JPS61253764A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS61253764A
JPS61253764A JP60094735A JP9473585A JPS61253764A JP S61253764 A JPS61253764 A JP S61253764A JP 60094735 A JP60094735 A JP 60094735A JP 9473585 A JP9473585 A JP 9473585A JP S61253764 A JPS61253764 A JP S61253764A
Authority
JP
Japan
Prior art keywords
zinc
battery
negative electrode
mercury
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60094735A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60094735A priority Critical patent/JPS61253764A/en
Publication of JPS61253764A publication Critical patent/JPS61253764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the corrosion resistance of a zinc alloy used as the negative electrode by adding a combination of specific elements to produce a synergistic effect. CONSTITUTION:The negative electrode of the zinc alkaline battery of this invention is made of a zinc alloy which principally consists of zinc and contains 0.01-0.5wt% of nickel and 0.005-0.3wt% of either an element selected from magnesium, calcium and strontium or a mixture composed of at least two elements selected from magnesium calcium and strontium. The surfaces of atomized zinc particles are generally full of wrinkles produced during solidification. But, adding Mg, Ca or Sr results in production of atomized particles with smooth surfaces which have reduced specific surface area thereby reducing the amount of mercury necessary for preventing corrosion. In this battery, nickel which is almost homogeneously distributed in the atomized particles inhibits the diffusion of mercury from the surface to the core.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に5〜10重量%重量%水銀を添加した未化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし、近年低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
、種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using unchlorinated zinc powder, which is made by adding 5 to 10% by weight of mercury to zinc, and to suppress corrosion to the extent that there is no practical problem. . However, in recent years, in order to reduce pollution, there has been an increasing social need to reduce the amount of mercury contained in batteries, and various studies have been conducted. For example, lead and cadmium in zinc.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、木化率を低減させる方法が提案され
ている。これは腐食抑制効果は、添加元素の単体の効果
以外に複数の添加元素による複合効果も大きく、インジ
ウムと鉛あるいはこれにさらにガリウムを添加したもの
、さらにはガリウムと鉛を添加した亜鉛合金などが従来
、有望な系として提案されている。
A method has been proposed to improve corrosion resistance and reduce the lignification rate by using alloy powder to which indium, gallium, etc. are added. This means that the corrosion inhibiting effect is not only due to the effect of a single additive element, but also the combined effect of multiple additive elements. It has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、木化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
Although all of these can be expected to have a certain degree of corrosion resistance and a reduction in the lignification rate to some extent, it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きい/’1. X’l 0
hHLf+4.kr、 A (*4SU! 22− ’
:49 n A ?jrl−発明が解決しようとする問
題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
+r。
In addition, with the aim of improving manganese dry batteries, the use of zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode has a great anti-corrosion effect./'1. X'l 0
hHLf+4. kr, A (*4SU! 22-'
:49 n A? jrl-Problems to be solved by the invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
+r.

Bi、Sb、A1.Ag、Mg、Si、Ni、Mn等を
不純物又は添加物として一種または二種以上を含む場合
を包含して記載されているが、インジウムと鉛を添加元
素として併用した場合の有効性以外には、上記の雑多な
各元素を不純物として含むのか、有効な元素として添加
するのかの区分は明示されていなく、どの元素が防食に
有効なのかさえ不明であり、その適切な添加量について
はインジウム。
Bi, Sb, A1. Although it is described including the case where one or more types of Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, there is no effect other than when indium and lead are used together as additive elements. However, it is not clearly stated whether each of the miscellaneous elements mentioned above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention, and the appropriate amount of addition is unknown.

鉛以外の記載はない。There is no mention of anything other than lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく禾比率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the molten metal ratio without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage performance, and storage performance with low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に亜鉛を主成分と
し、ニッケル(Ni)を0゜01〜0.5重量%、マグ
ネシウム(Mg>。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. has zinc as its main component, 0.01 to 0.5% by weight of nickel (Ni), and magnesium (Mg>).

カルシウム(Ca)、ストロンチウム(Sr)の一種ま
たは二種以上をo、oos〜0.3重量%、含有した亜
鉛合金を用いたことを特徴とする。
It is characterized by using a zinc alloy containing o, oos to 0.3% by weight of one or more of calcium (Ca) and strontium (Sr).

作用 ここでの添加元素の作用は次のように考えられる。action The effect of the additive elements here can be considered as follows.

通常、アルカリ電池に使用する亜鉛粉は溶融状態の金属
を高圧のガスで噴霧固化することによって作られるいわ
ゆるアトマイズ粉でおる。亜鉛のアトマイズ粉の表面は
一般に凝固時にできるしわで覆われている。しかし、M
g、Ca、Srなどを添加するとそのしわがなくなって
平滑化し、比表面積が低下するため、防食に必要な水銀
量を低減できる。またNiはアトマイズ粉中にほぼ均一
に分布し、水銀が表面から内部へ拡散するのを抑制して
いると思われる。またMg、Ca、Srの標準電位は非
常に低く、単独の添加では充分な耐食性は得られないが
、Niが水銀の表面濃度を高く保ち、直接電解液とMg
、Ca、Srの元素が接触しない状態を作り、Mg、C
a、Srの一種以上とNiとを同時に添加することによ
り複合効果があると思われる。
Usually, the zinc powder used in alkaline batteries is so-called atomized powder, which is made by spraying and solidifying molten metal with high-pressure gas. The surface of atomized zinc powder is generally covered with wrinkles that form during solidification. However, M
When G, Ca, Sr, etc. are added, the wrinkles are removed and the surface is smoothed, and the specific surface area is reduced, so the amount of mercury required for corrosion prevention can be reduced. Further, Ni is distributed almost uniformly in the atomized powder, and it is thought that it suppresses the diffusion of mercury from the surface to the inside. In addition, the standard potential of Mg, Ca, and Sr is very low, and sufficient corrosion resistance cannot be obtained by adding them alone. However, Ni keeps the surface concentration of mercury high, and the Mg
, Ca, and Sr are not in contact with each other, and Mg, C
It is thought that a combined effect can be obtained by simultaneously adding one or more of Sr and Ni.

電位は非常に低く、ストロンチウム単独の添加では充分
な防食効果は得られない。インジウムは水素過電圧が高
く、水銀に対し親和性が大きい。鉛。
The potential is very low, and adding strontium alone does not provide sufficient corrosion protection. Indium has a high hydrogen overvoltage and a high affinity for mercury. lead.

カドミウムも比較的水素過電圧が高く、また亜鉛結晶粒
界に偏析し易く、水銀の粒界を通って拡散を抑制する効
果があると考えられる。
Cadmium also has a relatively high hydrogen overvoltage and is likely to segregate at zinc grain boundaries, and is thought to have the effect of suppressing mercury diffusion through grain boundaries.

インジウムは亜鉛にストロンチウムを添加する場合の悪
影響をカバーし、さらに鉛、カドミウムと同時に添加す
ることにより相乗的な防食効果があると思われる。
Indium covers the negative effects of adding strontium to zinc, and is thought to have a synergistic anti-corrosion effect when added at the same time as lead and cadmium.

本発明は、以上の推察のもとにNiとともにMg。Based on the above speculation, the present invention uses Ni and Mg.

よる相乗的な防食効果について検討を行い、負極に用い
る亜鉛合金の耐食性を著しく改善して低汞化に成功し、
放電性能と貯蔵性にすぐれた低公害の亜鉛アルカリ電池
を提供したものである。
We investigated the synergistic anti-corrosion effect of zinc alloys and succeeded in significantly improving the corrosion resistance and lowering the corrosion resistance of the zinc alloy used in the negative electrode.
This provides a low-pollution zinc-alkaline battery with excellent discharge performance and storage performance.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500℃で溶
融して圧縮空気により噴射して粉体化し、50〜150
メツシユの粒度範囲にふるい分けした。次いで、か性カ
リの10重量%水溶液中に上記粉体を投入し、撹拌しな
がら所定量の水銀を滴下して水化した。その後水洗し、
アセトンで置換して乾燥し、水化亜鉛合金粉を作成した
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%, melted at about 500°C, and powdered by spraying with compressed air. 150
It was sieved into a mesh particle size range. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Then wash with water,
The mixture was replaced with acetone and dried to produce zinc hydrate alloy powder.

さらに本発明の実施例以外の水化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Furthermore, hydrated zinc powder or zinc hydrated alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、lはステンレス鋼製の封目板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン製のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はステンレス鋼の内外面にニッケルメッキを施し
た正極缶である。8はポリプロピレン製pガスケットで
、正極缶7の折り曲げにより正極缶7と封口板lとの間
に圧縮されている。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, l is a sealing plate made of stainless steel, the inner surface of which is coated with copper plating 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc hydrate alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. This is a positive electrode can with nickel plating on the inside and outside surfaces. Reference numeral 8 denotes a P gasket made of polypropylene, which is compressed between the positive electrode can 7 and the sealing plate 1 by bending the positive electrode can 7.

試作した電池は直径11.6mm、高さ5.4mmであ
り、負極の水化粉末の重量を193n+gに統一し、水
銀の添加量(水化率)は、亜鉛合金粉に対し、いずれも
3重量%とじた。
The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm, the weight of the hydrated powder of the negative electrode is unified to 193n+g, and the amount of mercury added (hydration rate) is 3% to the zinc alloy powder. It was bound in weight%.

試作した電池の亜鉛合金の組成と、60°Cで1力月間
保存した後の放電性能と電池総高の変化を次表に示す。
The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month.

なお放電性能は、20℃において510Ωで0.9Vを
終止電圧として放電したときの放電持続時間で表わした
Note that the discharge performance was expressed as the discharge duration when discharge was performed at 20° C. at 510Ω with a final voltage of 0.9V.

□−□□□−會 □ この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。
□−□□□−會□ Regarding changes in the total battery height in this table, the total battery height decreases during the period after the battery is sealed until the stress relationship between each battery component stabilizes over time. It is customary to do so.

しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では、上記の電池総高の減少力に対抗する電池内圧の上
昇により電池総高を増大させ:傾向が強くなる。従って
、貯蔵による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な電池で
は、電池総高が増大するほか、電池内圧の上昇により耐
漏液性が劣化するとともに、腐食による亜鉛の消耗、亜
鉛表面の酸化膜の形成や、水素ガスの内在による放電反
応の阻害等により放電性能が著しく劣化することになり
、放電持続時間もまた亜鉛負極の耐食性に依存する要素
が大きい。
However, in batteries where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency for the total battery height to increase due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the total height of the battery due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. The discharge performance will be significantly deteriorated due to inhibition of the discharge reaction by the zinc negative electrode, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.

さて、表において、本発明の比較例として挙げたMg、
Ca、Srを単独で亜鉛に添加した場合(No、2.3
.4)は電池総高がかなり高くなり、放電性能も著しく
低ビ1゜またNiを単独で添加した場合(No、1)も
Mg、Ca、Srの単独添加の場合(No、2.3.4
)はどではないが、放電性能、電池のふくれとも良くな
い。しかし、Mg、 Ca。
Now, in the table, Mg listed as a comparative example of the present invention,
When Ca and Sr were added alone to zinc (No, 2.3
.. In case 4), the total height of the battery is quite high, and the discharge performance is also significantly low. In addition, when Ni is added alone (No. 1), when Mg, Ca, and Sr are added alone (No. 2.3. 4
) Although it is not bad, the discharge performance and battery swelling are also not good. However, Mg, Ca.

Srの一種もしくは二種以上とNiとを適正な含有量で
併存させた本発明の実施例(No、6.7.8゜11、
12.13.16.1?、 18.21.22.23.
25.26)の場合には前記比較例に比べて耐食性、放
電性能とも優れ、添加元素の複合効果が顕著に現われて
いる。一方添加元素を併存させた場合でも含有量に過不
足のある場合(No、  5.9.10.14. is
Example of the present invention (No, 6.7.8°11,
12.13.16.1? , 18.21.22.23.
In the case of No. 25 and 26), both the corrosion resistance and the discharge performance are superior to those of the comparative example, and the combined effect of the added elements is remarkable. On the other hand, even if additive elements are present together, there is an excess or deficiency in the content (No, 5.9.10.14. is
.

19、20.24)は比較例と大差なく、複合効果が乏
しい。上述の通り、Mg、Ca、Srの内の一種もしく
は二種以上とNiとを組合せ、適正な含有量で併存させ
た亜鉛合金を負極に用いることにより、低木化率化に成
功したもので、各元素の含有量はMg、Ca、Srの一
種または二種以上の和が0゜005〜0.3重量%、N
iは0.01〜0.5重量%とするのが適切である。
19, 20.24) are not much different from the comparative example, and the composite effect is poor. As mentioned above, by using a zinc alloy in the negative electrode, which is a combination of one or more of Mg, Ca, and Sr and Ni in an appropriate content, we have succeeded in reducing the wood reduction rate. The content of each element is 0°005 to 0.3% by weight of one or more of Mg, Ca, and Sr, and N
It is appropriate that i is 0.01 to 0.5% by weight.

以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては水化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発°生許容量は比較的多いので、このような
場合に本発明を適用する場合はさらに低木化率、場合に
よっては無水化のまま実施することもできる。
As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc hydrate negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it is possible to carry out the process with the reduction of shrubs and, in some cases, anhydrous state.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを0.01〜0.5重量%、マグネシウム、カ
ルシウム、ストロンチウムの一種または二種以上を0.
05〜0.3重量%含有する亜鉛合金を負極活物質に用
いた亜鉛アルカリ電池。
0.01 to 0.5% by weight of nickel, and 0.01% to 0.5% by weight of one or more of magnesium, calcium, and strontium.
A zinc alkaline battery using a zinc alloy containing 05 to 0.3% by weight as a negative electrode active material.
JP60094735A 1985-05-02 1985-05-02 Zinc alkaline battery Pending JPS61253764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094735A JPS61253764A (en) 1985-05-02 1985-05-02 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094735A JPS61253764A (en) 1985-05-02 1985-05-02 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS61253764A true JPS61253764A (en) 1986-11-11

Family

ID=14118370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094735A Pending JPS61253764A (en) 1985-05-02 1985-05-02 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS61253764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042704A (en) * 1995-10-06 2000-03-28 Ceramatec, Inc. Storage-stable, fluid dispensing device using a hydrogen gas generator
US6060196A (en) * 1995-10-06 2000-05-09 Ceramtec, Inc. Storage-stable zinc anode based electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042704A (en) * 1995-10-06 2000-03-28 Ceramatec, Inc. Storage-stable, fluid dispensing device using a hydrogen gas generator
US6060196A (en) * 1995-10-06 2000-05-09 Ceramtec, Inc. Storage-stable zinc anode based electrochemical cell

Similar Documents

Publication Publication Date Title
JPS61253764A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS61203563A (en) Alkaline zinc battery
JPH0622118B2 (en) Zinc alkaline battery
JPS61181067A (en) Zinc alkaline cell
JPS636749A (en) Zinc alkaline battery
JPS61181070A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPH0142576B2 (en)
JPS6290851A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery
JPS6290855A (en) Zinc alkaline cell
JPS61181068A (en) Zinc alkaline cell
JPS6290860A (en) Zinc alkaline cell
JPS61181069A (en) Zinc alkaline cell
JPS6290854A (en) Zinc alkaline cell
JPS61181064A (en) Zinc alkaline cell
JPS6177268A (en) Zinc alkaline battery
JPS61181066A (en) Zinc alkaline cell
JPS61140065A (en) Zinc alloy battery
JPS63133450A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPS60175369A (en) Zinc-alkaline primary cell