JPS6177268A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS6177268A
JPS6177268A JP59197201A JP19720184A JPS6177268A JP S6177268 A JPS6177268 A JP S6177268A JP 59197201 A JP59197201 A JP 59197201A JP 19720184 A JP19720184 A JP 19720184A JP S6177268 A JPS6177268 A JP S6177268A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
alloy
negative electrode
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197201A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uetake
植竹 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59197201A priority Critical patent/JPS6177268A/en
Publication of JPS6177268A publication Critical patent/JPS6177268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a low amalgamated zinc negative electrode having good discharge performance and high corrosion resistance by alloying zinc with a specified amount of calcium and adding indium to the zinc alloy. CONSTITUTION:Zinc alloy containing 0.05-0.5wt% indium and 0.005-0.15wt% calcium is used as a negative electrode of zinc alkaline battery. Calcium contained in the zinc alloy is discharged with zinc and increases discharge utilization factor of zinc. Since indium which has large affinity with zinc exits on the surface of the zinc alloy, diffusion of mercury which is added to the zinc alloy for amalgamation to the interior of the zinc alloy and the interior of crystals of the zinc alloy is retarded. Regardless of use of a small amount of mercury, mercury concentration on the surface or in the grain boundary of the zinc alloy is kept high and corrosion resistance is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として、亜鉛、電解液としてアル
カリ水溶液、正極活物質として二酸化マンガン、酸化銀
、酸化水銀、酸素等を用いる亜鉛アルカリ電池の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a zinc-alkaline battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as a positive electrode active material. It is about improvement.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の亜
鉛負極の電解液による腐食が挙げられる。
A common problem with prior art zinc-alkaline batteries is corrosion of the zinc negative electrode by the electrolyte during storage.

従来、亜鉛に5〜10重量%程度の水銀を添加した水化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし、近年低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
、種・Iの研究がなされている。例えば、亜鉛中に51
)、ガリウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage using zinc hydrate powder, which is made by adding about 5 to 10% by weight of mercury to zinc, and to suppress corrosion to a level that poses no practical problems. . However, in recent years, in order to reduce pollution, there has been an increasing social need to reduce the amount of mercury contained in batteries, and research on species I has been conducted. For example, 51
),gallium.

インジウムなとを添加した合金粉末を用いて耐食性を向
上させ、水化率を低減させる方法か提案されている。こ
れは腐食抑制には、効果があるが水化率を低減させるこ
とにより強放電性能か悪1]二するという逆効果が見ら
れる。これらの提案において、低木化率とした場合に強
放電性能が劣化する原因は不明確であるが、放電生成物
か活性な亜鉛表面を覆い、放電反応に必要な水酸イオン
の亜11)表面への供給を妨げる度合が水銀含量の多い
場合に比較して大きいためと考えられ、ii1食性に強
放電性能を兼ね備えた低水化率亜鉛負極の確立が今後の
重要課題とされている。
It has been proposed to improve corrosion resistance and reduce the hydration rate by using alloy powders containing indium and other additives. Although this is effective in suppressing corrosion, it has the opposite effect of deteriorating strong discharge performance by reducing the hydration rate. In these proposals, the cause of the deterioration of strong discharge performance when considering the bushing rate is unclear, but the discharge product or the active zinc surface is covered, and the surface of hydroxide ions necessary for the discharge reaction is This is thought to be because the extent to which the supply of mercury is inhibited is greater than when the mercury content is high, and the establishment of a low hydration rate zinc negative electrode that has both edibility and strong discharge performance is considered an important future issue.

また、主にマンガン乾電池の改良をめざして、亜鉛また
は亜鉛合金にインジウムを添加した亜鉛合金を負極に使
用することが防食」二の効果が大きいという提案がある
(特公昭33−3204号)。
Furthermore, with the aim of improving manganese dry batteries, there has been a proposal that the use of zinc or a zinc alloy in which indium is added to a zinc alloy for the negative electrode is highly effective in preventing corrosion (Japanese Patent Publication No. 33-3204).

上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 1
−1g。
Among the above proposals, in addition to indium, the elements in the zinc alloy include Fe, Cd, Cr, Pb, Ca, 1
-1g.

Bi、Sb、AI、Ag、hh、Si、Ni、Mn等を
不純物または添加物として1または2種以」二を含む場
合を包含して記載されているか、インジウムと鉛を添加
元素として併用した場合の有効性以91には、L記の雑
多な各元素を不純物として含むのか、有効な元素として
添加するのかの区分は全く示されておらす、との元素が
防食に有効なのかさえ不明で、まして適切な添加量につ
いてはインジウム。
The description includes cases in which Bi, Sb, AI, Ag, hh, Si, Ni, Mn, etc. are included as impurities or additives, or indium and lead are used together as additive elements. 91 does not indicate at all whether the miscellaneous elements listed in L are included as impurities or added as effective elements, and it is not even clear whether these elements are effective for corrosion prevention. And what about the appropriate addition amount of indium?

船具外の記載はない。これらの元素の組合せの効果につ
いて、しかもこれを亜鉛アルカリ電池において検討して
、有効な合金組成を求めることは、なお今後の課題とし
て残されている。
There is no description of anything other than the ship's equipment. It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

発明が解決しようとする問題点 上記のように、低水化率で耐食性と強放電性能を兼ね備
えたアルクlり電池用亜鉛負極が求められている。
Problems to be Solved by the Invention As described above, there is a need for a zinc negative electrode for alkali batteries that has a low hydration rate, corrosion resistance, and strong discharge performance.

本発明は、仙極亜11)の耐食11:、放電11.能を
劣化させることなく水化率を低減させ、低公害で放電性
能、貯蔵性、 Ii、I漏液性なとの性能のすくれた亜
鉛アルカリ電池を提供するこ七を目的きする。
The present invention provides corrosion resistance 11:, discharge 11. The purpose of the present invention is to provide a zinc-alkaline battery that reduces the hydration rate without deteriorating the performance, has low pollution, and has excellent discharge performance, storage performance, Ii, and I leakage properties.

問題点を解決するための手段 本発明は、電解i11にか性ノノリ、か性ソーダなどを
主成分とするアルク1り水溶液、負極活物質に亜鉛、正
極活物質に二酸化マンガン、酸化銀、酸化水銀、酸素な
とを用いる亜i1)アルカリ電池の負極に、インジウム
(Inを>0.01−0.5重量%、カルシウム(Ca
)を0.005〜0.15重量%含有する亜鉛合金を用
いたこ古を特徴とする。
Means for Solving the Problems The present invention uses an aqueous alkali solution containing caustic glue, caustic soda, etc. as the main ingredients for the electrolytic i11, zinc as the negative electrode active material, and manganese dioxide, silver oxide, and oxide as the positive electrode active material. The negative electrode of a sub-I1) alkaline battery using mercury, oxygen, etc. contains >0.01-0.5% by weight of indium (In), calcium (Ca
) is characterized by using a zinc alloy containing 0.005 to 0.15% by weight.

作用 本発明は、まず放電反応生成物が活性な亜鉛表面を覆い
、水酸イオンのlt給をj11害し、大電流での放電反
応が円滑に進行しない傾向が特に水化率の低い亜鉛を負
極に用いる場合に顕著に表われる問題をCaの適切な量
を添加して合金化することにより解決し、さらに亜鉛合
金の防食性向」二に大きな効果があるInを添加するこ
とにより、Caの添加との相乗効果により、放電性能と
耐食性を兼ね備えた低水化率の亜鉛負極を実現したもの
である。Caの添加効果についての作用機構は十分に解
明されていないが、後述の実施例において示すように、
適切な添加量の範囲おいて有効であり、負極”Tlj 
k:)中に合金として含まれているCaか亜鉛とkもに
放電し、その放電生成物が亜鉛の放電生成物の電解液中
への溶解を促進させるか、未溶解の放電生成物の層か緻
密化して亜鉛表面が不働態化する作用を緩f■する役割
を果たすことにより、’IE j’f)の活性表面に水
酸イオンか豊富に供給される状態か亜鉛の消耗し1ざず
」ミで相続して確1vされ、!IIi)の放電利用率が
高まるt)のと考えられる。
Effect of the present invention First, the discharge reaction product covers the active zinc surface, impairs the lt supply of hydroxide ions, and the discharge reaction at a large current tends not to proceed smoothly. By adding an appropriate amount of Ca to the alloy, we solved the problems that occur when used in zinc alloys, and by adding In, which has a great effect on the anti-corrosion properties of zinc alloys. Through the synergistic effect with the above, we have realized a zinc negative electrode with a low water conversion rate that combines discharge performance and corrosion resistance. Although the mechanism of action regarding the effect of Ca addition has not been fully elucidated, as shown in the examples below,
It is effective within an appropriate amount of addition, and is effective for negative electrode "Tlj
k:) is discharged to both Ca and zinc contained in the alloy, and the discharge product promotes the dissolution of the zinc discharge product into the electrolytic solution or dissolves the undissolved discharge product. By densifying the zinc layer and slowing down the passivation effect on the zinc surface, the active surface of 'IE j'f) is supplied with abundant hydroxide ions and the zinc is depleted. Inherited from Zazu Mi and got 1v! This is considered to be due to the increase in the discharge utilization rate of IIi).

」、た、Inはあらゆる元素のうちで最も防食効果の人
きい添加元素の−っとして知られており、亜鉛合金の水
素過電圧を高める作用を有する以+[に結、W汁“r!
/l!や亜t1)合金の表面に水銀との親和性が人き(
司11か存在することに、より、亜鉛合金の水化のため
に添加した水銀が亜t1)合金の表面や粒Wに固定され
、亜鉛合金の内部や結晶粒内−\の拡散か抑制されるの
で、少量の水銀の添加により、表面や41“rVlのy
)<銀濃度を高く維持して大きな防食効果かilられろ
t)のと考えられる。
Among all elements, In is known as the most effective additive element for corrosion prevention, and has the effect of increasing the hydrogen overvoltage of zinc alloys.
/l! The surface of the t1) alloy has an affinity for mercury (
Due to the presence of mercury 11, the mercury added for hydration of the zinc alloy is fixed on the surface and grains W of the zinc alloy, and its diffusion inside the zinc alloy and within the crystal grains is suppressed. Therefore, by adding a small amount of mercury, the surface and
) <It is thought that maintaining a high silver concentration can have a large anticorrosion effect.

本発明において、前記のCaの添加効果は、放電性能を
向上させるのみならす、添加量によっては」1記の■0
の防食効果を高める上にt)有効であることが認められ
、Caは電池の保存期間中に亜鉛負極が電解液により腐
食する場合、亜R)より卑な金属であるだけに亜鉛に優
先して酸化され、亜鉛合金の表面の活性点を不活性化す
る酸1ヒ膜を形成して腐食を抑制する作用があると推定
される。
In the present invention, the above-mentioned effect of adding Ca not only improves the discharge performance, but depending on the amount added,
It has been recognized that Ca is effective in increasing the anti-corrosion effect of t), and when the zinc negative electrode is corroded by the electrolyte during the storage period of the battery, Ca takes precedence over zinc because it is a more base metal. It is presumed that the zinc alloy is oxidized and forms an acid film that inactivates the active sites on the surface of the zinc alloy, thereby inhibiting corrosion.

しかし、多量に存在し過ぎるとCaの必要以上の酸化が
進行し、却って水素ガス発生の増大を招く結果となるの
で、放電性能、!:耐食性を共に備えた亜鉛合金を得る
には上記の両元素の適正な添加量を設定する必要がある
However, if it is present in too large a quantity, oxidation of Ca will proceed more than necessary, resulting in an increase in hydrogen gas generation, which will affect the discharge performance! : In order to obtain a zinc alloy with corrosion resistance, it is necessary to set appropriate amounts of both of the above elements.

実施例 純度99.997以上%の亜鉛地金に後に表に示す元素
を添加して各種の亜6F)合金を作成し、約500℃で
溶融して圧縮空気により噴射して粉体化し、50〜+5
0メツシユの粒度範囲にふるい分けした。次いで、か性
ノ1りの10重量%水溶液中に上記粉体を投入し、撹拌
しなから所定量の水銀を滴下して水化した。その後水洗
し、アセトンて置換して乾燥し、水化亜11)合金粉を
作成した。
Examples Various sub-6F) alloys were prepared by adding the elements shown in the table below to a zinc ingot with a purity of 99.997% or more, melted at about 500°C, and powdered by spraying with compressed air. ~+5
The particles were sieved to a particle size range of 0 mesh. Next, the above-mentioned powder was put into a 10% by weight aqueous solution of caustic No. 1, and a predetermined amount of mercury was added dropwise to the solution while stirring to hydrate it. Thereafter, it was washed with water, replaced with acetone, and dried to prepare a hydrated 11) alloy powder.

さらに本発明の実施例以外の水化亜鉛合金粉または水化
亜鉛粉についても比較例として同様の方法で作成した。
Furthermore, zinc hydrate alloy powders or zinc hydrate powders other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示す筒状のアルカリマン
ガン電池を製作した。図において、1は鉄にニッケルメ
ツ4−を施した正極ケースで、内部には二酸化マンガン
に黒鉛を混合して加圧成形した正極2、ポリプロピレン
の不織布からなるセパレータ3、セルロース製底板4、
ノlルボキシメチルセルロースてノ1ニル化したかfi
lツlり水溶液の電解液に各挿の水化亜鉛合金を分散さ
せたノf几状の負極5を収容している。6はケース1の
開11部を11[1したポリプロピレン製の封目板で、
中央には真鍮製のh極集電子7を固定している。8は負
極端子板、9は正極端子板、10.IIは絶縁リング、
12は熱収縮性樹脂チ:1−ブ、13は金属り[製缶で
ある。
Using these hydrated powders, the cylindrical alkaline manganese battery shown in the figure was manufactured. In the figure, 1 is a positive electrode case made of iron coated with nickel metal. Inside is a positive electrode 2 made of a mixture of manganese dioxide and graphite and pressure molded, a separator 3 made of polypropylene nonwoven fabric, a bottom plate 4 made of cellulose,
Norboxymethyl cellulose is nylated or fi
The negative electrode 5 is housed in a square shape, each having a zinc hydrate alloy dispersed in a dilute aqueous electrolyte. 6 is a polypropylene sealing plate with the opening 11 of case 1 made 11 [1].
An h-pole collector 7 made of brass is fixed in the center. 8 is a negative terminal plate, 9 is a positive terminal plate, 10. II is an insulating ring,
12 is a heat-shrinkable resin tube; 13 is a metal tube (canned).

試作した電池は単3形のアルカリマンガン電池= 7− で、負極に用いた水化亜鉛合金粉の計は2.80gに統
一し、水銀の添加量(本化率)は、亜鉛合金粉に対し、
3重量%とした。
The prototype battery was an AA-sized alkaline manganese battery = 7-, the total amount of zinc hydrate alloy powder used for the negative electrode was unified to 2.80 g, and the amount of mercury added (consolidation rate) was changed to the zinc alloy powder. On the other hand,
The content was 3% by weight.

試作した電池を60℃で1力月間貯蔵後、20℃におい
て10Ωの連続放電性能、耐漏液性、膨張度合いを各々
評価した。負極の亜t1)合金の内訳に試験の結果を次
表に示す。
After storing the prototype battery at 60°C for one month, its continuous discharge performance at 10Ω, leakage resistance, and degree of expansion were evaluated at 20°C. The following table shows the test results for the sub-t1) alloy used in the negative electrode.

=  10 − この表に見られる。ように、従来例のうち防食のためI
nのみを添加した場合(b〜「)は、いずれも電池の膨
張や漏液は少なく無添加の場合(a)に仕較して大幅に
ガス発生は抑制されているが、10Ωという強負荷放電
での持続時間は後述のように本発明品の性能より劣る。
= 10 - seen in this table. Among the conventional examples, I
When only n is added (b to ``), gas generation is significantly suppressed compared to case (a) with no addition, but there is little expansion or leakage of the battery, but the strong load of 10Ω The duration of discharge is inferior to the performance of the product of the present invention, as described below.

さらに負極の放電反応を円滑化するのを主目的としてC
aのみを添加した場合(g、 h)は、防食性が不十分
て電池の膨張や漏液が多く、また保存中の自己消耗と内
蔵ガスによる放電反応1:■害により放電性能も著しく
劣化している。−1−記のように、従来の方法(a −
h )ては3重量%吉いう低水化率では耐食性、放電性
能を兼ね備えた亜鉛負極が得られない。一方、InとC
aを同時に添加した場合(1〜q)のうち、放電性能。
Furthermore, the main purpose of smoothing the discharge reaction of the negative electrode is to
When only a is added (g, h), the corrosion protection is insufficient and the battery often expands and leaks, and the discharge performance also deteriorates significantly due to self-depletion during storage and discharge reaction due to built-in gas 1: ■ damage. are doing. As described in -1-, the conventional method (a -
h) With a water conversion rate as low as 3% by weight, a zinc negative electrode having both corrosion resistance and discharge performance cannot be obtained. On the other hand, In and C
Discharge performance among cases (1 to q) when a is added at the same time.

耐漏液性か良く、電池の膨張も少な〈従来例より改善さ
れたと判断されるのはInが0,01〜0.5重量%、
Caが0.005−0.15重量%の亜6F)合金の場
合F、 k、 I、 o、 p)であり、添−11〜 劣るか、または大差なく、」二連のように適正な添加元
素の含有量の範囲において顕著な効果が認められる。
Good leakage resistance and little battery expansion (improved over conventional examples with In content of 0.01 to 0.5% by weight)
In the case of a sub-6F) alloy with Ca content of 0.005-0.15% by weight, F, k, I, o, p), it is inferior to or not much different from Add-11, and is suitable as in 2 series. A remarkable effect is observed within the range of the content of the added element.

Ju l二のように本発明は1)〜「の方法とg、hの
方法、+−の欠点を補完し、その相乗効果が効果的に得
られる添加元素の含有量を割り出して低公害で実用性能
のすくれた亜鉛アルカリ電池を実現したものである。
As in Jul 2, the present invention complements the shortcomings of methods 1) to ``g'' and ``h'', and determines the content of added elements that can effectively obtain a synergistic effect, thereby achieving low pollution. This is a zinc-alkaline battery with excellent practical performance.

なお、実施例においては、水化亜鉛負極を用いた電池に
ついて説明したが、開放式の空気電池や水素吸収機構を
備えた密閉形の亜鉛アルカリ電池なとにおいでは、水素
ガスの発生許容量が比較的多いので、このような場合に
本発明を適用する場合は、さらに低水化率、場合によっ
ては無水化のまま実施するこkもできる。
In addition, in the examples, a battery using a zinc hydrate negative electrode was explained, but the permissible amount of hydrogen gas generated is Since the amount of water is relatively large, when the present invention is applied to such a case, it is possible to reduce the water content even further, and in some cases, it may be possible to carry out the process with anhydrous state.

発明の効果 以」二のように本発明によれば、負極亜鉛の水化率を低
減し、低公害の亜鉛アルカリ電池を得ることができる。
Effects of the Invention According to the present invention, the hydration rate of negative electrode zinc can be reduced and a low-pollution zinc-alkaline battery can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたアルカリマンガン電池の一
部を断面にした側面図である。 2・・・・・・正極、3・・・・・・セパレータ、5・
・・・・・亜鉛負極。
The figure is a partially sectional side view of an alkaline manganese battery used in an example of the present invention. 2... Positive electrode, 3... Separator, 5...
...Zinc negative electrode.

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.01〜0.5重量%、カルシウムを0
.005〜0.15重量%含有する亜鉛合金を負極活物
質に用いた亜鉛アルカリ電池。
0.01-0.5% by weight of indium, 0% of calcium
.. A zinc alkaline battery using a zinc alloy containing 0.005 to 0.15% by weight as a negative electrode active material.
JP59197201A 1984-09-20 1984-09-20 Zinc alkaline battery Pending JPS6177268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197201A JPS6177268A (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197201A JPS6177268A (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS6177268A true JPS6177268A (en) 1986-04-19

Family

ID=16370495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197201A Pending JPS6177268A (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS6177268A (en)

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPS6240162A (en) Zinc alkaline battery
JPS6177268A (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS6177265A (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPS61203563A (en) Alkaline zinc battery
JPS61140066A (en) Zinc alkali battery
JPS6273565A (en) Zinc alkaline battery
JPS6177267A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS61140064A (en) Zinc alkali battery
JPS636747A (en) Zince alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS61140063A (en) Zinc alkali battery
JPS61181070A (en) Zinc alkaline cell
JPS636748A (en) Zinc alkaline battery
JPS61140065A (en) Zinc alloy battery
JPS63178453A (en) Zinc alkaline battery
JPS61181067A (en) Zinc alkaline cell
JPS63178452A (en) Zinc alkaline battery
JPS61181064A (en) Zinc alkaline cell