where one or more types of Ag, Mg, Si, Ni, M etc. are included as impurities or additives, there is no effect other than the effectiveness when indium and lead are used together as additive elements. It is not clear whether the above miscellaneous elements are added as impurities or added as effective elements, and it is not even clear which elements are effective for corrosion prevention. .
鉛以外の記載はない。There is no mention of anything other than lead.
これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.
本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水化率を低減させ、低公害で放電性能、貯蔵性、
耐B液性なとの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。The present invention reduces the hydration rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose of the present invention is to provide a zinc-alkaline battery with excellent overall performance including B liquid resistance.
問題点を解決するための手段
本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸素。Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as its main components as an electrolyte, zinc as a negative electrode active material, and manganese dioxide, silver oxide, and oxygen as a positive electrode active material.
酸化水銀などを用いるいわゆる亜鉛アルカリ系電池の負
極に、亜鉛を主成分とし、インジウムを0.005〜0
.5ffii%、鉛、カドミウムのうち少なくとも一種
を0.01〜0.5重量%、コバルト、ニッケルのうち
少なくとも一種を0.01〜0.5重ffi%、アルミ
ニウム、マグネシウム、カルシウム、ストロンチウムか
らなる群のうち少なくとも一種を0.005〜0.5重
量%含有する亜鉛合金を用いたことを特徴とする。The negative electrode of a so-called zinc-alkaline battery that uses mercury oxide etc. contains zinc as the main component and indium from 0.005 to 0.
.. 5ffii%, 0.01 to 0.5% by weight of at least one of lead and cadmium, 0.01 to 0.5% by weight of at least one of cobalt and nickel, and a group consisting of aluminum, magnesium, calcium, and strontium. It is characterized by using a zinc alloy containing 0.005 to 0.5% by weight of at least one of these.
本発明は、亜鉛合金中の添加元素又は不純物や他の元素
のうち、NiとCoに注目して実験を行い、Niや、C
oを単独で添加した亜鉛合金は防食性に乏しいが、他の
添加元素との複合効果が大きく、とりわけ、上記の元素
と組合せて適正な量を含有させた場合に、極めて顕著な
複合的防食効果が得られることを見出して完成したもの
である。The present invention has conducted experiments focusing on Ni and Co among additive elements, impurities, and other elements in zinc alloys, and has
Zinc alloys to which o is added alone have poor corrosion protection, but the combined effect with other additive elements is large, and especially when the appropriate amount is added in combination with the above elements, extremely remarkable composite corrosion protection can be achieved. It was completed after discovering that it was effective.
作用
各元素の添加による防食効果、及び、これらの元素の複
合効果についての作用機構は不明確であるが、次のよう
に推察される。先づ、亜鉛に対するNi、Coの溶解度
は小さいが噴射法で溶融亜鉛合金を粉体化する際の冷却
速度が102°C/seeのオーダで、非常に大きいた
め、後述の実施例での適正な含有量の亜鉛合金粉におい
てはNiやCoが亜鉛と溶体化する可能性がある。従っ
て、亜鉛合金を表面から水化した場合、水銀との親和性
の小さいNiやCoが、結晶内への水銀の拡散を抑制し
て亜鉛合金表面の水銀の濃度を高く維持するのに寄与す
ると考えられる。しかしその反面、亜鉛合金表面の水銀
のなじみを却って悪くする懸念もある。また、pbとC
dは亜鉛合金の結晶粒界近傍に偏析し易く、水化亜鉛合
金の表面層の水銀か粒界を通して内部に拡散するのを抑
制して表面の水銀濃度を高く維持するのに寄与するもの
と思われる。Effect The mechanism of action of the anticorrosive effect of the addition of each element and the combined effect of these elements is unclear, but it is inferred as follows. First, although the solubility of Ni and Co in zinc is small, the cooling rate when pulverizing molten zinc alloy by the injection method is on the order of 102°C/see, which is extremely high, so it is not suitable for the examples described later. In a zinc alloy powder with a content of 10%, there is a possibility that Ni and Co will be solutionized with zinc. Therefore, when a zinc alloy is hydrated from the surface, Ni and Co, which have a low affinity for mercury, suppress the diffusion of mercury into the crystal and contribute to maintaining a high concentration of mercury on the surface of the zinc alloy. Conceivable. However, on the other hand, there is also a concern that it may actually worsen the compatibility of mercury with the surface of the zinc alloy. Also, pb and C
d tends to segregate near the grain boundaries of zinc alloys, and contributes to maintaining a high mercury concentration on the surface by suppressing mercury in the surface layer of the zinc hydrate alloy from diffusing into the interior through the grain boundaries. Seem.
また、Inは亜鉛合金の水素過電圧を大きくするととも
に、水銀となじみ易いため亜鉛合金を水化する場合、表
面状態を水化により均一化するのに有効で、さらに、亜
鉛合金の表面や桔品粒界に水銀を固定する役割も期待さ
れる。また、AI、Mg。In addition, In increases the hydrogen overvoltage of zinc alloys and is easily compatible with mercury, so when zinc alloys are hydrated, it is effective in making the surface condition uniform by hydration. It is also expected to play a role in fixing mercury at grain boundaries. Also, AI, Mg.
Ca、Srは何れも、Niと同様に水銀との親和性が小
さいので、亜鉛合金の内部への水銀の拡散を抑制すると
ともに、固有の作用として、溶融亜鉛合金を噴射法で粉
体化する際に生ずる亜鉛合金粉の表面の“しわ”をなく
して平滑化し、表面積を小さくして防食効果を高めるも
のと考えられる。しかし、これらの元素は亜鉛より卑な
金属なので、電解液中で亜鉛より優先して腐食し易く、
防食面で期待される作用とのバランスを前置する必要が
あり、過剰な添加は却って防食性を損うことになる。Both Ca and Sr, like Ni, have a low affinity for mercury, so they suppress the diffusion of mercury into the interior of the zinc alloy, and as a unique function, the molten zinc alloy is pulverized by the injection method. It is thought that this method eliminates the wrinkles on the surface of the zinc alloy powder, smooths it, reduces the surface area, and improves the anti-corrosion effect. However, since these elements are base metals than zinc, they are more likely to corrode than zinc in the electrolyte.
It is necessary to maintain a balance with the expected anticorrosion effect, and excessive addition will actually impair the anticorrosion properties.
以上の如く、各添加元素は異った作用が期待される。し
かし、各々の元素は単独では必ずしも防食に効果がなく
、効果が乏しい場合かある。本発明はこれらの添加元素
の長所、短所を補完し合うような適切な元素の組合せと
含有量を実験的に割り出して完成したもので、少量の水
銀添加で亜鉛合金粉の表面の水素過電圧を長期に亘り高
く維持するとともに表面を均一化し、さらに表面積を縮
小させることにより、負極に用いる亜鉛合金の耐食性を
著しく改善したものである。これにより、低水化率の耐
食性亜鉛負極を実現し、放電性能。As described above, each additive element is expected to have a different effect. However, each element alone is not necessarily effective in preventing corrosion, and the effect may be poor in some cases. The present invention was completed by experimentally determining the appropriate combination and content of elements that complement the strengths and weaknesses of these additive elements, and it is possible to reduce the hydrogen overvoltage on the surface of zinc alloy powder by adding a small amount of mercury. By maintaining a high corrosion resistance over a long period of time, making the surface uniform, and further reducing the surface area, the corrosion resistance of the zinc alloy used in the negative electrode is significantly improved. This creates a corrosion-resistant zinc negative electrode with a low hydration rate and excellent discharge performance.
貯蔵性ともにすぐれた低公害の亜鉛アルカリ電池を提供
したものである。The present invention provides a low-pollution zinc-alkaline battery with excellent storage performance.
以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.
実施例
純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500℃で溶
融して圧縮空気により噴射して粉体化し、50〜150
メツシユの粒度範囲にふるい分けした。次いで、か性カ
リの10重量%水溶液中に上記粉体を投入し、撹拌しな
がら所定量の水銀を滴下して水化した。その後水洗し、
アセトンで置換して乾燥し、水化亜鉛合金粉を作成した
。Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%, melted at about 500°C, and powdered by spraying with compressed air. 150
It was sieved into a mesh particle size range. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Then wash with water,
The mixture was replaced with acetone and dried to produce zinc hydrate alloy powder.
さらに本発明の実施例以外の水化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。Furthermore, hydrated zinc powder or zinc hydrated alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.
これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、■はステンレス鋼製の封目板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン製のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はステンレス鋼製の正極缶で、その内外面には図
示していないがニッケルメッキが施されている。8はポ
リプロピレン製のガスケットで、正極缶の折り曲げによ
り正極缶と封目板との間に圧縮されている。Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, ■ is a sealing plate made of stainless steel, and its inner surface is coated with copper plating 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc hydrate alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. This is a positive electrode can made of nickel, and its inner and outer surfaces are nickel-plated (not shown). A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.
試作した電池は直径11.6mm、高さ5.4ms+で
あり、負極の水化粉末の重量を193mgに統一し、水
銀の添加量(水化率)は、亜鉛合金粉に対し、いずれも
0.5重量%とした。The prototype battery has a diameter of 11.6 mm and a height of 5.4 ms+, the weight of the hydrated powder of the negative electrode is unified to 193 mg, and the amount of mercury added (hydration rate) is 0 for the zinc alloy powder. .5% by weight.
試作した電池の亜鉛合金の組成と、60℃で1力月間保
存した後の放電性能と電池総高の変化を次表に示す。放
電性能は、20℃において510Ωて0.9vを終止電
圧として放電したときの放電持続時間で表わした。The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance was expressed by the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.
また、温度60℃、湿度90%で1力月放置したのち、
目視で漏液状態を判定し、漏液した電池側数を同時に示
した。Also, after leaving it for one month at a temperature of 60℃ and humidity of 90%,
The state of leakage was visually determined, and the number of batteries leaking was also indicated.
この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。Regarding changes in the total battery height in this table, it is normal that the total battery height decreases during the period after the battery is sealed until the stress relationship between each battery component becomes stable over time.
しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では、上記の電池総高の減少力に対抗する電池内圧の上
昇により電池総高を増大させる傾向が強くなる。従って
、貯蔵による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な電池で
は、電池総高が増大するほか、電池内圧の上昇により耐
漏液性が劣化するとともに、腐食による亜鉛の消耗、亜
鉛表面の酸化膜の形成や、水素ガスの内在による放電反
応の阻害等により放電性能が著しく劣化するこ七になり
、放電持続時間も又亜鉛負極の耐食性に依存する要素が
大きい。However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the total height of the battery due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. This results in a significant deterioration of discharge performance due to inhibition of the discharge reaction, etc., and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.
上記表において、本発明の比較例として挙げたNo、1
〜8のうち単独で添加元素を添加した場合(No、1.
2)よりも、二つの元素を添加した場合(No、3.4
)、さらに三つの元素を添加した場合(No、5.6,
7.8)の方か亜鉛負極の耐食性、放電性能ともに幾分
は改善されている。In the above table, No. 1 listed as a comparative example of the present invention
When an additional element is added alone among 8 to 8 (No, 1.
2), when two elements are added (No, 3.4
), when three more elements are added (No, 5.6,
7.8) Both the corrosion resistance and discharge performance of the zinc negative electrode are somewhat improved.
しかしIn、 Cd、 Pb、 Co、 Ni、 A1
. Mg。However, In, Cd, Pb, Co, Ni, A1
.. Mg.
Ca、Srを適切な組合せで適正な含有量だけ併存させ
た本発明の実施例(No、 10.11.12. Is
、 16゜19、20.23.25.26.27.28
.29.30.31.32゜33、34.35.36.
37)の場合には前記の比較例に比べ、一段と耐食性、
放電性能がすぐれ、添加元素の複合効果が顕著に示され
る。−カニ元素を併存させた場合でも含有量に過不足の
ある場合(No。Example of the present invention (No, 10.11.12. Is
, 16°19, 20.23.25.26.27.28
.. 29.30.31.32゜33, 34.35.36.
In the case of 37), the corrosion resistance is much higher than that of the above comparative example.
The discharge performance is excellent, and the combined effect of the added elements is remarkable. - When there is excess or deficiency in the content even when crab elements are present together (No.
9 、13.14.18.21.22.24>は比較例
と大差なく、複合効果が乏しい。9, 13.14.18.21.22.24> are not much different from the comparative example, and the composite effect is poor.
上述の通り、本発明はIn、 Cd、 Pb、 Co、
Ni。As mentioned above, the present invention includes In, Cd, Pb, Co,
Ni.
A1.Mg、Ca、Srを適切に組合せ、実施例で示す
ような適正な含有量で併存させた亜鉛合金を負極に用い
ることにより低木化率化に成功したものであり、元素の
含有量はInが0.005〜0.5重量%、Pb、Cd
の一種又は二種の和が0.001〜0.5重量%、Co
、Niの一種または二種の和が0.01〜0.5重量%
、AI、 Mg、 Ca。A1. By appropriately combining Mg, Ca, and Sr and using a zinc alloy in the appropriate content as shown in the example for the negative electrode, we succeeded in reducing the wood reduction rate. 0.005-0.5% by weight, Pb, Cd
The sum of one or two of these is 0.001 to 0.5% by weight, Co
, the sum of one or two types of Ni is 0.01 to 0.5% by weight
, AI, Mg, Ca.
Srの一種または二種以上の和が0.005〜0.5重
量%とするのが適切である。It is appropriate that the sum of one or more types of Sr is 0.005 to 0.5% by weight.
以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては水化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合はさらに低木化率、場合によ
っては無水化のまま実施することもできる。As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc hydrate negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it is possible to carry out the process with the reduction of trees, and in some cases, with the dehydration.
発明の効果
以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
。Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。
2・・・・・・亜鉛負極、4 ・・・・・・セパレータ
、5・・・・・・酸化銀正極。
代理人の氏名 弁理士 中尾敏男 ほか1名2−4鉛」
捲
4−−−(〕1ルータ
5−一酸fti眼正兎The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2-4 lead
Winding 4 --- (] 1 router 5-monoacid fti eyes positive rabbit
Claims (1)
ムのうち少なくとも一種を0.01〜0.5重量%、コ
バルト、ニッケルのうち少なくとも一種を0.01〜0
.5重量%、アルミニウム、マグネシウム、カルシウム
、ストロンチウムからなる群のうち少なくとも一種を0
.005〜0.5重量%含有する亜鉛合金を負極活物質
に用いた亜鉛アルカリ電池。0.005-0.5% by weight of indium, 0.01-0.5% by weight of at least one of lead and cadmium, and 0.01-0.0% of at least one of cobalt and nickel.
.. 5% by weight, 0 at least one member from the group consisting of aluminum, magnesium, calcium, and strontium
.. A zinc alkaline battery using a zinc alloy containing 0.005 to 0.5% by weight as a negative electrode active material.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230161A JPS6290854A (en) | 1985-10-16 | 1985-10-16 | Zinc alkaline cell |
EP85308930A EP0185497B1 (en) | 1984-12-12 | 1985-12-09 | Zinc-alkaline battery |
DE8585308930T DE3562307D1 (en) | 1984-12-12 | 1985-12-09 | Zinc-alkaline battery |
AU51012/85A AU558729B2 (en) | 1984-12-12 | 1985-12-09 | Zinc alloy-alkaline battery including nickel |
CN85109759.6A CN1004391B (en) | 1984-12-12 | 1985-12-11 | Zinc-alkali cells |
US07/029,343 US4861688A (en) | 1984-12-12 | 1987-03-19 | Zinc-alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230161A JPS6290854A (en) | 1985-10-16 | 1985-10-16 | Zinc alkaline cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6290854A true JPS6290854A (en) | 1987-04-25 |
JPH0143429B2 JPH0143429B2 (en) | 1989-09-20 |
Family
ID=16903552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60230161A Granted JPS6290854A (en) | 1984-12-12 | 1985-10-16 | Zinc alkaline cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6290854A (en) |
-
1985
- 1985-10-16 JP JP60230161A patent/JPS6290854A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0143429B2 (en) | 1989-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60175368A (en) | Zinc-alkaline primary cell | |
JPS6290854A (en) | Zinc alkaline cell | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS6290852A (en) | Zinc alkaline cell | |
JPS6290860A (en) | Zinc alkaline cell | |
JPS6273565A (en) | Zinc alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPS6290857A (en) | Zinc alkaline cell | |
JPS61181069A (en) | Zinc alkaline cell | |
JPS636749A (en) | Zinc alkaline battery | |
JPS61181068A (en) | Zinc alkaline cell | |
JPS61181070A (en) | Zinc alkaline cell | |
JPS6290859A (en) | Zinc alkaline cell | |
JPS61181065A (en) | Zinc alkaline cell | |
JPS6290851A (en) | Zinc alkaline cell | |
JPS61140066A (en) | Zinc alkali battery | |
JPS61203563A (en) | Alkaline zinc battery | |
JPS6290856A (en) | Zinc alkaline cell | |
JPS6290855A (en) | Zinc alkaline cell | |
JPH0142576B2 (en) | ||
JPS61181064A (en) | Zinc alkaline cell | |
JPS61181066A (en) | Zinc alkaline cell | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS6290858A (en) | Zinc alkaline cell | |
JPS61140064A (en) | Zinc alkali battery |