JPS61140062A - Zinc alkali battery - Google Patents

Zinc alkali battery

Info

Publication number
JPS61140062A
JPS61140062A JP59262135A JP26213584A JPS61140062A JP S61140062 A JPS61140062 A JP S61140062A JP 59262135 A JP59262135 A JP 59262135A JP 26213584 A JP26213584 A JP 26213584A JP S61140062 A JPS61140062 A JP S61140062A
Authority
JP
Japan
Prior art keywords
zinc
negative pole
zinc alloy
mercury
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59262135A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59262135A priority Critical patent/JPS61140062A/en
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to DE8585308930T priority patent/DE3562307D1/en
Priority to KR1019850009332A priority patent/KR890004989B1/en
Priority to CN85109759.6A priority patent/CN1004391B/en
Publication of JPS61140062A publication Critical patent/JPS61140062A/en
Priority to US07/029,343 priority patent/US4861688A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the hardening rate of negative pole zinc thus to obtain a zinc alkali battery of low pollution by employing zinc alloy containing proper content of Ni and In for the negative pole. CONSTITUTION:Zinc alloy containing 0.01-0.5wt% of nickel and 0.01-0.5wt% of indium is employed for the negative pole of zinc alkali battery. When adding Ni and In simultaneously to the negative pole zinc, considerable corrosion-proof effect is achieved when compared with the case where said element is employed independently. It is presumed that the affinity with mercury on the surface of zinc alloy is improved through addition of In while Ni will contribute to suppress dispersion of mercury into the particle thus to form a zinc alloy surface having high hydrogen overvoltage and to improve the corrosion resistance considerably. Remarkable complex effect is recognized only when the content of Ni and In is within said range. Consequently, a zinc negative pole having low hardening rate while provided with excellent discharge performance and corrosion resistance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に5〜10重量%重量%水銀を添加した水化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
1種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using zinc hydrate powder, which is made by adding 5 to 10% by weight of mercury to zinc, and to suppress corrosion to a level that causes no practical problems. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead and cadmium in zinc.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、水化率を低減させる方法が提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。
A method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder to which indium, gallium, etc. are added. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき。All of these can be expected to have some degree of corrosion resistance.

水化率の低減もある程度見込めるものの、さらに一層、
耐食性のよい合金系の探索が必要である。
Although it is expected that the hydration rate will be reduced to some extent, even more
It is necessary to search for alloy systems with good corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。
Furthermore, with the aim of mainly improving manganese dry batteries, there has been a proposal that using zinc or a zinc alloy in which indium is added to a zinc alloy for the negative electrode is highly effective in preventing corrosion (Japanese Patent Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g 。
Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.

Bi、 Sb、ム1.ムg、Mg、 Si、 Ni、 
Mn等を不純物又は添加物として1又は2@以上を含む
場合を包含して記載されているが、インジウムと鉛を添
加元素として併用した場合の有効性以外には、上記の雑
多な各元素を不純物として含むのか、有効な元素として
添加するのかの区分は明示されていなく、どの元素が防
食に有効なのかさえ不明であり、その適切な添加量につ
いてはインジウム、鉛以外の記載はない。
Bi, Sb, Mu1. Mug, Mg, Si, Ni,
The description includes the case where one or two or more of Mn etc. are included as impurities or additives, but other than the effectiveness of using indium and lead together as additive elements, There is no clear distinction as to whether it is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention, and there is no mention of the appropriate amount of addition other than indium and lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく氷化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the freezing rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage performance, and storage performance with low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するだめの手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、ニッケル(N
i)を0.01〜0.5重量%、インジウム(In)を
0.01〜0.5重量%含有する亜鉛合金を用いたこと
を特徴とする。
Means to Solve the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as its main components as an electrolyte, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, or mercury oxide as a positive electrode active material. Nickel (N
A zinc alloy containing 0.01 to 0.5% by weight of i) and 0.01 to 0.5% by weight of indium (In) is used.

本発明は前記の従来例の亜鉛合金中の添加元素のうち、
Niが安価で環境汚染の心配のない無公害性の元素であ
ることに注目し、Niの添加効果について実験を行い、
Niを単独で添加した亜鉛合金は防食性に乏しいが、N
iとInを同時に添加した場合には、双方の元素を単独
に添加した場合に比べて顕著な相乗的防食効果が得られ
ることを見出して完成したものである。
The present invention provides that among the additive elements in the conventional zinc alloy,
Focusing on the fact that Ni is an inexpensive and non-polluting element that does not cause environmental pollution, we conducted an experiment to determine the effect of Ni addition.
Zinc alloys with Ni added alone have poor corrosion resistance, but N
This work was completed based on the discovery that when i and In are added at the same time, a remarkable synergistic anticorrosive effect can be obtained compared to when both elements are added alone.

作用 NiあるいはIn  の単体での添加による防食効果、
及びNiとIn  との複合効果についての作用   
  1機構は不明確であるが1次のように推察される。
Effect: Anticorrosion effect due to the addition of Ni or In alone,
and effects on the combined effect of Ni and In.
Although the mechanism is unclear, it is presumed to be first-order.

まず、亜鉛(Zn)に対し、Niの溶解性は小さいが、
噴射法で粉体化する際の冷却速度が約102’C/se
a  のオーダーと非常に大きいので、後述の実施例で
の適正な含有量(001〜0.5重重%)の程度では亜
鉛と溶体化する可能性がある。従って、元素、水銀との
親和性の小さいNiが結晶内への水銀の拡散を抑止して
、亜鉛合金表面の水銀濃度を高く維持する役割を果すこ
とが期待できる。
First, although the solubility of Ni is low in zinc (Zn),
Cooling rate when powdering by injection method is approximately 102'C/se
Since it is very large, on the order of a, there is a possibility that it will be dissolved with zinc at the appropriate content (001 to 0.5% by weight) in the examples described below. Therefore, it can be expected that the element Ni, which has a low affinity for mercury, plays a role in suppressing the diffusion of mercury into the crystal and maintaining a high mercury concentration on the surface of the zinc alloy.

その反面、亜鉛合金表面の水銀のなじみを却って悪くす
ることも懸念される。またInは、元来、水銀となじみ
易く、亜鉛合金の表面を氷化により均一化するためには
有効であるが、水銀の粒子内部への拡散を阻止する働ら
きは不十分と考えられる。
On the other hand, there is also a concern that it may actually worsen the adhesion of mercury to the surface of the zinc alloy. In addition, although In is inherently compatible with mercury and is effective in making the surface of zinc alloy uniform by icing, it is considered to be insufficient in preventing mercury from diffusing into the interior of the particles.

本発明では上記の両元素の作用の不十分な点を補い合い
、各々の長所を活した複合効果が得られたものと考えら
れる。すなわち、亜鉛合金表面の水銀とのなじみをIn
の添加により改善し1粒子内部への水銀の拡散抑止にN
iが強く関与し、結果的に、水素過電圧の大きい亜鉛合
金表面を形成することで耐食性が著しく改善されたもの
と推定される。以上のように、本発明は負極に用いる亜
鉛合金中の添加元素の組合せと、その含有量を実験的に
検討し、放電性能と耐食性を兼ね備えた低水化率の亜鉛
負極を実現したものである。
It is believed that the present invention compensates for the insufficiency of the effects of both of the above elements and provides a combined effect that takes advantage of the strengths of each element. In other words, the compatibility of the zinc alloy surface with mercury is
Improved by adding N to suppress the diffusion of mercury inside one particle.
It is presumed that corrosion resistance was significantly improved by forming a zinc alloy surface with a large hydrogen overvoltage due to the strong involvement of i. As described above, the present invention experimentally investigated the combination of additive elements and their contents in the zinc alloy used for the negative electrode, and realized a zinc negative electrode with a low water conversion rate that combines discharge performance and corrosion resistance. be.

以下、実施例によシ詳細な説明する。A detailed explanation will be given below based on examples.

実施例 純度99.997%以上の亜鉛地金に後に表に示すよう
に各種の元素を添加した各種の亜鉛合金を作成し、約5
00°Cで溶融して圧縮空気により噴射して粉体化し、
50〜150メツシユの粒度範囲にふるい分けした。次
いで、か性カリの10重量%水溶液中に上記粉体を投入
し、攪拌しながら所定量の水銀を滴下して水化した。そ
の後水洗μアセトンで置換して乾燥し、氷化亜鉛合金粉
を作成した。さらに本発明の実施例以外の氷化亜鉛合金
粉についても比較例として同様の方法で作成した。
Examples Various zinc alloys were prepared by adding various elements as shown in the table below to zinc ingots with a purity of 99.997% or more.
Melt it at 00°C and inject it with compressed air to powder it,
It was sieved to a particle size range of 50-150 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, replaced with μ acetone, and dried to produce a frozen zinc alloy powder. Furthermore, glazed zinc alloy powders other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、内面には銅メッキ1′が施されている。−2はか性
カリの40重量%水溶液に酸化亜鉛を飽和させた電解液
をカルボキシメチルセ・ lレロースによシゲlし化し、このゲル中に水化粉末を
分散させた亜鉛負極である。3はセルロース系の保液材
、4は多孔性ポリプロピレン製のセパレータ、5は酸化
銀に黒鉛を混合して加圧成形した正極、6は鉄にニッケ
ルメッキを施した正極リング、Tはステンレス鋼製の正
極缶で、内外面にはニッケルメッキが施されている。8
はポリプロピレン製のガスゲットで、正極缶の折シ曲げ
【より正極缶と封口板との間に圧縮されている。試作し
た電池は直径11.6露、高さ54朋であり、負極の水
化粉末の重量を193mgに統一し、また水銀の添加量
(水化率)は、亜鉛合金粉に対し、いずれも3重量%と
じた。試作した電池の亜鉛合金の組成と、60’Cで1
力月間保存した後の放電性能及び電池総高の変化を次表
に示す。放電性能は、20’Cにおいて510Ωで0.
9Vを終止電圧として放電したときの放電持続時間で表
わした。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. -2 is a zinc negative electrode in which an electrolyte containing a 40% by weight aqueous solution of caustic potassium saturated with zinc oxide is gelled with carboxymethylcerolose, and hydrated powder is dispersed in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and T is stainless steel. The positive electrode can is made of aluminum, and the inside and outside surfaces are nickel plated. 8
is a polypropylene gas get that is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery had a diameter of 11.6mm and a height of 54mm, the weight of the hydrated powder of the negative electrode was unified to 193mg, and the amount of mercury added (hydration rate) was the same as that of the zinc alloy powder. It was bound at 3% by weight. Composition of the zinc alloy of the prototype battery and 1 at 60'C
The following table shows the changes in discharge performance and total battery height after storage for one month. The discharge performance is 0.5 at 510Ω at 20'C.
It is expressed as the discharge duration when discharge is performed with a final voltage of 9V.

この表に見られるように、比較例(1〜3)を相互に比
較すると、添加元素の全くない場合(1)に比べ、単体
の元素を添加した場合(2,3)は、貯蔵後の放電性能
は幾分改善され、負極亜鉛の腐食及び水素ガス発生量の
多少を端的に評価できる電池総高の変化においても多少
の改善効果が認められる。
As seen in this table, when comparative examples (1 to 3) are compared with each other, it is found that when a single element is added (2, 3), compared to the case (1) where no added element is added, the The discharge performance was improved to some extent, and some improvement was also observed in changes in the total height of the battery, which can directly evaluate the corrosion of the negative electrode zinc and the amount of hydrogen gas generated.

しかし、これらの改善効果は実用的には不十分であり、
NiとInを組み合せて適切な量を含有させた場合(5
,6,7,10,11)にのみ改善効果が得られ、顕著
な複合効果が認められた。
However, these improvement effects are insufficient for practical use.
When Ni and In are combined and contained in appropriate amounts (5
, 6, 7, 10, 11), and a remarkable combined effect was observed.

従って、適切な亜鉛合金組成の添加元素の含有量を重量
%で表すと、0.01≦Ni≦0.6%。
Therefore, the content of additional elements in a suitable zinc alloy composition expressed in weight percent is 0.01≦Ni≦0.6%.

0.01 ≦In 50.5%となる。0.01≦In 50.5%.

一方、添加元素に過不足のある場合(4,a。On the other hand, if there is an excess or deficiency in the added element (4, a).

9.12)は比較例のうち良好なもの(3)と大差ない
か、却って劣る場合もあり、上述の適正な含有量の範囲
においてのみ、顕著な複合効果が認められた。
9.12) was not much different from the good Comparative Example (3), or was even inferior in some cases, and a remarkable combined effect was observed only within the above-mentioned appropriate content range.

従って、適正な含有量の範囲で、NiとInを含有させ
た亜鉛合金を負極に用いることにより、低公害で実用性
能のすぐれた亜鉛アルカリ電池を得ることができる。
Therefore, by using a zinc alloy containing Ni and In within an appropriate content range for the negative electrode, a zinc-alkaline battery with low pollution and excellent practical performance can be obtained.

なお、実施例においては氷化亜鉛負極を用いた電池につ
いて説明したが、開放式の空気電池や水素吸収機構を備
えた密閉形亜鉛アlレカリ電池などにおいては水素ガス
の発生許容量は比較的大きいので、このような電池に本
発明を適用する場合は。
In addition, in the example, a battery using a frozen zinc negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively small. If the present invention is applied to such a battery because it is large.

さらに低水化塞、場合によっては無氷化のまま実施する
こともできる。
Furthermore, it can be carried out with low water content or without ice in some cases.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にしだ側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・酸渕ヒ銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Ashibuchi arsenic positive electrode.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを0.01〜0.6重量%、インジウムを0.
01〜0.5重量%含有する亜鉛合金を負極活物質に用
いた亜鉛アルカリ電池。
0.01 to 0.6% by weight of nickel and 0.6% by weight of indium.
A zinc alkaline battery using a zinc alloy containing 01 to 0.5% by weight as a negative electrode active material.
JP59262135A 1984-12-12 1984-12-12 Zinc alkali battery Pending JPS61140062A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59262135A JPS61140062A (en) 1984-12-12 1984-12-12 Zinc alkali battery
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
KR1019850009332A KR890004989B1 (en) 1984-12-12 1985-12-11 Zinc-alkaline battery
CN85109759.6A CN1004391B (en) 1984-12-12 1985-12-11 Zinc-alkali cells
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262135A JPS61140062A (en) 1984-12-12 1984-12-12 Zinc alkali battery

Publications (1)

Publication Number Publication Date
JPS61140062A true JPS61140062A (en) 1986-06-27

Family

ID=17371537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262135A Pending JPS61140062A (en) 1984-12-12 1984-12-12 Zinc alkali battery

Country Status (1)

Country Link
JP (1) JPS61140062A (en)

Similar Documents

Publication Publication Date Title
JPH04284357A (en) Zinc alkaline battery
JPS61140062A (en) Zinc alkali battery
JPS61140066A (en) Zinc alkali battery
JPS62143366A (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPS61140064A (en) Zinc alkali battery
JPS6273565A (en) Zinc alkaline battery
JPS61140063A (en) Zinc alkali battery
JPS61140065A (en) Zinc alloy battery
JPS61140067A (en) Zinc alkali battery
JPS61253764A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPS63178452A (en) Zinc alkaline battery
JPS63178453A (en) Zinc alkaline battery
JPS61181070A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPH0365619B2 (en)
JPS6290860A (en) Zinc alkaline cell
JPS60175369A (en) Zinc-alkaline primary cell
JPS61203563A (en) Alkaline zinc battery
JPS60177553A (en) Zinc alkaline primary battery
JPS63133450A (en) Zinc alkaline battery
JPS636748A (en) Zinc alkaline battery
JPS61181069A (en) Zinc alkaline cell