JPS61181067A - Zinc alkaline cell - Google Patents

Zinc alkaline cell

Info

Publication number
JPS61181067A
JPS61181067A JP60020371A JP2037185A JPS61181067A JP S61181067 A JPS61181067 A JP S61181067A JP 60020371 A JP60020371 A JP 60020371A JP 2037185 A JP2037185 A JP 2037185A JP S61181067 A JPS61181067 A JP S61181067A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
strontium
mercury
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020371A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60020371A priority Critical patent/JPS61181067A/en
Publication of JPS61181067A publication Critical patent/JPS61181067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce gelation rate of negative electrode zinc thus to achieve low contamination by employing zinc alloy containing specific metal as the negative electrode active substance. CONSTITUTION:Zinc alloy containing 0.01-0.5wt% of indium and 0.005-0.3wt% of strontium is employed as the negative electrode of so-called zinc alkaline cell employing alkaline aqueous solution mainly composed of caustic potash, caustic soda, etc. as the electrolyte, zinc as the negative electrode active sub stance, manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as the positive electrode active substance. Strontium has high affinity with mercury to eliminate crimp on the surface of sprayed zinc powder particle which are normally employed in alkaline cell thus to smooth the surface. But, standard potential of strontium is quite low thereby sufficient corrosion-proof effect is not achieved through addition of only strontium. While, indium has high hydrogen over voltage and affinity with mercury. Consequently, gelation of negative electrode zinc can be reduced resulting in a low contamination zinc alkaline cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に5〜lO重量%程度の水銀を添加した本化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高まり
、種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。
Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using zinc powder, which is made by adding about 5 to 10% by weight of mercury to zinc, and to suppress corrosion to the extent that there is no practical problem. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead and cadmium in zinc.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、汞化率を低減させる方法が提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。
A method has been proposed in which alloy powder containing indium, gallium, etc. is added to improve corrosion resistance and reduce the corrosion rate. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、汞化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。
Furthermore, with the aim of mainly improving manganese dry batteries, there has been a proposal that using zinc or a zinc alloy in which indium is added to a zinc alloy for the negative electrode is highly effective in preventing corrosion (Japanese Patent Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。
Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.

Bi、 Sb、 AI、 Ag、 1Vlr、 Si、
 Ni、 Mn等を不純物又は添加物としてl又は二種
以上を含む場合を包含して記載されているが、インジウ
ムと鉛を添加元素として併用した場合の有効性以外には
、上記の雑多な各元素を不純物として含むのか、有効な
元素として添加するのかの区分は明示されていなく、ど
の元素が防食に有効なのかさえ不明であり、その適切な
添加量についてはインジウム。
Bi, Sb, AI, Ag, 1Vlr, Si,
Although it is described including the case where Ni, Mn, etc. are included as impurities or additives, one or more types are included, but apart from the effectiveness when indium and lead are used together as additive elements, each of the miscellaneous above-mentioned It is not clear whether an element is added as an impurity or an effective element, and it is not even clear which element is effective for corrosion prevention, and the appropriate amount of addition is unknown.

鉛以外の記載はない。There is no mention of anything other than lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を素化させるこ
となく水化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the hydration rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves the discharge performance, storage performance, and storability with low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、インジウム(In)を0.01〜0.5重量%、
ストロンチウム(Sr)を0.005〜0.3重量%含
有する亜鉛合金を用いたことを特徴とする。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. contains zinc as the main component and 0.01 to 0.5% by weight of indium (In).
It is characterized by using a zinc alloy containing 0.005 to 0.3% by weight of strontium (Sr).

作用 ここで添加元素の作用について推察すれば、ストロンチ
ウムは水銀に対し親和性が大きく、また、通常アルカリ
電池用として用いられる噴霧亜鉛粉の粒子表面のしわを
なくし、平滑化にする効果がある。従って亜鉛表面を金
属水銀で水化する場合、それが均一に行なえる状態を作
り、また表面積を低下させることになり、防食効果を示
すと思われる。しかし、ストロンチウムの標準電位は非
常に低く、ストロンチウム単独の添加では十分な防食効
果は得られない。一方インジウムは水素過電圧が高く、
水銀に対し親和性が大きい。このインジウムは、亜鉛に
ストロンチウムを添加する場合の悪影響を解消し、かつ
相乗効果を示すものと思われる。
Effects If we speculate about the effects of the additive elements here, strontium has a high affinity for mercury, and also has the effect of eliminating wrinkles and smoothing the surface of the particles of atomized zinc powder normally used for alkaline batteries. Therefore, when the zinc surface is hydrated with metallic mercury, a condition is created in which the hydration can be done uniformly, and the surface area is reduced, which is thought to exhibit an anticorrosion effect. However, the standard potential of strontium is very low, and adding strontium alone does not provide sufficient corrosion protection. On the other hand, indium has a high hydrogen overvoltage,
It has a high affinity for mercury. This indium is believed to eliminate the negative effects of adding strontium to zinc and exhibit a synergistic effect.

本発明は以上の推察のもとに実験的な検討を行ない、負
極に用いる亜鉛合金の耐食性を著しく改善して低木化率
化に成功し、放電性能と貯蔵性にすぐれた低公害の亜鉛
アルカリ電池を提供したものである 以下、本発明の実施例で詳述する。
The present invention has been made through experimental studies based on the above speculations, and has succeeded in significantly improving the corrosion resistance of the zinc alloy used in the negative electrode and reducing the wood reduction rate. Hereinafter, the present invention will be described in detail in Examples of the present invention, which provide a battery.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、杓500°Cで
溶融して圧縮空気により噴射して粉体化し、50〜15
0メツシユの粒度範囲にふるい分けした。次いで、か性
カリの10重量%水溶液中に上記粉体を投入し、撹拌し
ながら所定量の水銀を滴下して水化した。その後水洗し
、アセトンで置換して乾燥し、水化亜鉛合金粉を作成し
た。
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%, melted at 500°C in a ladle, and powdered by spraying with compressed air. ~15
The particles were sieved to a particle size range of 0 mesh. Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder.

さらに本発明の実施例以外の水化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Furthermore, hydrated zinc powder or zinc hydrated alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

゛  これらの水化粉末を用い、図に示すボタン形酸化
銀電池を製作した。図において、■はステンレス鋼製の
封口板で、その内面には銅メ、ツキ1′が施されている
。2はか性カリの40重量%水溶液に酸化亜鉛を飽和さ
せた電解液をカルボキシメチルセルロースによりゲル化
し、このゲル中に水化亜鉛合金粉末を分散させた亜鉛負
極である。3はセルロース系の保液材、4は多孔性ポリ
プロピレン製のセパレータ、5は酸化銀に黒鉛を混合し
て加圧成形した正極、6は鉄にニッケルメ・ツキを施し
た正極リング、7はステンレス鋼製の正極缶で、その内
外面にはニッケルメッキが施されている。
゛Using these hydrated powders, we manufactured the button-shaped silver oxide battery shown in the figure. In the figure, ■ is a sealing plate made of stainless steel, and the inner surface of the plate is plated with copper plate 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc hydrate alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. The positive electrode can is made of steel, and its inner and outer surfaces are nickel-plated.

8はポリプロピレン製のガスケットで、正極缶の折り曲
げにより正極缶と封目板との間に圧縮されている。
A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.

試作した電池は直径11.6nm+、高さ5.4−tm
であり、負極の水化粉末の重量を193mgに統一し、
水銀の添加量(水化率)は、亜鉛合金粉に対し、いずれ
も3重量%とじた。
The prototype battery has a diameter of 11.6 nm+ and a height of 5.4-tm.
, the weight of the hydrated powder of the negative electrode was unified to 193 mg,
The amount of mercury added (hydration rate) was 3% by weight based on the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60℃でlカ月間保
存した後の放電性能と電池総高の変化を次表に示す。な
お放電性能は、20℃において510Ωで0.9vを終
止電圧として放電したときの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. Note that the discharge performance was expressed as the discharge duration when discharge was performed at 20° C. at 510Ω with a final voltage of 0.9V.

この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係力(安定
化するまでの期間は電池総高が減少するのが通例である
。しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電
池では、上記の電池総高の減少力に対抗する電池内圧の
上昇により電池総高を増大させる傾向が強くなる。従っ
て、貯蔵による電池総高の増減により亜鉛負極の耐食性
を評価することができる。また、耐食性が不十分な電池
では、電池総高が増大するほか、電池内圧の上昇により
耐漏液性が劣化するとともに、腐食による亜鉛の消耗、
亜鉛表面の酸化膜の形成や、水素ガスの内在による放電
反応の阻害等により放電性能が著しく劣化することにな
り、放電持続時間も又亜鉛負極の耐食性に依存する要素
が大きい。
In this table, changes in the total height of the battery are determined by the stress relationship between each battery component over time after the battery is sealed (the total height of the battery usually decreases during the period until it stabilizes). However, in batteries where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency for the total battery height to increase due to an increase in battery internal pressure that counters the above-mentioned force for decreasing the total battery height. The corrosion resistance of the zinc negative electrode can be evaluated by the increase or decrease in the corrosion resistance.In addition, in batteries with insufficient corrosion resistance, the total height of the battery increases, the leakage resistance deteriorates due to an increase in battery internal pressure, and the zinc is consumed due to corrosion. ,
The discharge performance is significantly deteriorated due to the formation of an oxide film on the zinc surface and the inhibition of the discharge reaction due to the presence of hydrogen gas, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.

表において、ストロンチウムを単独で添加した場合(N
o、3)は、無添加の場合(No、l)よりも特性が悪
い、インジウムを単独で添加した場合(No、2)では
無添加の場合よりも少し改善されている。しかし、スト
ロンチウムとインジウムとを適正な含有量で併存させた
本発明の実施例(、No、5.6.7.l O,l 1
.)の場合には前記比較例に比べ、一段と耐食性、放電
性能が優れ、添加元素の複合効果が顕著に現われる。一
方添加元素を併存させた場合でも含有量に過不足のある
場合(No、4.8,9.12)は比較例と大差なく、
複合効果が乏しい。上述の通りストロンチウム、インジ
ウムを組合わせ、適正な含有量で併存させた亜鉛合金を
負極に用いることによって、低木化率に成功したもので
あり含有量としてはインジウムが0.01〜0.5重量
%、ストロンチウムは0.005〜0〜3重量%が適切
である。
In the table, when strontium is added alone (N
In case o, 3), the characteristics are worse than in the case of no addition (No, 1), and in the case of adding indium alone (No, 2), the characteristics are slightly improved compared to the case of no addition. However, in the example of the present invention in which strontium and indium coexist in appropriate contents (No. 5.6.7.l O,l 1
.. ), the corrosion resistance and discharge performance are even better than those of the comparative example, and the combined effects of the added elements are remarkable. On the other hand, even when additive elements are present, there is no significant difference from the comparative example when there is excess or deficiency in the content (No, 4.8, 9.12).
The combined effect is poor. As mentioned above, by using a zinc alloy containing strontium and indium together in an appropriate content for the negative electrode, we succeeded in reducing the bushing rate, and the indium content is 0.01 to 0.5% by weight. %, and strontium is suitably 0.005 to 0 to 3% by weight.

以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては水化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合は、さらに低汞化率、場合に
よっては無水化のまま実施することもできる。
As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc hydrate negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the allowable amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, the hydrogen gas can be further reduced in rate, and in some cases, it can be carried out without being anhydrous.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。 代理人の氏名 弁理士 中尾敏男 ほか1名2−4佃嘴
罹 4=−tハルーク S−#化銀正兎
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.01〜0.5重量%、ストロンチウム
を0.005〜0.3重量%含有する亜鉛合金を負極活
物質に用いた亜鉛アルカリ電池。
A zinc alkaline battery using a zinc alloy containing 0.01 to 0.5% by weight of indium and 0.005 to 0.3% by weight of strontium as a negative electrode active material.
JP60020371A 1985-02-05 1985-02-05 Zinc alkaline cell Pending JPS61181067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020371A JPS61181067A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020371A JPS61181067A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Publications (1)

Publication Number Publication Date
JPS61181067A true JPS61181067A (en) 1986-08-13

Family

ID=12025210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020371A Pending JPS61181067A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS61181067A (en)

Similar Documents

Publication Publication Date Title
JPS61181067A (en) Zinc alkaline cell
JPS61253764A (en) Zinc alkaline battery
JPS61203563A (en) Alkaline zinc battery
JPH0622119B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS6290860A (en) Zinc alkaline cell
JPS636749A (en) Zinc alkaline battery
JPS61181069A (en) Zinc alkaline cell
JPH0142576B2 (en)
JPS61140066A (en) Zinc alkali battery
JPS61181064A (en) Zinc alkaline cell
JPS61181070A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPS6290855A (en) Zinc alkaline cell
JPS6290851A (en) Zinc alkaline cell
JPS6290859A (en) Zinc alkaline cell
JPH0622118B2 (en) Zinc alkaline battery
JPS61181066A (en) Zinc alkaline cell
JPS61181065A (en) Zinc alkaline cell
JPS61181068A (en) Zinc alkaline cell
JPS63178452A (en) Zinc alkaline battery
JPS61140065A (en) Zinc alloy battery
JPS63133450A (en) Zinc alkaline battery
JPS6290857A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery