JPS61140063A - Zinc alkali battery - Google Patents

Zinc alkali battery

Info

Publication number
JPS61140063A
JPS61140063A JP59262136A JP26213684A JPS61140063A JP S61140063 A JPS61140063 A JP S61140063A JP 59262136 A JP59262136 A JP 59262136A JP 26213684 A JP26213684 A JP 26213684A JP S61140063 A JPS61140063 A JP S61140063A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
mercury
negative pole
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59262136A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59262136A priority Critical patent/JPS61140063A/en
Publication of JPS61140063A publication Critical patent/JPS61140063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the hardening rate of negative pole zinc and to obtain a low pollution zinc alkali battery by employing zinc alloy containing proper content of Ni and Tl for the negative pole. CONSTITUTION:Zinc alloy containing 0.01-0.5wt% of nickel and 0.01-0.5wt% of thallium is employed for the negative pole of zinc alkali battery. When adding both Ni and Tl to negative pole zinc, considerable corrosion-proof effect is achieved when compared with the case where said element is added independently. It is presumed that the affinity with mercury on the surface of zinc alloy is improved through addition of Tl while Ni will contribute considerably to suppress dispersion of mercury into the particles and the corrosion resistance is improved considerably through formation of zinc alloy surface having high hydrogen overvoltage. Remarkable complex effect is recognized only when the content of Ni and Tl in zinc alloy composition is within said range. Consequently, a zinc negative electrode having low hardening rate while provided with excellent discharge performance and corrosion resistance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に5〜10重量%重量%水銀を添加した氷化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
、種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using frozen zinc powder, which is made by adding 5 to 10% by weight of mercury to zinc, and to suppress corrosion to a level that causes no practical problems. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead and cadmium in zinc.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、氷化率を低減させる方法が提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。
A method has been proposed to improve corrosion resistance and reduce the rate of icing using an alloy powder to which indium, gallium, etc. are added. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、氷化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
Although all of these can be expected to have a certain degree of corrosion resistance and a certain degree of reduction in icing rate, it is necessary to search for an alloy system with even better corrosion resistance.

また、王にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。
In addition, with the aim of improving manganese dry batteries, there is a proposal by Wang that using zinc or a zinc alloy in which indium is added to a zinc alloy for the negative electrode is highly effective in preventing corrosion (Japanese Patent Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、Cd、Or、Pb、Ca、 Hg 、B
i、Sb 。
Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Or, Pb, Ca, Hg, and B are used as elements in the zinc alloy.
i, Sb.

Al 、 Ag 、M(、Si 、Ni、Mn等を不純
物又は添刀a物として1又は2種以上を含む、場合を包
含して記載されているが、インジウムと鉛を添加元素と
して併用した場合の有効性以外には、上記の雑多な各元
素を不純物として含むのか、有効な元素として添加する
のかの区分は明示されていなく、どの元素が防食に有効
なのかさえ不明であり、その適切な添加量についてはイ
ンジウム、鉛以外の記載はない。
The description includes cases in which one or more of Al, Ag, M(, Si, Ni, Mn, etc.) are used as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of corrosion prevention, there is no clear distinction as to whether each of the miscellaneous elements listed above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention. There is no description of the amount of addition other than indium and lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ土類全
提供することを目的とする。
The present invention reduces the hydration rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The aim is to provide a complete range of zinc alkaline earth products with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、ニッケル(N
i)を0.01〜0.5重量%、タリウム(Tl) f
 o、o 1〜01重量%含有する亜鉛合金を用いたこ
とを特徴とする。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. Nickel (N
i) 0.01 to 0.5% by weight, thallium (Tl) f
It is characterized by using a zinc alloy containing 1 to 01% by weight of o and o.

本発明は、前記の従来例の亜鉛合金中の添加元素のうち
、Niが安価で環境汚染の心配のない無公害性の元素で
あることに注目し、Niの添加効果について実験を行い
、Nii単独で添加した亜鉛合金は防食性に乏しいが、
NiとTgを同時に添加した場合には、双方の元素を単
独に添加した場合に比べて顕著な相乗的防食効果が得ら
れることを見出して完成したものである。
The present invention focused on the fact that among the additive elements in the conventional zinc alloy, Ni is a low-cost and non-polluting element that does not cause environmental pollution, and conducted experiments on the effect of adding Ni. Zinc alloy added alone has poor corrosion protection, but
This work was completed based on the discovery that when Ni and Tg are added at the same time, a more significant synergistic anticorrosive effect can be obtained than when both elements are added alone.

作用 Ni、あるいはT/Q単体での添加による防食効果、及
びNiとTaとの複合効果についての作用機構は不明確
であるが、次のように推察される。
The mechanism of action regarding the anticorrosive effect of Ni or T/Q added alone, and the combined effect of Ni and Ta is unclear, but is presumed to be as follows.

まず亜鉛(Zn)に対し、Niの溶解性は小さいが、噴
射法で粉体化する際の冷却速度が約102°C/SeC
のオーダーと非常に大きいので、後述の実凡例での適正
な含有量(0,01〜0.6重量%)の程度でUN@、
!″′@4“t、t”’6ET*@’eiJ”66・6
°1・87・   1水銀との親和性の小さいNiが結
晶内への水銀の拡散を抑止して、亜鉛合金表面の水銀a
度を高く維持する役割を果すことが期待される。その反
面、亜鉛合金表面の水銀のなじみを却って悪くすること
も懸念される。またTaは、元来、水銀となじみ易く、
亜鉛合金の表面を汞化により均一化するためには有効で
あるが、水銀の粒子内部への拡散を阻止する働らきは不
十分と考えられる。
First, the solubility of Ni is lower than that of zinc (Zn), but the cooling rate when powdering it by injection method is approximately 102°C/SeC.
Since it is very large, on the order of
! ″′@4“t, t”’6ET*@’eiJ”66.6
°1・87・1Ni, which has a low affinity for mercury, suppresses the diffusion of mercury into the crystal, reducing the amount of mercury a on the surface of the zinc alloy.
They are expected to play a role in maintaining high standards. On the other hand, there is also a concern that it may actually worsen the adhesion of mercury to the surface of the zinc alloy. In addition, Ta is naturally compatible with mercury,
Although it is effective in making the surface of the zinc alloy uniform by graining, it is considered to be insufficient in preventing the diffusion of mercury into the interior of the particles.

本発明では、上記の両元素の作用の不十分な点全補い合
い、各々の長所を活した複合効果が得られたものと考え
られる。すなわち、亜鉛合金表面の水銀とのなじみヲで
4の添加により改善し、粒子内部への水銀の拡散抑止に
Niが強く関与し、結果的に、水素過電圧の大きい亜鉛
合金表面を形成することで耐食性が著しく改善されたも
のと推定される。以上のように、本発明は負極に用いる
亜鉛合金中の添加元素の組合せとその含有量を実験的に
検討し、放電性能と耐食性を兼ね備えた低氷化率の亜鉛
負極を実現したものである。
In the present invention, it is considered that the above-mentioned inadequacies in the effects of both elements are fully compensated for, and a combined effect is obtained by taking advantage of the strengths of each element. In other words, the compatibility of the zinc alloy surface with mercury is improved by the addition of 4, and Ni is strongly involved in inhibiting the diffusion of mercury into the interior of the particles, resulting in the formation of a zinc alloy surface with a large hydrogen overvoltage. It is estimated that corrosion resistance has been significantly improved. As described above, the present invention experimentally investigated the combination of additive elements and their contents in the zinc alloy used for the negative electrode, and realized a zinc negative electrode with a low freezing rate that has both discharge performance and corrosion resistance. .

以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.

実施例 N度99.997%以上の亜鉛地金に後に表に示すよう
に各種の元素を添加した各種の亜鉛合金を作成し、約s
 o O’Cで溶融して圧縮空気により噴射して粉体化
し、S○〜160メツシュの粒度範囲にふるい分けした
。次いで、か性カリの10重量%水溶液中に上記粉体を
投入し、攪拌しながら所定量の水銀を滴下して水化した
。その後水洗し、アセトンで置換して乾燥し、氷化亜鉛
合金粉を作成した。さらに本発明の実施例以外の氷化亜
鉛合金粉についても比較例として同様の方法で作成した
Examples Various types of zinc alloys were prepared by adding various elements as shown in the table later to zinc ingots with an N degree of 99.997% or more.
o It was melted in O'C, pulverized by spraying with compressed air, and sieved to a particle size range of S○ to 160 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, substituted with acetone, and dried to produce a frozen zinc alloy powder. Furthermore, glazed zinc alloy powders other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、内面には銅メツ午1′が施されている。2はか性カ
リの40重量幅水溶液に酸化亜鉛を飽和させた電解液を
カルボキシメチルセルロースによりゲル化し、このゲル
中に氷化粉末を分散させた亜鉛負極である。3はセルロ
ース系の保液材、4は多孔性ポリプロピレン製のセパレ
ータ、6は酸化銀に黒鉛を混合して加圧成形した正極、
6は鉄にニッケルメッキを施した正極リング、7はステ
ンレス鋼製の正極缶で、内外面にはニッケルメッキが施
されている。8はポリプロピレン製のガスケツトで、正
極缶の折り曲げにより正極缶と封口板との間に圧縮され
ている。試作した電池は直径11.6襲、高さ6.4鶏
でるり、負極の氷化粉末の重量を1931111gに統
一し、また水銀の添加量(氷化率)は、亜鉛合金粉に対
し、いずれも3重量幅とした。試作した電池の亜鉛合金
の組成と、60’Cで1力月間保存した後の放電性能及
び電池総高の変化を次表に示す。放電性能は、20°C
において610Ωで0,9 Vを終止電圧として放電し
たときの放電持続時間で表わした。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is coated with a copper plate 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40 weight range aqueous solution of caustic potassium saturated with zinc oxide with carboxymethylcellulose, and dispersing frozen powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene separator, 6 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded;
6 is a positive electrode ring made of iron plated with nickel, and 7 is a positive electrode can made of stainless steel, the inner and outer surfaces of which are plated with nickel. A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery had a diameter of 11.6 mm, a height of 6.4 mm, and the weight of the negative electrode ice powder was unified to 1,931,111 g, and the amount of mercury added (freezing rate) was the same as that of the zinc alloy powder. All had 3 weight widths. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60'C for one month. Discharge performance is 20°C
It is expressed as the discharge duration when discharged at 610Ω with a final voltage of 0.9V.

以下余白 この表に見られるように、比較例(1〜3)を相互に比
較すると、添加元素の全くない場合(1)に比べ、単体
の元素を添加した場合(2,3)は貯蔵後の放電性能は
幾分改善され、負極亜鉛の腐食及び水素ガス発生量の多
少を端的に評価できる電池総高の変化においても多少の
改善効果が認められる。
Margin below As can be seen in this table, when comparing comparative examples (1 to 3) with each other, it is found that when a single element is added (2, 3), compared to the case (1) where no added element is added, the case (2, 3) after storage The discharge performance of the battery was improved to some extent, and some improvement was also observed in changes in the total height of the battery, which can directly evaluate the corrosion of the negative electrode zinc and the amount of hydrogen gas generated.

しかし、これらの改善効果は実用的には不十分であり、
Ni、:T5を組み合せて適切な量を含有させた場合(
5,6,7,10,11)にのみ改善効果が得られ、顕
著な複合効果が認められた。
However, these improvement effects are insufficient for practical use.
When Ni and :T5 are combined and contained in an appropriate amount (
An improvement effect was obtained only in cases 5, 6, 7, 10, and 11), and a remarkable combined effect was observed.

従って、適切な亜鉛合金組成の添加元素の含有量を重量
幅で表すと、0.Q1≦Ni≦0.5 % 、0.01
≦’re≦0.5%となる。
Therefore, if the content of additional elements in a suitable zinc alloy composition is expressed in weight range, it is 0. Q1≦Ni≦0.5%, 0.01
≦'re≦0.5%.

一方、添加元素に過不足のある場合(”+ 8+9.1
2)は比較例のうち良好なもの(3)と大差ないか、却
って劣る場合もあり、上述の適正な含有量の範囲におい
てのみ、顕著な複合効果が認められた。従って、適正な
含有量の範囲で、N1とTeを含有させた亜鉛合金を負
極に用いることにより、低公害で実用性能のすぐれた亜
鉛アルカリ電池を得ることができる。
On the other hand, if there is an excess or deficiency in the added elements ("+8+9.1
2) is not much different from the good comparative example (3), or may even be inferior in some cases, and a remarkable composite effect was observed only within the above-mentioned appropriate content range. Therefore, by using a zinc alloy containing N1 and Te in an appropriate content range for the negative electrode, a zinc-alkaline battery with low pollution and excellent practical performance can be obtained.

なお、実施例においては氷化亜鉛負極を用いた電池につ
いて説明したが、開放式の空気電池や水素吸収機構を備
えた密閉形亜鉛アルカリ電池などにおいては水素ガスの
発生許容量は比較的大きいので、このような電池に本発
明を適用する場合は、さらに低汞化率、場合によっては
無氷化のまま実施することもできる。
In addition, in the example, a battery using a frozen zinc negative electrode was explained, but in an open air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively large. When the present invention is applied to such a battery, it can be carried out with a lower rate of dehydration, and in some cases without ice.

発明の効果 以上のように本発明は、負極亜鉛の氷化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the freezing rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・セパレータ、6
・・・・・・酸化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator, 6
...Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを0.01〜0.5重量%、タリウムを0.0
1〜0.5重量%含有する亜鉛合金を負極活物質に用い
た亜鉛アルカリ電池。
0.01-0.5% by weight of nickel, 0.0% of thallium
A zinc alkaline battery using a zinc alloy containing 1 to 0.5% by weight as a negative electrode active material.
JP59262136A 1984-12-12 1984-12-12 Zinc alkali battery Pending JPS61140063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262136A JPS61140063A (en) 1984-12-12 1984-12-12 Zinc alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262136A JPS61140063A (en) 1984-12-12 1984-12-12 Zinc alkali battery

Publications (1)

Publication Number Publication Date
JPS61140063A true JPS61140063A (en) 1986-06-27

Family

ID=17371552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262136A Pending JPS61140063A (en) 1984-12-12 1984-12-12 Zinc alkali battery

Country Status (1)

Country Link
JP (1) JPS61140063A (en)

Similar Documents

Publication Publication Date Title
JPH04284357A (en) Zinc alkaline battery
JPH04284359A (en) Zinc alkaline battery
JPS61140063A (en) Zinc alkali battery
JPS61140062A (en) Zinc alkali battery
JPS61140064A (en) Zinc alkali battery
JPS6273565A (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPH0622119B2 (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPS61140065A (en) Zinc alloy battery
JPS61253764A (en) Zinc alkaline battery
JPS6290852A (en) Zinc alkaline cell
JPS636749A (en) Zinc alkaline battery
JPS63178453A (en) Zinc alkaline battery
JPS63178452A (en) Zinc alkaline battery
JPS6177265A (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPH0622116B2 (en) Zinc alkaline battery
JPS61140067A (en) Zinc alkali battery
JPS63133450A (en) Zinc alkaline battery
JPS61203563A (en) Alkaline zinc battery
JPS61181070A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPS6177268A (en) Zinc alkaline battery
JPS61181068A (en) Zinc alkaline cell