JPS61140065A - Zinc alloy battery - Google Patents

Zinc alloy battery

Info

Publication number
JPS61140065A
JPS61140065A JP59262138A JP26213884A JPS61140065A JP S61140065 A JPS61140065 A JP S61140065A JP 59262138 A JP59262138 A JP 59262138A JP 26213884 A JP26213884 A JP 26213884A JP S61140065 A JPS61140065 A JP S61140065A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
negative pole
mercury
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59262138A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59262138A priority Critical patent/JPS61140065A/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to DE8585308930T priority patent/DE3562307D1/en
Priority to CN85109759.6A priority patent/CN1004391B/en
Publication of JPS61140065A publication Critical patent/JPS61140065A/en
Priority to US07/029,343 priority patent/US4861688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the hardening rate of negative pole zinc and to obtain a low pollution zinc alkali battery by employing zinc alloy containing Ni and Pb within proper content for the negative pole. CONSTITUTION:Zinc alloy containing 0.01-0.5wt% of nickel and 0.01-0.5wt% of lead is employed for the negative pole of zinc alloy battery. When adding both Ni and Pb to negative pole zonc, remarkable corrosion-proof effect is achieved when compared with the case where said element is added independently. It is presumed that the concentration of mercury in zinc alloy surface layer is maintained sufficiently high by containing both elements in zinc alloy to form zinc alloy surface having high hydrogen overvoltage through hardening with small amount of mercury. Remarkable complex effect is recognized only when the content of said element is within said range. Consequently, a zinc negative pole having low hardening rate while provided with discharge performance and corrosion-resistance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀−
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に6〜10重量%重量%水銀を添加した氷化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
、種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using frozen zinc powder, which is made by adding 6 to 10% by weight of mercury to zinc, and to suppress corrosion to the extent that there is no practical problem. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead and cadmium in zinc.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、氷化率を低減させる方法が提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。
A method has been proposed to improve corrosion resistance and reduce the rate of icing using an alloy powder to which indium, gallium, etc. are added. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、水化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
All of these can be expected to have a certain degree of corrosion resistance and can also be expected to reduce the hydration rate to some extent, but it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいとい−う提案がある(
特公昭33−3204号)。
In addition, with the aim of improving manganese dry batteries, it has been proposed that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode has a great anti-corrosion effect (
Special Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムノ他にFa 、Cd 、 Cr 、 Pb 、 Ca
 、 Hg。
Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fa, Cd, Cr, Pb, and Ca are used as elements in the zinc alloy.
, Hg.

Bi 、 Sb 、Al 、Ag 、Mg 、 St 
、Ni 、Mn等を不純物又は添加物として1又は2種
以上を含む場合を包含して記載されているが、インジウ
ムと鉛を添加元素として併用した場合の有効性以外には
、なく、どの元素が防食に有効なのかさえ不明であり、
その適切な悉加量についてはインジウム、鉛板外の記載
はない。
Bi, Sb, Al, Ag, Mg, St
, Ni, Mn, etc. as impurities or additives, including the case where one or more types are included, but there is no explanation other than the effectiveness when indium and lead are used together as additive elements, and it does not indicate which element. It is not even clear whether it is effective for corrosion prevention.
There is no description of appropriate amounts other than indium and lead plates.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく氷化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the freezing rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage performance, and storage performance with low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ンーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、ニッケル(N
i )  10.01〜Q5重量%、鉛(pb) をo
、o1〜o、s重量%含有する亜鉛合金を用いたことを
特徴とする。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic powder, etc. as the main components in the electrolyte, zinc as the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. as the positive electrode active material. Nickel (N
i) 10.01~Q5% by weight, lead (pb)
, o1 to o, s in weight percent.

本発明は前記の従来例の亜鉛合金中の添加元素のうち、
NL が安価で環境汚染の心配のない無公害性の元素で
あることに注目し、Niの添加効果について実験を行い
、Ntを単独で添加した亜鉛合金は防食性に乏しいが、
Niとpb、を同時に添加した場合には、双方の元素を
単独に添加した場合に比べて顕著な相乗的防食効果が得
られることを見出して完成したものである。
The present invention provides that among the additive elements in the conventional zinc alloy,
Focusing on the fact that NL is a low-cost, non-polluting element with no concerns about environmental pollution, we conducted an experiment to examine the effect of adding Ni, and found that although zinc alloys with Nt added alone have poor corrosion resistance,
This work was completed based on the discovery that when Ni and PB are added at the same time, a remarkable synergistic anticorrosion effect can be obtained compared to when both elements are added alone.

作  用 Niあるいはpbの単独の添加による防食効果、及びゞ
“とPbとの複合効果に″て0作用機構     1は
不明確であるが、次のように推察される。まず、亜鉛(
Zn )に対し、Niの溶解度は小さいが噴射法で粉体
化する際の冷却速度が非常に大きく、約102℃/se
c のオーダーなので、後述の実施例での適正な含有量
(0,01〜0.5重量%)の程度では亜鉛と溶体化す
る可能性がある。従って、亜鉛合金を表面から氷化した
場合、元来、水銀との親和性の小さいNiが結晶内への
水銀の拡散を抑制して亜鉛合金表面の水銀の濃度を高く
維持することに寄与することが考えられる。またpbは
亜鉛合金の結晶粒界近傍に偏析し易く、表面から水化し
た亜鉛合金中の水銀が粒界を通じて内部に拡散するのを
抑制して表面の水銀濃度を高く維持することに寄与する
ものと思われる。しかしこれらの元素を単独で添加した
のみでは、水化した亜鉛合金の表面層の水銀の、内部へ
の拡散を効果的に抑制するには不十分である。これは結
晶粒内への拡散、結晶粒界を通じての拡散のいずれか一
方の拡散を抑制する作用を有するにすぎないためである
。本発明は、上記の両元素を亜鉛合金中に含存させるこ
とにより、両元素が持つ上述の水銀の拡散抑制作用を複
合させ、亜鉛合金表面層の水銀濃度を十分に高く維持し
て、少量の水銀による水化で水素過電圧の大きい亜鉛合
金表面を形成することができたものと推定される。以上
のように本発明は負極に用いる亜鉛合金中の添加元素の
組合せとその含有量を実験的に検討し、放電性能と耐食
性を兼ね備えた亜鉛負極の低木化率化に成功し、低公害
の亜鉛アルカリ電池の実現に有効な手段を提供したもの
である。
Although the mechanism of action 1 is unclear due to the anticorrosive effect of adding Ni or Pb alone, and the combined effect of Ni and Pb, it is inferred as follows. First, zinc (
Compared to Zn), the solubility of Ni is low, but the cooling rate when powdered by the injection method is very high, approximately 102°C/sec.
Since it is on the order of c, there is a possibility that it will form a solution with zinc at an appropriate content (0.01 to 0.5% by weight) in the examples described later. Therefore, when a zinc alloy is frozen from the surface, Ni, which originally has a low affinity for mercury, suppresses the diffusion of mercury into the crystal and contributes to maintaining a high concentration of mercury on the surface of the zinc alloy. It is possible that In addition, PB tends to segregate near the grain boundaries of zinc alloys, and contributes to maintaining a high mercury concentration on the surface by suppressing the diffusion of mercury in the zinc alloy that has hydrated from the surface into the interior through the grain boundaries. It seems to be. However, adding these elements alone is insufficient to effectively suppress the diffusion of mercury in the surface layer of the hydrated zinc alloy into the interior. This is because it only has the effect of suppressing either diffusion into crystal grains or diffusion through grain boundaries. In the present invention, by including both of the above elements in the zinc alloy, the above-mentioned mercury diffusion suppressing effects of both elements are combined, and the mercury concentration in the surface layer of the zinc alloy is maintained sufficiently high. It is presumed that hydration with mercury was able to form a zinc alloy surface with a large hydrogen overpotential. As described above, the present invention has experimentally investigated the combination of additive elements and their contents in the zinc alloy used in the negative electrode, and has succeeded in creating a zinc negative electrode with a low bushing rate that has both discharge performance and corrosion resistance, and has achieved low pollution. This provided an effective means for realizing zinc-alkaline batteries.

以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.

実施例 純度99.997%以上の亜鉛地金に後に表に示すよう
に各種の元素を添加した各種の亜鉛合金を作成し、約6
00℃で溶融して圧縮空気により噴射して粉体化し、6
0〜160メツシユの粒度範囲にふるい分けした。次い
で、か性カリの10重量%水溶液中に上記粉体を投入し
、攪拌しながら所定量の水銀を滴下して水化した。その
後水洗し、アセトンで置換して乾燥し、氷化亜鉛合金粉
を作成した。さらに本発明の実施例以外の氷化亜鉛合金
粉についても比較例として同様の方法で作成した。
Examples Various zinc alloys were prepared by adding various elements as shown in the table later to zinc ingots with a purity of 99.997% or more.
Melt at 00°C and inject with compressed air to powder, 6
The particles were sieved to a particle size range of 0 to 160 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, substituted with acetone, and dried to produce a frozen zinc alloy powder. Furthermore, glazed zinc alloy powders other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの氷化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、内面には銅メッキ1′が施されている。2はか性カ
リの40重量%水溶液に酸化亜鉛を飽和させた電解液を
カルボキシメチルセルロースによりゲル化し、このゲル
中に汞化粉末を分散させた亜鉛負極である。3はセルロ
ース系の保液材、4は多孔性ポリプロピレン製のセパレ
ータ、・5は酸化銀に黒鉛を混合して加圧成形した正極
、eは鉄にニッケルメッキを施した正極リング、Tはス
テンレス鋼製の正極缶で、内外面にはニッケルメッキが
施されている。8はポリプロピレン製のガスケットで、
正極缶の折り曲げにより正極缶と封口板との間に圧縮さ
れている。試作した電池は直径11.6IIII11高
さ5.4fiであり、負極の水化粉末の重量を193■
に統一し、また水銀の添加量(氷化率)は、亜鉛合金粉
に対し、いずれも3重量%とした。試作した電池の亜鉛
合金の組成と、60℃で1力月間保存した後の放電性能
及び電池総高の変化を次表に示す。放電性能は、20℃
において510Ωで0.9Vを終止電圧として放電した
ときの放電持続時間で表わした。
The button-shaped silver oxide battery shown in the figure was manufactured using these frozen powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethyl cellulose, and dispersing gelatinized powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, e is a positive electrode ring made of nickel-plated iron, and T is stainless steel. The positive electrode can is made of steel, and the inside and outside surfaces are nickel plated. 8 is a polypropylene gasket,
By bending the positive electrode can, it is compressed between the positive electrode can and the sealing plate. The prototype battery has a diameter of 11.6 cm and a height of 5.4 cm, and the weight of the hydrated powder of the negative electrode is 193 cm.
The amount of mercury added (icing rate) was 3% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. Discharge performance is 20℃
It is expressed as the discharge duration when discharge is performed at 510Ω with a final voltage of 0.9V.

この表に見られるように、比較例(1〜3)を相互に比
較すると、添加元素の全くない場合(1)に比べ、単体
の元素を添加した場合(2,3)は、貯蔵後の放電性能
は幾分改善され、負極亜鉛の腐食及び水素ガス発生量の
多少を端的に評価できる電池総高の変化においても多少
の改善効果が認められる。
As seen in this table, when comparative examples (1 to 3) are compared with each other, it is found that when a single element is added (2, 3), compared to the case (1) where no added element is added, the The discharge performance was improved to some extent, and some improvement was also observed in changes in the total height of the battery, which can directly evaluate the corrosion of the negative electrode zinc and the amount of hydrogen gas generated.

しかし、これらの改善効果は実用的には不十分であり、
Ni  とpbを組み合せて適切な量を含有させた場合
(5,6,7,10,11)にのみ改善効果が得られ、
顕著な複合効果が認められた。
However, these improvement effects are insufficient for practical use.
Improvement effects were obtained only when Ni and PB were combined and contained in appropriate amounts (5, 6, 7, 10, 11).
A significant combined effect was observed.

従って、適切な亜鉛合金組成の添加元素の含有量を重量
%で表すと、0.01≦Ni≦0.61.O,o1≦p
b≦0.5チとなる。
Therefore, when expressing the content of additional elements in a suitable zinc alloy composition in weight percent, 0.01≦Ni≦0.61. O, o1≦p
b≦0.5ch.

一方、添加元素に過不足のある場合(4,S。On the other hand, if there is an excess or deficiency in the added element (4, S.

9.12)は比較例のうち良好なもの(3)と大差ない
か却って劣る場合もあり、上述の適正な含有量の範囲に
おいてのみ、顕著な複合効果が認められた。
9.12) was not much different from the good Comparative Example (3), or even inferior in some cases, and a remarkable composite effect was observed only within the above-mentioned appropriate content range.

従って、適正な含有量の範囲で、Ni とpbを含有さ
せた亜鉛合金を負極に用いることにより、低公害で実用
性能のすぐれた亜鉛アルカリ電池を得ることができる。
Therefore, by using a zinc alloy containing Ni and PB in an appropriate content range for the negative electrode, a zinc-alkaline battery with low pollution and excellent practical performance can be obtained.

なお、実施例においては汞化亜鉛負極を用いた電池につ
いて説明したが、開放式の空気電池や水素吸収機構を備
えた密閉形亜鉛アルカリ電池などにおいては、水素ガス
の発生許容量は比較的大きいので、このような電池に本
発明を適用する場合は、さらに低汞化率、場合によって
は無水化のまま実施することもできる。
In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively large. Therefore, when the present invention is applied to such a battery, it can be carried out with a lower rate of hydrogenation, and in some cases, with the battery being anhydrous.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にしだ側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを0.01〜0.5重量%、鉛を0.01〜0
.5重量%含有する亜鉛合金を負極活物質に用いた亜鉛
アルカリ電池。
Nickel 0.01-0.5% by weight, lead 0.01-0
.. A zinc alkaline battery using a zinc alloy containing 5% by weight as a negative electrode active material.
JP59262138A 1984-12-12 1984-12-12 Zinc alloy battery Pending JPS61140065A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59262138A JPS61140065A (en) 1984-12-12 1984-12-12 Zinc alloy battery
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
CN85109759.6A CN1004391B (en) 1984-12-12 1985-12-11 Zinc-alkali cells
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262138A JPS61140065A (en) 1984-12-12 1984-12-12 Zinc alloy battery

Publications (1)

Publication Number Publication Date
JPS61140065A true JPS61140065A (en) 1986-06-27

Family

ID=17371581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262138A Pending JPS61140065A (en) 1984-12-12 1984-12-12 Zinc alloy battery

Country Status (1)

Country Link
JP (1) JPS61140065A (en)

Similar Documents

Publication Publication Date Title
JPS61140065A (en) Zinc alloy battery
JPS61140066A (en) Zinc alkali battery
JPH0622119B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPS61140064A (en) Zinc alkali battery
JPS61253764A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS61140067A (en) Zinc alkali battery
JPS61140062A (en) Zinc alkali battery
JPS61140063A (en) Zinc alkali battery
JPS6290851A (en) Zinc alkaline cell
JPH0142576B2 (en)
JPS63178452A (en) Zinc alkaline battery
JPS61203563A (en) Alkaline zinc battery
JPS636747A (en) Zince alkaline battery
JPS61181068A (en) Zinc alkaline cell
JPS63178453A (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPS6290860A (en) Zinc alkaline cell
JPS61181067A (en) Zinc alkaline cell
JPS61181070A (en) Zinc alkaline cell
JPS6290859A (en) Zinc alkaline cell
JPS6290855A (en) Zinc alkaline cell
JPH0143429B2 (en)