JPH0622119B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0622119B2
JPH0622119B2 JP60230160A JP23016085A JPH0622119B2 JP H0622119 B2 JPH0622119 B2 JP H0622119B2 JP 60230160 A JP60230160 A JP 60230160A JP 23016085 A JP23016085 A JP 23016085A JP H0622119 B2 JPH0622119 B2 JP H0622119B2
Authority
JP
Japan
Prior art keywords
zinc
battery
negative electrode
mercury
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60230160A
Other languages
Japanese (ja)
Other versions
JPS62143366A (en
Inventor
晃 三浦
寛治 高田
良二 岡崎
豊秀 植村
恵市 賀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60230160A priority Critical patent/JPH0622119B2/en
Publication of JPS62143366A publication Critical patent/JPS62143366A/en
Publication of JPH0622119B2 publication Critical patent/JPH0622119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン,酸化銀,
酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
TECHNICAL FIELD The present invention relates to zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide as a positive electrode active material.
The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。従来、亜鉛に
5〜10重量%程度の水銀を添加し、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量を低減させることが社会的ニーズとして高ま
り、種々の研究がなされている。例えば、亜鉛中に鉛,
カドミウム,インジウム,ガリウムなどを添加した合金
粉末を用いて耐食性を向上させ、汞化率を低減させる方
法が提案されている。これらの腐食抑制効果は、添加元
素の単体の効果以外に複数の添加元素による複合効果も
大きく、インジウムと鉛あるいはこれにさらにガリウム
を添加したもの、さらにはガリウムと鉛を添加した亜鉛
合金などが従来、有望な系として提案されている。
2. Description of the Related Art A common problem with zinc alkaline batteries is corrosion of the negative electrode zinc during storage by the electrolytic solution. Conventionally, it has been adopted as an industrial method to add about 5 to 10% by weight of mercury to zinc to suppress corrosion to the extent that there is no practical problem. However, in recent years, reducing the amount of mercury contained in a battery has become a social need to reduce pollution, and various studies have been made. For example, lead in zinc,
There has been proposed a method of improving corrosion resistance and reducing the conversion rate by using an alloy powder to which cadmium, indium, gallium, etc. are added. In addition to the effect of a single additive element, these corrosion inhibition effects have a large composite effect of multiple additive elements. Indium and lead, or those in which gallium is further added, and zinc alloys in which gallium and lead are added, etc. Conventionally, it has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、汞化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
All of these can be expected to have a certain degree of corrosion resistance, and although it is possible to expect a reduction in the degree of conversion to a certain extent, it is necessary to search for alloy systems with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。
In addition, there is a proposal that using a zinc alloy obtained by adding indium to zinc or a zinc alloy to the negative electrode has a great anticorrosion effect mainly for the purpose of improving a manganese dry battery (Japanese Patent Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe,Cd,Cr,Pb,Ca,Hg,Bi,Sb,A
l,Ag,Mg,Si,Ni,Mn等を不純物又は添加物とし
て1又は2種以上を含む場合を包含して記載されている
が、インジウムと鉛を添加元素として併用した場合の有
効性以外には、上記の雑多な各元素を不純物として含む
のか、有効な元素として添加するのかの区分は明示され
ていなく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム,鉛以外の
記載はない。
Problems to be Solved by the Invention In the above proposals, Fe, Cd, Cr, Pb, Ca, Hg, Bi, Sb and A are used as elements in the zinc alloy in addition to indium.
Although it is described that it includes 1 or 2 or more as impurities or additives such as l, Ag, Mg, Si, Ni, Mn, etc., it is not effective when indium and lead are used in combination as additive elements. In, the classification of whether each of the above-mentioned miscellaneous elements is included as an impurity or added as an effective element is not clearly indicated, and it is not clear even which element is effective for anticorrosion. There is no description other than indium and lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It is still a future subject to investigate the effect of the combination of these elements, and further to investigate this in a zinc alkaline battery to obtain an effective alloy composition.

本発明は、負極亜鉛の耐食性,放電性能を劣化させるこ
となく汞化率を低減させ、低公害で放電性能,貯蔵性,
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention reduces the corrosion rate of the negative electrode zinc without degrading the discharge performance, the discharge performance, the storability, and the low pollution.
It is an object of the present invention to provide a zinc-alkaline battery having excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ,か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン,酸化銀,酸素,酸化水銀などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、インジウムを0.005〜0.5重量%、ストロ
ンチウムを0.005〜0.2重量%、アルミニウム,
カルシウム,マグネシウムのうち一種以上を0.005
〜0.2重量%含有する亜鉛合金を負極活物質に用いた
ことを特徴とする。
Means for Solving the Problems The present invention is directed to an electrolytic solution containing an alkaline aqueous solution containing caustic potash or caustic soda as a main component, a negative electrode active material containing zinc, and a positive electrode active material containing manganese dioxide, silver oxide, oxygen, and oxidation. For a negative electrode of a so-called zinc alkaline battery using mercury or the like, zinc is a main component, indium is 0.005 to 0.5% by weight, strontium is 0.005 to 0.2% by weight, aluminum,
0.005 for one or more of calcium and magnesium
It is characterized in that a zinc alloy containing 0.2 to 0.2% by weight is used as a negative electrode active material.

本発明は、亜鉛合金への添加元素としてSrに注目して
実験を行い、Srを単独で添加した亜鉛合金は防食性に
乏しいが、他の添加元素との複合効果が大きく、とりわ
け、上記の元素と組合せて適正な量を含有させた場合
に、極めて顕著な複合的防食効果が得られることを見出
して完成したものである。
In the present invention, an experiment was conducted paying attention to Sr as an additive element to a zinc alloy, and a zinc alloy containing Sr alone has a poor anticorrosion property, but has a large composite effect with other additive elements. It has been completed by finding that a very remarkable composite anticorrosive effect can be obtained when an appropriate amount is contained in combination with the element.

作 用 各元素の添加による防食効果、及び、これらの元素の複
合効果についての作用機構は不明確であるが、次のよう
に推察される。まず、Srは水銀との親和性が大きいの
で亜鉛合金の表面を汞化する場合に均一な汞化を行われ
易くする作用があると考えられる。さらに溶融亜鉛合金
を噴射して粉体化した亜鉛合金粉の表面の“しわ”をな
くして平滑化する作用がある。しかしSrは亜鉛より電
気化学的に卑な電位を有するため亜鉛より優先して腐食
し易く、これ単独の添加では充分な防食効果は得られな
い。また、Inは従来から防食効果の大きい添加元素と
して知られ、亜鉛合金の水素過電圧を大きくするととも
に、水銀となじみ易いため、汞化により表面状態を均一
化するのに有効で、さらに、亜鉛合金の表面や結晶粒界
に水銀を固定して表面の水銀濃度を高く維持する役割も
期待される。また、Al,Ca,Mgは何れも水銀との親
和性が小さいので、亜鉛合金の内部への水銀の拡散を抑
制して表面の水銀濃度を維持するとともに、Srと同様
に噴射法で得られる亜鉛合金粉の表面を平滑化し、表面
積を小さくする作用がある。しかし、Srと同様に卑な
電位を有するので、単独の添加では充分な防食効果が得
られず、過剰な添加は却って防食性を損なうことにな
る。
The mechanism of action for the anti-corrosion effect by addition of each element and the combined effect of these elements is unclear, but it is presumed as follows. First, since Sr has a high affinity with mercury, it is considered that it has an action of facilitating uniform grading when grading the surface of the zinc alloy. Further, it has a function of eliminating "wrinkles" on the surface of the zinc alloy powder pulverized by spraying the molten zinc alloy and smoothing it. However, since Sr has an electrochemically base potential lower than that of zinc, it is more likely to corrode preferentially than zinc, and addition of this alone does not provide a sufficient anticorrosion effect. In addition, In is conventionally known as an additive element having a large anticorrosion effect, and is effective in increasing the hydrogen overvoltage of a zinc alloy and being easily compatible with mercury. Therefore, it is effective in homogenizing the surface state by grading. It is also expected to have a role of fixing mercury on the surface and grain boundaries of Al to keep the mercury concentration on the surface high. Further, Al, Ca, and Mg all have a low affinity with mercury, and thus suppress the diffusion of mercury into the zinc alloy to maintain the mercury concentration on the surface and, like Sr, are obtained by the injection method. It has the effect of smoothing the surface of the zinc alloy powder and reducing the surface area. However, since it has a base potential similar to that of Sr, sufficient addition of the anticorrosion effect cannot be obtained by adding it alone, and excessive addition will impair the anticorrosion property.

以上の如く、各添加元素は異った作用を及ぼすものと考
えられる。しかし、In以外は単独の添加では防食効果
が乏しいが、本発明の組合せで元素を添加することによ
り、Inを単独で添加したものよりはるかに優れた耐食
性を有する亜鉛合金が得られる。これは、前述の各元素
が互いに長所,短所を補完し合うことにより、少量の水
銀添加で亜鉛合金粉の表面の水素過電圧を長期に亘って
維持するとともに表面状態を均一化し、さらに表面積を
縮小した結果によるものと考えられる。本発明はこれに
より、低汞化率の耐食性亜鉛負極を実現し、放電性能,
貯蔵性ともにすぐれた低公害の亜鉛アルカリ電池を提供
したものである。
As described above, it is considered that each additive element has a different action. However, although the addition of any elements other than In has a poor anticorrosion effect, the addition of elements in the combination of the present invention yields a zinc alloy having much better corrosion resistance than the addition of In alone. This is because the above-mentioned elements complement each other's strengths and weaknesses, and by adding a small amount of mercury, the hydrogen overvoltage on the surface of the zinc alloy powder is maintained for a long time and the surface condition is made uniform, further reducing the surface area. It is thought that this is due to the result. The present invention thus realizes a corrosion-resistant zinc negative electrode with a low selection rate,
It provides a low-pollution zinc-alkaline battery with excellent storage properties.

以下、実施例により詳細に説明する。Hereinafter, detailed description will be given with reference to examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500℃で溶
融して圧縮空気により噴射して粉体化し、50〜150
メッシュの粒度範囲にふるい分けした。次いで、か性カ
リの10重量%水溶液中に上記粉体を投入し、攪拌しな
がら所定量の水銀を滴下して汞化した。その後水洗し、
アセトンで置換して乾燥し、汞化亜鉛合金粉を作成し
た。さらに本発明の実施例以外の汞化亜鉛粉、又は汞化
亜鉛合金粉についても比較例として同様の方法で作成し
た。
Example Various zinc alloys were prepared by adding various elements shown in the following table to a zinc ingot having a purity of 99.997%, melted at about 500 ° C. and sprayed with compressed air to be powdered, 150
It was sieved to the particle size range of the mesh. Then, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to effect hydration. Then wash with water,
It was replaced with acetone and dried to prepare a zinc fluoride alloy powder. Further, zinc fluorinated powder or zinc hydride alloy powder other than the examples of the present invention was prepared by the same method as a comparative example.

これらの汞化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に汞化亜鉛合金粉末を分散させた亜鉛負極であ
る。3はセルロース系の保液材、4は多孔性ポリプロピ
レン製のセパレータ、5は酸化銀に黒鉛を混合して加圧
成形した正極、6は鉄にニッケルメッキを施した正極リ
ング、7はステンレス鋼製の正極缶で、その内外面には
図示していないがニッケルメッキが施されている。8は
ポリプロピレン製のガスケットで、正極缶の折り曲げに
より正極缶と封口板との間に圧縮されている。
A button type silver oxide battery shown in the figure was produced using these selected powders. In the figure, 1 is a stainless steel sealing plate, the inner surface of which is plated with copper 1 '. Reference numeral 2 is a zinc negative electrode in which a 40 wt% aqueous solution of caustic potash was used to gel an electrolytic solution saturated with zinc oxide by carboxymethyl cellulose, and a zinc halide alloy powder was dispersed in the gel. 3 is a cellulosic liquid-retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing silver oxide with graphite and pressure-molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is stainless steel Although not shown, the inner and outer surfaces of the positive electrode can are made of nickel. A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.

試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、水銀の添加
量(汞化率)は、亜鉛合金粉に対し、いずれも2重量%と
した。
The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the selective powder of the negative electrode was unified to 193 mg, and the amount of mercury added (selective rate) was 2% by weight based on the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60℃で1ヵ月間保
存した後の放電性能と電池総高の変化を次表に示す。放
電性能は、20℃において510Ωで0.9Vを終止電
圧として放電したときの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60 ° C. for 1 month. The discharge performance was expressed as the discharge duration when discharged at 20 ° C. with 510Ω as the final voltage of 0.9V.

また、温度60℃,湿度90%で1ヵ月放置したのち目
視で漏液状態を判定し、漏液した電池個数を同時に示し
た。
In addition, after leaving for 1 month at a temperature of 60 ° C. and a humidity of 90%, the state of liquid leakage was visually determined, and the number of leaked batteries was also shown.

この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。
しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では、上記の電池総高の減少力に対抗する電池内圧の上
昇により電池総高を増大させる傾向が強くなる。従っ
て、貯蔵による電池総高の増減により亜鉛負極の耐食性
を評価することができる。また、耐食性が不十分な電池
では、電池総高が増大するほか、電池内圧の上昇により
耐漏液性が劣化するとともに、腐食による亜鉛の消耗、
亜鉛表面の酸化膜の形成や、水素ガスの内在による放電
反応の阻害等により放電性能が著しく劣化することにな
り、放電持続時間も又亜鉛負極の耐食性に依存する要素
が大きい。
Regarding the change in the total battery height in this table, it is customary that the total battery height decreases after the battery is sealed until the stress relationship between the battery constituent elements stabilizes over time.
However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in the internal pressure of the battery, which opposes the above-described force of reducing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by increasing or decreasing the total height of the battery due to storage. In addition, in the case of batteries with insufficient corrosion resistance, the total height of the battery increases and the leakage resistance deteriorates due to an increase in the internal pressure of the battery.
The discharge performance is significantly deteriorated due to the formation of an oxide film on the zinc surface and the inhibition of the discharge reaction due to the internal presence of hydrogen gas, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.

さて、表において、本発明の比較例として挙げたNo.1
〜8のうち単独で添加元素を添加した場合(No.1,2,
3,4,5)よりも、二つの元素を添加した場合(No.
6,7,8)の方が亜鉛負極の耐食性、放電性能とも幾
分改善されている。
Now, in the table, No. 1 given as a comparative example of the present invention
~ 8 when the additional element is added alone (No. 1, 2,
When two elements are added (No. 3, 4, 5) (No.
6, 7, and 8) are somewhat improved in corrosion resistance and discharge performance of the zinc negative electrode.

しかしIn,Sr,Al,Ca,Mgを適切な組合せで適正
な含有量だけ併存させた本発明の実施例(No.10,11,1
2,15,16,17,20,21,23,24,25,26,27,28,2
9,30)の場合には前記の比較例に比べ、一段と耐食性、
放電性能がすぐれ、添加元素の複合効果が顕著に示され
る。一方三元素を併存させた場合でも含有量に過不足の
ある場合(NO.9,13,14,18,19,22,31,32)は比較
例と大差なく、複合効果が乏しい。
However, Examples of the present invention (No. 10, 11, 1) in which In, Sr, Al, Ca, and Mg are coexisted in a proper combination in a proper content.
2, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 2
In the case of (9, 30), compared with the above comparative example, corrosion resistance is further improved,
The discharge performance is excellent and the combined effect of the additional elements is remarkable. On the other hand, even when the three elements are coexistent, when there is an excess or deficiency in the content (NO. 9, 13, 14, 18, 19, 22, 31, 32), there is not much difference from the comparative example, and the combined effect is poor.

上述の通り、本発明はIn,Sr,Al,Ca,Mgを適切
な組合せ、例えば(No.27,28,29,30)で示すような適
正な含有量で併存させた亜鉛合金を負極に用いることに
より低汞化率化に成功したものであり、各元素の含有量
はInが0.005〜0.5重量%、Srが0.005〜
0.2重量%、Al,Ca,Mgの一種または二種以上の
和が0.005〜0.2重量%とするのが適切である。
As described above, the present invention uses a proper combination of In, Sr, Al, Ca, and Mg, for example, a zinc alloy having a proper content as shown in (No. 27, 28, 29, 30) as a negative electrode. By using it, the reduction rate has been successfully reduced, and the content of each element is such that In is 0.005 to 0.5% by weight and Sr is 0.005 to 0.5% by weight.
0.2 wt% and the sum of one or more of Al, Ca, and Mg are 0.005-0.2 wt%.

以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用いる亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能のすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては汞化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合はさらに低汞化率、場合によ
っては無汞化のまま実施することもできる。
As described above, the present invention has found that the corrosion resistance of the zinc alloy used for the negative electrode is improved by the synergistic effect of the combination of the above-mentioned additive elements, and it is possible to determine an appropriate content to obtain a low-pollution zinc alkaline excellent in practical performance. It is a battery implementation. In the examples, the battery using the zinc hydride negative electrode was described, but in the open type air battery and the sealed zinc alkaline battery provided with the hydrogen absorption mechanism,
Since the allowable generation amount of hydrogen gas is comparatively large, when the present invention is applied to such a case, it can be carried out with a low reduction rate, or in some cases, without reduction.

発明の効果 以上のように本発明は、負極亜鉛の汞化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的であ
る。
Effects of the Invention As described above, the present invention can reduce the conversion rate of negative electrode zinc,
It is extremely effective in obtaining a low-pollution zinc alkaline battery.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2……亜鉛負極、4……セパレータ、 5……酸化銀正極。
The figure is a side view in which a button-shaped silver oxide battery used in an example of the present invention is partially sectioned. 2 ... Zinc negative electrode, 4 ... Separator, 5 ... Silver oxide positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植村 豊秀 広島県竹原市竹原町652―15 (72)発明者 賀川 恵市 広島県竹原市竹原町652―15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 652-15 Takehara-cho, Takehara-shi, Hiroshima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インジウムを0.005〜0.5重量%、
ストロンチウムを0.005〜0.2重量%、アルミニ
ウム,カルシウム,マグネシウムのうち一種以上を0.
005〜0.2重量%含有する亜鉛合金を負極活物質に
用いた亜鉛アルカリ電池。
1. Indium is 0.005-0.5% by weight,
0.005 to 0.2% by weight of strontium, and one or more of aluminum, calcium, and magnesium in an amount of 0.
A zinc alkaline battery using a zinc alloy containing 005 to 0.2 wt% as a negative electrode active material.
JP60230160A 1985-10-16 1985-10-16 Zinc alkaline battery Expired - Lifetime JPH0622119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230160A JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230160A JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS62143366A JPS62143366A (en) 1987-06-26
JPH0622119B2 true JPH0622119B2 (en) 1994-03-23

Family

ID=16903536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230160A Expired - Lifetime JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622119B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
BE1003415A6 (en) * 1989-11-10 1992-03-17 Acec Union Miniere Zinc powder for alkaline batteries.
ES2259549B1 (en) * 2005-02-21 2007-12-16 Celaya Emparanza Y Galdos, S.A. (Cegasa) AN ALKALINE BATTERY WITH ALLOCATED ZINC AS ACTIVE MATERIAL OF THE ANODE

Also Published As

Publication number Publication date
JPS62143366A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
JPH0622119B2 (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPH0622116B2 (en) Zinc alkaline battery
KR890002672B1 (en) Zn-alkali battery
JPH0719600B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0142576B2 (en)
JPS6273565A (en) Zinc alkaline battery
JPH0365621B2 (en)
JPH0622117B2 (en) Zinc alkaline battery
JPS6290857A (en) Zinc alkaline cell
JPH0685324B2 (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPH0622120B2 (en) Zinc alkaline battery
JPS61140067A (en) Zinc alkali battery
JPS61140066A (en) Zinc alkali battery
JPH0365617B2 (en)
JPS60175369A (en) Zinc-alkaline primary cell
JPH0622115B2 (en) Zinc alkaline battery
JPS63133450A (en) Zinc alkaline battery
JPH0534778B2 (en)
JPS61140065A (en) Zinc alloy battery
JPH0143429B2 (en)