JPS6290857A - Zinc alkaline cell - Google Patents

Zinc alkaline cell

Info

Publication number
JPS6290857A
JPS6290857A JP60231599A JP23159985A JPS6290857A JP S6290857 A JPS6290857 A JP S6290857A JP 60231599 A JP60231599 A JP 60231599A JP 23159985 A JP23159985 A JP 23159985A JP S6290857 A JPS6290857 A JP S6290857A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
mercury
zinc alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60231599A
Other languages
Japanese (ja)
Other versions
JPH0365623B2 (en
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60231599A priority Critical patent/JPS6290857A/en
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to DE8585308930T priority patent/DE3562307D1/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to CN85109759.6A priority patent/CN1004391B/en
Priority to US07/029,343 priority patent/US4861688A/en
Publication of JPS6290857A publication Critical patent/JPS6290857A/en
Publication of JPH0365623B2 publication Critical patent/JPH0365623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an overall efficiency of excellent discharge, preservation, and antileakage properties and the like with little environmental pollution, by applying a zinc alloy containing Zn as the main component, and specific ratio of Ni, In, Tl, and Ba as a negative electrode. CONSTITUTION:For a negative electrode 2 of a zinc alkaline type cell, a zinc alloy containing n as the main component, 0.01-0.5wt% of Ni, 0.001-0.5wt% of at least either In or Tl, and 0.001-0.3wt% of Ba is used as an active substance. In such a composition, by composing the functions of Ni, In or Tl, and Ba, a higher hydrogen supervoltage, a smaller surface area, and a high mercury density on surface through mercurating by small amount mercury are maintained, and an even surface condition of zinc alloy powder is obtained. By applying such a zinc zlloy as a zinc alkaline cell, a cell of excellent preservation, antileakage, and discharge properties with small amount of mercury content can be acquired.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食か挙げられる。
A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.

従来、亜鉛に5〜IO重量?6程度の水銀を添加した水
化亜鉛粉末を用いて水素過電圧を高め、実用的に問題の
ない程度に腐食を抑制することが工業的な手法として採
用されている。しかし近年、低公害化のため、電池内の
含有水銀量を低減させるこ七が社会的ニーズとして高ま
り、種ケの研究がなされている。例えば、亜鉛中に鉛、
カドミウム。
Conventionally, 5~IO weight for zinc? It has been adopted as an industrial method to increase the hydrogen overvoltage by using zinc hydride powder to which about 6% of mercury is added and to suppress corrosion to a level that causes no practical problems. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and research on mercury is being conducted. For example, lead in zinc,
cadmium.

インジウム、ガリウムなどを添加した合金粉末を用いて
耐食性を向上させ、水化率を低減さぜる方法か提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金なとが従
来、有望な系として提案されている。
A method has been proposed in which alloy powders containing indium, gallium, etc. are used to improve corrosion resistance and reduce the hydration rate. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、水化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索か必要である。
Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the hydration rate to some extent, it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することか防食上の効果か大きいという提案がある(特
公昭33−320 =1号)。
In addition, with the aim of mainly improving manganese dry batteries, there is a proposal that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode would have a great anti-corrosion effect (Special Publication No. 33-320 = No. 1). .

発明が解決しようとする間a点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。
Point a that the invention seeks to solve Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.

Bi、 Sb、 AI、 Ag、 Mg、 Si、 N
i、 IVin等を不純物又は添加物としてl又は2種
以上を含む場合を包含して記載されているが、インジウ
ムと鉛を添加元素として併用した場合の有効性以外には
、上記の雑多な各元素を不純物として含むのか、有効な
元素として添加するのかの区分は明示されていなく、ど
の元素が防食に有効なのかさえ不明であり、その適切な
添加量についてはインジウム。
Bi, Sb, AI, Ag, Mg, Si, N
The description includes the case of containing one or more types of impurities or additives such as i, IVin, etc., but apart from the effectiveness of using indium and lead together as additive elements, there are various miscellaneous effects mentioned above. It is not clear whether an element is added as an impurity or an effective element, and it is not even clear which element is effective for corrosion prevention, and the appropriate amount of addition is unknown.

鉛層外の記載はない。There is no description of anything outside the lead layer.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the hydration rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、ニッケル(Ni)を0.01〜0.5!fi%、
インジウム(In>。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. has zinc as its main component and nickel (Ni) of 0.01 to 0.5! fi%,
Indium (In>.

タリウム(TI>の少なくとも一種を0.001〜0.
5重量%、バリウム(Ba)を0.001〜0゜3重量
%含有する亜鉛合金を用いたことを特徴とする。
At least one type of thallium (TI>) in the range of 0.001 to 0.
It is characterized by using a zinc alloy containing 5% by weight and 0.001 to 0.3% by weight of barium (Ba).

本発明は前記の従来例の亜鉛合金中の添加元素、あるい
は不純物のうち、Niが安価で環境汚染の心配のない元
素であることに注目し、Niの添加効果について実験を
行った結果、Niを単独で添加した亜鉛合金は防食性に
乏しいが、従来から有効添加元素として知られているI
nやTIと共存させると防食効果を高められ、さらにこ
れらにBaを共存させると一層の複合的防食効果が得ら
れることを見出したものである。
The present invention focused on the fact that among the additive elements or impurities in the conventional zinc alloy, Ni is an element that is inexpensive and has no concern about environmental pollution, and as a result of conducting experiments on the effect of adding Ni, it was found that Ni Zinc alloys containing I alone have poor corrosion protection, but I, which has been known as an effective additive element,
It was discovered that when Ba coexists with n and TI, the anticorrosive effect can be enhanced, and when Ba coexists with these, an even more complex anticorrosive effect can be obtained.

作用 各添加元素の防食効果、及びこれらの元素の複合効果に
ついての作用機構は不明確な点が多いが、次のように推
察される。まず、Niは亜鉛に対する溶肘度は小さいが
溶融亜鉛合金を噴射法で粉体1ヒする際の冷却速度が約
103°C/secのオーダで非常に大きいため、後述
の実施例での適正な含有ff1(0,01〜0.5重量
%)の程度の亜鉛合金粉ではNiと亜鉛とが溶体化する
可能性がある。従って、亜鉛合金の表面から水化した場
合、水銀との親和11の小さいNiか結晶内への水銀の
拡散を抑制し、亜鉛合金表面の水銀濃度を高く維持する
ことに寄与することが期待される。その反面、亜鉛合金
表面の水銀のなじみを却って悪くする懸念があり、Ni
を単独で添加したのみては大きな防食効果は得られない
。また、In、TIは従来から防食効果か大きい添加元
素として知られており、亜鉛合金の水素過電圧を大きく
するとおちに、水銀となしみ易いため、水化により表面
状態を均一化するのに有効で、さらに亜鉛合金の表面や
結晶粒界に水銀を固定する役割も果たしていると考えら
れる。またBaは噴射法で得られる亜鉛合金粉の表面を
平滑化して表面積を減少させる効果がある。
Function The mechanism of action regarding the anticorrosion effect of each additive element and the combined effect of these elements is largely unclear, but it is inferred as follows. First, although Ni has a low meltability with respect to zinc, the cooling rate when molten zinc alloy is blown into powder by the injection method is extremely high, on the order of approximately 103°C/sec, so it is not suitable for use in the examples described below. If the zinc alloy powder has a content of ff1 (0.01 to 0.5% by weight), there is a possibility that Ni and zinc will become a solution. Therefore, when hydration occurs from the surface of a zinc alloy, Ni, which has a small affinity for mercury (11), is expected to suppress the diffusion of mercury into the crystals and contribute to maintaining a high mercury concentration on the surface of the zinc alloy. Ru. On the other hand, there is a concern that the adhesion of mercury to the zinc alloy surface may become worse, and Ni
A great anticorrosive effect cannot be obtained by adding only one. In addition, In and TI have long been known as additive elements with great anti-corrosion effects, and as they easily mix with mercury when increasing the hydrogen overvoltage of zinc alloys, they are effective in making the surface condition uniform through hydration. It is also thought to play a role in fixing mercury on the surface and grain boundaries of the zinc alloy. Moreover, Ba has the effect of smoothing the surface of the zinc alloy powder obtained by the injection method and reducing the surface area.

すなわち、通常亜鉛アルカリ電池の負極に用いる亜鉛、
又は亜鉛合金は溶融状態の金属を高圧のガスて噴霧固化
することによって得られるいわゆるアトマイズ粉である
。このアトマイズ粉は通常凝固時にできる多数の微細な
皺で覆われている。しかし、Baを添加するとその皺の
生成が抑制され、亜鉛合金粉の比表面積が減少し、アル
カリ電解液との接触による腐食速度を小さくすることが
できる。本発明は、前記のNiとInあるいはTI、さ
らにBaの各々の作用を複合させることにより、水素過
電圧が大きくて、表面槽が小さく、しかも少量の水銀に
よる水化で、表面の水銀濃度が高く11を持され、表面
状態の均一な亜鉛合金粉を得、これを亜鉛アルカリ電池
の負極に用いることにより、水銀の含有量か少なく、貯
蔵性、耐漏液性、放電性能にすぐれた電池を完成したも
のである。
In other words, zinc, which is usually used in the negative electrode of zinc-alkaline batteries,
Alternatively, zinc alloy is a so-called atomized powder obtained by spraying and solidifying molten metal with high-pressure gas. This atomized powder is usually covered with many fine wrinkles that form during solidification. However, when Ba is added, the formation of wrinkles is suppressed, the specific surface area of the zinc alloy powder is reduced, and the corrosion rate due to contact with the alkaline electrolyte can be reduced. The present invention has a large hydrogen overvoltage, a small surface tank, and a high mercury concentration on the surface due to the combination of the effects of Ni, In or TI, and Ba. 11 to obtain zinc alloy powder with a uniform surface condition, and by using this as the negative electrode of a zinc-alkaline battery, a battery with low mercury content and excellent storage stability, leakage resistance, and discharge performance was completed. This is what I did.

以下、実施例により本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500°Cて
溶融して圧稀空気により噴射して粉体化し、50〜15
0メツシユの粒度範囲にふるい分けした。次いで、か性
カリのIO重i%水溶液中に上記粉体を投入し、撹拌し
ながら所定量の水銀を滴下して水化した。その後水洗し
、アセトンで置換して乾燥し、水化亜鉛合金粉を作成し
た。
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%, melted at about 500°C, and pulverized by spraying with compressed air. 50-15
The particles were sieved to a particle size range of 0 mesh. Next, the above powder was put into an aqueous solution of caustic potash at IO weight i%, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. Thereafter, it was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder.

さらに本発明の実施例以外の水化亜鉛粉、又は水化亜鉛
合金粉についても比較例として同様の方法で作成した。
Furthermore, hydrated zinc powder or zinc hydrated alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン製のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はステンレス鋼製の正極缶で、その内外面にはニ
ッケルメッキか施されている。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is coated with copper plating 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc hydrate alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. The positive electrode can is made of aluminum, and its inner and outer surfaces are nickel-plated.

8はポリプロピレン製のガスケットで、正極缶7の折り
曲げにより正極缶7と封口板1との間に圧縮されている
A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 when the positive electrode can 7 is bent.

試作した電池は直径11.6mm、高さ5.4m−であ
り、負極の水化粉末の重量を193mgに統一し、水銀
の添加量(水化率)は、亜鉛合金粉に対し、いずれも1
重量%とじた。
The prototype battery had a diameter of 11.6 mm and a height of 5.4 m, the weight of the hydrated powder of the negative electrode was unified to 193 mg, and the amount of mercury added (hydration rate) was the same as that of the zinc alloy powder. 1
It was bound in weight%.

試作した電池の亜鉛合金の組成と、60℃で1力月間保
存した後の放電性能と電池総高の変化及び目視判定によ
る漏液電池の個数を次表に示す。放電性能は、20℃に
おいて510Ωで0.9Vを終止電圧として放電したと
きの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, the change in discharge performance and total battery height after storage at 60°C for one month, and the number of leaking batteries as determined by visual inspection. The discharge performance was expressed as the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.

この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。
Regarding changes in the total battery height in this table, it is normal that the total battery height decreases during the period after the battery is sealed until the stress relationship between each battery component becomes stable over time.

しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では上記の電池総高の減少力に対抗する電池内圧の上昇
により電池総高を増大させる傾向か強くなる。従って、
貯蔵による電池総高の増減により亜鉛負極の耐食性を評
価することができる。また、耐食性が不十分な電池では
、電池総高が増大するほか、電池内圧の上昇により耐漏
液性が劣化するとともに、腐食による亜鉛の消耗、亜鉛
表面の酸化膜の形成、水素ガスの内在による放電反応の
阻害等により放電性能が著しく劣化するこ七になり、耐
漏液性と放電持続時間も又亜鉛負極の耐食性に依存する
要素が大きい。
However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, the overall battery height tends to increase due to an increase in battery internal pressure that counteracts the above-mentioned force for reducing the total battery height. Therefore,
The corrosion resistance of the zinc negative electrode can be evaluated by the change in total battery height due to storage. In addition, in batteries with insufficient corrosion resistance, the total height of the battery increases, the leakage resistance deteriorates due to an increase in battery internal pressure, and the zinc is consumed due to corrosion, the formation of an oxide film on the zinc surface, and the presence of hydrogen gas. The discharge performance is significantly deteriorated due to inhibition of the discharge reaction, etc., and the leakage resistance and discharge duration are also largely dependent on the corrosion resistance of the zinc negative electrode.

この表に見られるように、単独の元素を添加したNo、
i〜4の中ではIn、Tlの添加効果が比較的見られる
が、上記の電池特性はいずれも問題があり、Ni、Ba
の場合はこれらよりさらに劣る。
As seen in this table, No. added with a single element,
Among i~4, the effect of addition of In and Tl is relatively seen, but all of the above battery characteristics have problems, and Ni and Ba
is even worse than these.

又、In又はTIとNiを共存させたNo、5〜7はI
n、又はT1を単独で添加した場合より優れており、N
iの添加による複合効果が認められるが、放電性能、耐
漏液性において1 ?6という低水化率では十分な実用
性能を備えているとはいえない。
Also, Nos. 5 to 7 are I where In or TI and Ni coexist.
It is superior to the case where N or T1 is added alone, and N
A compound effect is observed due to the addition of i, but in discharge performance and leakage resistance it is 1? A water conversion rate as low as 6 cannot be said to have sufficient practical performance.

これらの場合の性能値に対し、Ni、Inに加えてBa
を共存させたNo、8〜23のうち、各添加元素の含有
量が適切なものでは、N015〜7よりすぐれた性能を
示しており、Baの添加による複合的な防食効果か確認
されている。すなわち、Inを0.001〜0.5重量
%、N+を0.01〜0.5重量%、Baを0.001
〜0.3重量%の範囲で含有している亜鉛合金か有効で
、各添加元素の含有量か上記より過剰又は不足の場合は
No。
Regarding the performance values in these cases, in addition to Ni and In, Ba
Among Nos. 8 to 23, which coexisted with Ba, those with appropriate contents of each additive element showed better performance than Nos. 15 to 7, confirming the composite anticorrosion effect of the addition of Ba. . That is, In is 0.001 to 0.5% by weight, N+ is 0.01 to 0.5% by weight, and Ba is 0.001% by weight.
A zinc alloy containing in the range of ~0.3% by weight is effective, and if the content of each additional element is in excess or in shortage of the above, then No.

5〜7と大差ないか、逆効果の性能値を示している。ま
た、Inに代えて、TIを添加したNo、 24.25
.及び(n、TIを共存させたNo、26゜27におい
てら同様にN095〜7よりすくれだ性能を示している
。以上の如(、本発明は、N1゜Baを基本冷力n元素
とし、さらにIn、TIの一種又は二種を必須添加元素
とし、各々の適切な量を含有させた亜鉛合金を負極に用
いることにより、低水化率で、放電性能、貯蔵性能、耐
ifi液性なと実用性能のすぐれた亜鉛アルカリ電池を
完成したものである。
5 to 7, it shows a performance value that is not much different or has the opposite effect. In addition, No. 24.25 in which TI was added instead of In
.. And (n, No. 26°27 in which TI coexists also shows better performance than No. 95-7. As described above, the present invention uses N1°Ba as the basic cold power n element. Furthermore, by using a zinc alloy containing appropriate amounts of In and TI as essential additive elements for the negative electrode, discharge performance, storage performance, and ifi liquid resistance are achieved with a low water conversion rate. This is a completed zinc-alkaline battery with excellent practical performance.

尚、実施例ては、Ni、Ba及びIn又はTIという本
発明における必須添加元素についてのみ記述したが、さ
らに追加の非必須元素として、Cd。
In the examples, only Ni, Ba, In, or TI, which are essential addition elements in the present invention, are described, but Cd is added as an additional non-essential element.

Sn、Pb、Co、Ga、Ag、Te、Bi、AI M
g。
Sn, Pb, Co, Ga, Ag, Te, Bi, AI M
g.

Ca、Ta、Si、Ti、Sr、Li、Na、に、Rb
Ca, Ta, Si, Ti, Sr, Li, Na, Rb
.

Cuの何れかを前夫のNo、lOに追加して0.1重量
%含有させた場合にも、No、10とほぼ同等の性能値
が得られた。従って、本発明における必須添加元素を所
定量含有させ、さらに上記の非必須添加元素の適当量を
添加した場合にも、本発明と本質的に変わらない作用効
果が得られる。また、実施例においては、水化亜鉛負極
を用いた電池について説明したが、開放式の空気電池や
水素吸収機構を備えた密閉式の亜鉛アルカリ電池なとに
おいでは、水素ガスの発生許容量は比較的多いので、本
発明をさらに低水化率、場合によっては無水化のまま実
施することもできる。
Even when 0.1% by weight of Cu was added to No. 1O of the former husband, almost the same performance value as No. 10 was obtained. Therefore, even when a predetermined amount of the essential additive elements of the present invention is contained and an appropriate amount of the above-mentioned non-essential additive elements is added, the same effects as those of the present invention can be obtained. In addition, in the examples, a battery using a zinc hydrate negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is Since the amount is relatively large, the present invention can be carried out with a lower hydration rate, and in some cases, with anhydration as it is.

さらに、本実施例では亜鉛合金として亜鉛の溶湯に、添
加元素を添加し合金化した後に粉体化した場合について
説明したが、別法として、添加元素のうち、アマルガム
化し易い添加金属であるIn。
Furthermore, in this example, a case was explained in which additive elements were added to molten zinc to form a zinc alloy, alloyed, and then powdered. However, as an alternative method, among the additive elements, In, which is an additive metal that is easily amalgamated, .

TIを水化に用いる水銀中に予め含有させて亜鉛合金を
水化すると同時に添加する方法や、In。
There is a method in which TI is pre-contained in the mercury used for hydration and added at the same time as the zinc alloy is hydrated.

TIの水酸化物や塩を溶解した溶液中で亜鉛との置換反
応で亜鉛合金表面に上記元素を析出させて合金化する方
法を用いてもほぼ同等の効果か得られる。
Almost the same effect can be obtained by using a method in which the above elements are precipitated on the surface of a zinc alloy by a substitution reaction with zinc in a solution containing TI hydroxide or salt to form an alloy.

発明の効果 以上のように本発明は、負極亜鉛の水化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4 ・・・・・・セパレータ
、5・・・・・・酸化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを0.01〜0.5重量%、インジウム、タリ
ウムの少なくとも一種を0.001〜0.5重量%、バ
リウムを0.001〜0.3重量%含有する亜鉛合金を
負極活物質に用いた亜鉛アルカリ電池。
A zinc alloy containing 0.01 to 0.5% by weight of nickel, 0.001 to 0.5% by weight of at least one of indium and thallium, and 0.001 to 0.3% by weight of barium is used as a negative electrode active material. Zinc alkaline battery.
JP60231599A 1984-12-12 1985-10-17 Zinc alkaline cell Granted JPS6290857A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60231599A JPS6290857A (en) 1985-10-17 1985-10-17 Zinc alkaline cell
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
CN85109759.6A CN1004391B (en) 1984-12-12 1985-12-11 Zinc-alkali cells
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231599A JPS6290857A (en) 1985-10-17 1985-10-17 Zinc alkaline cell

Publications (2)

Publication Number Publication Date
JPS6290857A true JPS6290857A (en) 1987-04-25
JPH0365623B2 JPH0365623B2 (en) 1991-10-14

Family

ID=16926035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231599A Granted JPS6290857A (en) 1984-12-12 1985-10-17 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS6290857A (en)

Also Published As

Publication number Publication date
JPH0365623B2 (en) 1991-10-14

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPS6290857A (en) Zinc alkaline cell
JPS6290860A (en) Zinc alkaline cell
JPH0622119B2 (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPS636749A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0142576B2 (en)
JPS6290855A (en) Zinc alkaline cell
JPS61181069A (en) Zinc alkaline cell
JPS63133450A (en) Zinc alkaline battery
JPS6290858A (en) Zinc alkaline cell
JPS60177553A (en) Zinc alkaline primary battery
JPS61181064A (en) Zinc alkaline cell
JPS6290854A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPS61181070A (en) Zinc alkaline cell
JPS61203563A (en) Alkaline zinc battery
JPS6290856A (en) Zinc alkaline cell
JPS63178452A (en) Zinc alkaline battery
JPS61181068A (en) Zinc alkaline cell
JPS61181065A (en) Zinc alkaline cell