JPH0622116B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0622116B2
JPH0622116B2 JP59197200A JP19720084A JPH0622116B2 JP H0622116 B2 JPH0622116 B2 JP H0622116B2 JP 59197200 A JP59197200 A JP 59197200A JP 19720084 A JP19720084 A JP 19720084A JP H0622116 B2 JPH0622116 B2 JP H0622116B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
effect
battery
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59197200A
Other languages
Japanese (ja)
Other versions
JPS6177267A (en
Inventor
晃 三浦
寛治 高田
良二 岡崎
豊秀 植竹
恵市 賀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59197200A priority Critical patent/JPH0622116B2/en
Publication of JPS6177267A publication Critical patent/JPS6177267A/en
Publication of JPH0622116B2 publication Critical patent/JPH0622116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として、亜鉛,電解液としてアル
カリ水溶液,正極活物質として二酸化マンガン,酸化
銀,酸化水銀,酸素等を用いる亜鉛アルカリ電池の改良
に関するものである。
The present invention relates to a zinc-alkaline battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as a positive electrode active material. It is about improvement.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の亜
鉛負極の電解液による腐食が挙げられる。従来、亜鉛に
5〜10重量%程度の水銀を添加した汞化亜鉛粉末を用
いて水素過電圧を高め、実用的に問題のない程度に腐食
を抑制することが工業的な手法として採用されている。
しかし、近年低公害化のため、電池内の含有水銀量を低
減させることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛,ガリウム,イン
ジウムなどを添加した合金粉末を用いて耐食性を向上さ
せ、汞化率を低減させる方法が提案されている。これは
腐食抑制には効果があるが、汞化率を低減させることに
より強放電性能が悪化するという逆効果が見られる。こ
れらの提案において、低汞化率とした場合に強放電性能
が劣化する原因は不明確であるが、放電生成物が活性な
亜鉛表面を被い、放電反応に必要な水酸イオンの亜鉛表
面への供給を妨げる度合が水銀含量の多い場合に比較し
て大きいためと考えられ、耐食性と強放電性能を兼ね備
えた低汞化率亜鉛負極の確立が今後の重要課題とされて
いる。
2. Description of the Related Art A common problem of zinc alkaline batteries is corrosion of a zinc negative electrode during storage due to an electrolytic solution. Heretofore, it has been adopted as an industrial method to increase hydrogen overvoltage by using zinc fluoride powder obtained by adding about 5 to 10% by weight of mercury to zinc to suppress corrosion to such an extent that there is no practical problem. .
However, in recent years, reducing the amount of mercury contained in a battery has become a social need for reducing pollution, and various studies have been made. For example, a method has been proposed in which an alloy powder in which lead, gallium, indium, etc. are added to zinc is used to improve corrosion resistance and reduce the rate of conversion. Although this is effective in suppressing corrosion, there is an adverse effect that the strong discharge performance deteriorates by reducing the rate of conversion. In these proposals, it is unclear why the low discharge rate deteriorates the strong discharge performance, but the discharge product covers the active zinc surface, and the zinc surface of the hydroxide ion necessary for the discharge reaction is covered. It is considered that this is because the degree of hindrance to the supply to the anode is large compared to the case where the mercury content is high, and establishment of a low-degradation zinc anode having both corrosion resistance and strong discharge performance is an important issue for the future.

また、主にマンガン乾電池の改良をめざして、亜鉛また
は亜鉛合金にインジウムを添加した亜鉛合金を負極に使
用することが腐食上の効果が大きいという提案がある
(特公昭33−3204号)。
In addition, there is a proposal that the use of zinc or a zinc alloy in which indium is added to a zinc alloy for a negative electrode has a great effect on corrosion, mainly for the purpose of improving a manganese dry battery.
(Japanese Examined Patent Publication No. 33-3204).

上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe,Cd,Cr,Pb,Ca,Hg,Bi,Sb,Al,Ag,M
g,Si,Ni,Mn等を不純物または添加物として1または
2種以上を含む場合を包含して記載されているが、イン
ジウムと鉛を添加元素として併用した場合の有効性以外
には、上記の雑多な各元素を不純物として含むのか、有
効な元素として添加するのかの区分は全く示されておら
ず、どの元素が防食に有効なのかさえ不明で、まして適
切な添加量についてはインジウム,鉛以外の記載はな
い。これらの元素の組合せの効果について、しかもこれ
を亜鉛アルカリ電池において検討して、有効な合金組成
を求めることは、なお今後の課題として残されている。
In the above proposal, as elements in the zinc alloy, in addition to indium, Fe, Cd, Cr, Pb, Ca, Hg, Bi, Sb, Al, Ag, M
Although it is described to include one or two or more of g, Si, Ni, Mn, etc. as impurities or additives, in addition to the effectiveness of using indium and lead as additive elements, the above No distinction is made as to whether each of the miscellaneous elements described above is included as an impurity or added as an effective element, and it is not clear which element is effective for anticorrosion, let alone indium and lead. There is no description other than. It is still left as a future subject to investigate the effect of the combination of these elements and to investigate the effect in a zinc alkaline battery to obtain an effective alloy composition.

発明が解決しようとする問題点 上記のように、低汞化率で耐食性と強放電性能を兼ね備
えたアルカリ電池用亜鉛負極が求められている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, there is a demand for a zinc negative electrode for alkaline batteries, which has both a low reduction rate and corrosion resistance and strong discharge performance.

本発明は、負極亜鉛の耐食性,放電性能を劣化させるこ
となく汞化率を低減させ、低公害で放電性能,貯蔵性,
耐漏液性などの性能のすぐれた亜鉛アルカリ電池を提供
することを目的とする。
INDUSTRIAL APPLICABILITY The present invention reduces the corrosion rate of the negative electrode zinc without degrading the discharge performance, the discharge performance, the storability, and the low pollution.
It is an object of the present invention to provide a zinc alkaline battery having excellent performance such as liquid leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ,か性ソーダなどを主成分
とするアルカリ水溶液,負極活物質に亜鉛,正極活物質
に二酸化マンガン,酸化銀,酸化水銀,酸素などを用い
る亜鉛アルカリ電池の負極に、インジウム(In)を0.0
1〜0.5重量%、鉛(Pb),カドミウム(Cd),錫(Sn)の
一種または二種以上の元素を合計で0.01〜0.5重
量%、カルシウム(Ca)を0.005〜0.15重量%含
有する亜鉛合金を用いたことを特徴とする。
MEANS FOR SOLVING THE PROBLEMS The present invention is directed to an alkaline aqueous solution containing caustic potash, caustic soda, etc. as an electrolyte, zinc as a negative electrode active material, manganese dioxide, silver oxide, mercury oxide as a positive electrode active material, Indium (In) is added to the negative electrode of a zinc-alkaline battery that uses oxygen, etc.
1 to 0.5% by weight, 0.01 to 0.5% by weight in total of one or more elements of lead (Pb), cadmium (Cd), tin (Sn) and calcium (Ca). A zinc alloy containing 005 to 0.15% by weight is used.

作用 本発明はまず、放電反応生成物が活性な亜鉛表面を被
い、水酸イオンの供給を阻害し、大電流での放電反応が
円滑に進行しない傾向が特に汞化率の低い亜鉛を負極に
用いる場合に顕著に表われる問題を適切な量のCaを添加
して合金化することにより解決し、さらに亜鉛合金の耐
食性向上のために大きな効果があるとされているInを添
加し、同時にPb,Cd,Snよりなる群より選ばれた元素の
適切な量を添加して、Inの防食効果をさらに相乗的に高
めることにより、耐食性,放電性能のすぐれた低汞化率
の亜鉛負極を実現したものである。
Action The present invention first of all, the discharge reaction product covers the active zinc surface, inhibits the supply of hydroxide ions, and the discharge reaction at a large current tends not to proceed smoothly. The problem that appears remarkably when used for is solved by alloying by adding an appropriate amount of Ca and further adding In, which is said to have a great effect for improving the corrosion resistance of the zinc alloy, at the same time. By adding an appropriate amount of an element selected from the group consisting of Pb, Cd, and Sn to further synergistically enhance the anticorrosion effect of In, a zinc negative electrode with low corrosion rate and excellent discharge performance can be obtained. It was realized.

上記のCaの添加効果は、後述の実施例で示すように、適
切な添加量において有効であるが、その作用機構は十分
に解明されていない。推定するに、負極の亜鉛合金中に
含まれているCaが亜鉛より卑な電位を有し、亜鉛ととも
に放電して、その放電生成物が亜鉛の放電生成物の電解
液中への溶解を促進させるか、未溶解の生成物の層の緻
密化による亜鉛表面の不働態化を緩和する役割を果た
し、亜鉛の活性表面に水酸イオンが豊富に供給される状
態を亜鉛が消耗する放電末期まで継続して維持し、亜鉛
の放電利用率を高めるものと考えられる。
The above Ca addition effect is effective at an appropriate addition amount, as shown in Examples described later, but its action mechanism has not been sufficiently clarified. It is presumed that Ca contained in the zinc alloy of the negative electrode has a base potential lower than that of zinc and discharges together with zinc, and the discharge product accelerates the dissolution of the discharge product of zinc in the electrolytic solution. Or plays a role in mitigating the passivation of the zinc surface due to the densification of the layer of undissolved product, and the state in which hydroxide ions are abundantly supplied to the active surface of zinc is consumed until the end of discharge when zinc is consumed. It is considered that this will be maintained continuously and the discharge utilization rate of zinc will be increased.

また、Inは防食用の添加元素としては、あらゆる元素の
うちで最も効果の大きいものの一つとして知られている
が、他の添加元素との複合効果により一層、防食効果を
高めることができる。
In addition, In is known as one of the most effective anti-corrosion additive elements among all elements, but the anti-corrosion effect can be further enhanced by the combined effect with other additive elements.

Inの添加効果は、亜鉛合金の水素過電圧を高める作用を
有する以外に水銀との親和性が大きいので、汞化のため
に添加した水銀を亜鉛合金を表面や粒界に固定し、結晶
内や亜鉛合金の内部への拡散を抑制し、少量の水銀の添
加で表面や粒界の水銀濃度を高く維持できることにより
大きな防食効果が得られるものと考えられ、本発明にお
いて同時に添加するPb,Cd,Snは、比較的水銀との親和
性が小さいのでこれらの元素が亜鉛合金の粒界に存在す
る表面から汞化した亜鉛合金中の水銀が表面層から結晶
粒界に拡散するのを抑制して水銀の表面濃度を高く維持
するのに効果的なためにInと相乗的な防食効果を示すも
のと推定される。
In addition to having the effect of increasing the hydrogen overvoltage of the zinc alloy, the addition effect of In has a large affinity with mercury, so the mercury added for grading is fixed on the surface and grain boundaries of the zinc alloy, and It is considered that a large anticorrosion effect can be obtained by suppressing the inward diffusion of the zinc alloy and maintaining a high mercury concentration on the surface and grain boundaries with the addition of a small amount of mercury. In the present invention, Pb, Cd, and Since Sn has a relatively low affinity for mercury, it suppresses the diffusion of mercury in the zinc alloy, which has been selected from the surface where these elements exist at the grain boundaries of the zinc alloy, from the surface layer to the grain boundaries. It is presumed that it exhibits a synergistic anticorrosion effect with In because it is effective in maintaining a high surface concentration of mercury.

なお、本発明においてCa添加による主効果は、放電性能
の向上にあるが、添加量によっては上記の他の元素の防
食効果を高める上にも若干の効果を有し、これらの元素
は電池の保存期間中に亜鉛負極が電解液により腐食する
場合、亜鉛より卑な金属であるので亜鉛に対して優先し
て酸化され易く、亜鉛合金の表面の活性点を不活性化す
る酸化膜を形成して腐食を抑制する作用があると考えら
れるが、上記の酸化膜の形成に必要な量以上に添加され
ると、過剰添加元素が亜鉛に優先して腐食するので却っ
て水素ガスの発生を増大させる結果になるもとの考えら
れる。
The main effect of the addition of Ca in the present invention is to improve the discharge performance, but depending on the addition amount, it has some effect in enhancing the anticorrosion effect of the other elements described above. When the zinc negative electrode is corroded by the electrolytic solution during the storage period, it is a metal that is less base than zinc and is therefore easily oxidized preferentially to zinc, forming an oxide film that inactivates the active points on the surface of the zinc alloy. It is thought that there is an effect of suppressing corrosion, but if added in an amount more than that required for forming the above oxide film, excessive addition elements will corrode preferentially over zinc, so rather increase the generation of hydrogen gas. It is thought that the result will be obtained.

以上のように、本発明は負極に用いる亜鉛合金の添加元
素の組合せと添加量を実験的に検討し、放電性能と耐食
性を兼ね備えた低汞化率の亜鉛負極を実現したものであ
る。
As described above, the present invention has experimentally examined the combination of the additive elements and the addition amount of the zinc alloy used for the negative electrode, and has realized a zinc negative electrode having both a discharge performance and a corrosion resistance and a low reduction rate.

実施例 純度99.997%以上の亜鉛地金に後に表に示すよう
に各種の元素を添加した各種の亜鉛合金を作成し、約5
00℃で溶融して圧縮空気により噴射して粉体化し、5
0〜150メッシュの粒度範囲にふるい分けした。次い
で、か性カリの10重量%水溶液中に上記粉体を投入
し、攪拌しながら所定量の水銀を滴下して汞化した。そ
の後水洗し、アセトンで置換して乾燥し、汞化亜鉛合金
粉を作成した。さらに本発明の実施例以外の汞化亜鉛合
金粉についても比較例として同様の方法で作成した。
Example Various zinc alloys were prepared by adding various elements to a zinc metal having a purity of 99.997% or more, as shown in the table below,
It is melted at 00 ℃ and sprayed with compressed air to make powder. 5
It was sieved to a particle size range of 0 to 150 mesh. Then, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to effect hydration. Then, it was washed with water, replaced with acetone and dried to prepare a zinc hydride alloy powder. Further, zinc fluorinated alloy powders other than the examples of the present invention were prepared by the same method as comparative examples.

これらの汞化粉末を用い、図に示す筒形のアルカリマン
ガン電池を製作した。図において、1は鉄にニッケルメ
ッキを施した正極ケースで、内部には二酸化マンガンに
黒鉛を混合して加圧成形した正極2、ポリプロピレンの
不織布からなるセパレータ3、セルロース製底板4、カ
ルボキシメチルセルロースでゲル化したか性カリ水溶液
の電解液に各種汞化亜鉛合金を分散させたゲル状の負極
5を収容している。6はケース1の開口部を封口したポ
リプロピレン製の封口板で中央には真鍮製の負極集電子
7を固定している。8は負極端子板、9は正極端子板、
10,11は絶縁リング、12は熱収縮性樹脂チュー
ブ、13は金属外製缶である。
A cylindrical alkaline manganese battery shown in the figure was manufactured using these selected powders. In the figure, 1 is a positive electrode case in which iron is plated with nickel, and a positive electrode 2 in which manganese dioxide is mixed with graphite and pressure-molded therein, a separator 3 made of polypropylene non-woven fabric, a cellulose bottom plate 4, and carboxymethyl cellulose are shown. A gelled negative electrode 5 in which various zinc hydride alloys are dispersed in an electrolytic solution of a gelled potassium caustic solution is housed. Reference numeral 6 denotes a polypropylene sealing plate that seals the opening of the case 1, and has a brass negative electrode current collector 7 fixed to the center thereof. 8 is a negative terminal plate, 9 is a positive terminal plate,
10 and 11 are insulating rings, 12 is a heat-shrinkable resin tube, and 13 is a metal outer can.

試作した電池は単3形のアルカリマンガン電池で、負極
に用いた汞化亜鉛合金粉末の重量は、2.80gに統一
し、水銀の添加量(汞化率)は亜鉛合金粉に対し、1重量
%とした。試作した電池を60℃で1カ月間貯蔵後、2
0℃において10Ωの連続放電性能,耐漏液性,膨張度
合いを各々評価した。負極の亜鉛合金の内訳と試験の結
果を次表に示す。
The prototype battery was an AA alkaline manganese battery. The weight of the zinc hydride alloy powder used for the negative electrode was unified to 2.80 g, and the amount of mercury added (rate of conversion) was 1% of the zinc alloy powder. It was set to% by weight. After storing the prototype battery at 60 ° C for 1 month, 2
The continuous discharge performance of 10Ω at 0 ° C, the resistance to liquid leakage, and the degree of expansion were evaluated. The following table shows the breakdown of the zinc alloy for the negative electrode and the test results.

この表に見られるように、従来例のうちInのみを添加し
た場合(No.1)に対し、Pb,CdまたはSnの適切な量をIn
と共に添加した場合(No.3),5,6)がより電池の膨
張が少なく、相乗効果により耐食性が向上している。し
かし、耐食性を強く支配している元素がInであることは
例えばNo.2とNo.3との比較でも明らかである。また、
No.4,7,8のように耐食性向上のため添加した元素
が過剰となると却って逆効果となる。これらの従来例の
うち電池の膨張が著しいものは放電性能が悪い。また、
耐食性が十分で膨張や漏液も少ない、例えばNo.3,
5,6においても10Ωという強負荷放電での持続時間
は本発明品より短い。
As can be seen from this table, in the case of adding only In in the conventional example (No. 1), the appropriate amount of Pb, Cd or Sn is set to In.
When added together (No. 3), 5, 6), the expansion of the battery is smaller and the synergistic effect improves the corrosion resistance. However, it is clear from the comparison between No. 2 and No. 3, for example, that the element that strongly controls the corrosion resistance is In. Also,
If elements added to improve corrosion resistance such as Nos. 4, 7, and 8 become excessive, the opposite effect will occur. Among these conventional examples, the battery whose expansion is remarkable has poor discharge performance. Also,
Sufficient corrosion resistance and little swelling or liquid leakage, eg No. 3,
In 5 and 6, the duration of heavy load discharge of 10Ω is shorter than that of the product of the present invention.

一方、これらの従来例の欠点を改善すべく、上記の添加
元素の複合効果によって耐食性を高めた上に、負極の放
電反応を円滑化するのも主目的としてCaを同時に添加し
た場合(No.9〜28)のうち、放電性能,耐食性が良く
電池の膨張も少なく、従来例より改善されたと判断され
るのは、Inを0.01〜0.5重量%、Pb,Cd,Snの一
種または二種以上の元素を合計で0.01〜0.3重量
%、Caを0.005〜0.15重量%含有する亜鉛合金
を用いた場合(No.10,11,12,15,16,1
8,19,20,21,22,23,26,27)であ
り、添加元素量が不足または過剰の場合(No.9,13,
14,17,24,25,28)は若干の複合効果は認
められるが、従来例のうち比較的良好なものと大差なか
ったり、却って劣るものもあり、上述のように適切な添
加量の範囲において顕著な効果が認められる。
On the other hand, in order to improve the drawbacks of these conventional examples, when Ca is added at the same time for the purpose of facilitating the discharge reaction of the negative electrode as well as enhancing the corrosion resistance by the combined effect of the above-mentioned additional elements (No. 9 to 28), the discharge performance and corrosion resistance are good and the battery expansion is small, and it is judged that it is improved from the conventional example, 0.01 to 0.5% by weight of In, one of Pb, Cd, and Sn. Alternatively, when a zinc alloy containing 0.01 to 0.3% by weight of two or more elements in total and 0.005 to 0.15% by weight of Ca is used (No. 10, 11, 12, 15, 16) , 1
8,19,20,21,22,23,26,27), and the amount of added element is insufficient or excessive (No. 9, 13,
14, 17, 24, 25, 28), some combined effects are recognized, but there is little difference from the comparatively good one of the conventional examples, or inferior on the contrary, there is an appropriate addition amount range as described above. A remarkable effect is recognized in.

以上のように本発明は、耐食効果の大きい添加元素の組
合せと、これと同時に放電反応の円滑化を主目的とした
元素を適切な範囲で含有させた亜鉛合金を負極に用いる
ことにより、低公害で実用性能のすぐれた亜鉛アルカリ
電池を実現したものである。
As described above, the present invention, by using a zinc alloy containing a combination of additional elements having a large corrosion resistance effect and an element mainly aiming at smoothing of the discharge reaction in an appropriate range at the same time in the negative electrode, It is a pollution-free zinc-alkaline battery with excellent practical performance.

なお、実施例においては、汞化率が1重量%の亜鉛負極
を用いた電池について説明したが、排気機構を備えた空
気電池や水素吸収機構を備えた亜鉛アルカリ電池などに
おいては、水素ガスの発生許容量は比較的大きいので、
このような電池に本発明を適用する場合は、さらに低汞
化率,場合によって無汞化のまま実施することもでき
る。
In the examples, a battery using a zinc negative electrode having a conversion rate of 1% by weight has been described. However, in an air battery provided with an exhaust mechanism, a zinc alkaline battery provided with a hydrogen absorption mechanism, etc. Since the allowable generation amount is relatively large,
When the present invention is applied to such a battery, it can be carried out with a low reduction rate and, in some cases, without reduction.

発明の効果 以上のように本発明によれば、負極亜鉛の汞化率を低減
し、低公害の亜鉛アルカリ電池を得ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to reduce the conversion rate of negative electrode zinc and obtain a low-pollution zinc alkaline battery.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたアルカリマンガン電池の一
部を欠載した側面図である。 2……正極、3……セパレータ、 5……亜鉛負極。
The figure is a side view in which a part of the alkaline manganese battery used in the embodiment of the present invention is omitted. 2 ... Positive electrode, 3 ... Separator, 5 ... Zinc negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植竹 豊秀 広島県竹原市竹原町652―15 (72)発明者 賀川 恵市 広島県竹原市竹原町652―15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 652-15 Takehara-cho, Takehara-shi, Hiroshima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インジウムを0.01〜0.5重量%、
鉛,カドミウム,錫の一種または二種以上を0.01〜
0.5重量%、カルシウムを0.005〜0.15重量
%含有する亜鉛合金を負極活物質に用いた亜鉛アルカリ
電池。
1. 0.01 to 0.5% by weight of indium,
0.01 to 1 or more of lead, cadmium and tin
A zinc alkaline battery using a zinc alloy containing 0.5% by weight and 0.005 to 0.15% by weight of calcium as a negative electrode active material.
JP59197200A 1984-09-20 1984-09-20 Zinc alkaline battery Expired - Lifetime JPH0622116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197200A JPH0622116B2 (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197200A JPH0622116B2 (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6177267A JPS6177267A (en) 1986-04-19
JPH0622116B2 true JPH0622116B2 (en) 1994-03-23

Family

ID=16370477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197200A Expired - Lifetime JPH0622116B2 (en) 1984-09-20 1984-09-20 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108494A (en) * 1991-02-19 1992-04-28 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
EP2720304B1 (en) * 2012-10-15 2018-03-28 VARTA Microbattery GmbH Electrochemical cell with zinc indium electrode

Also Published As

Publication number Publication date
JPS6177267A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH05135776A (en) Cylindrical alkaline battery
JPH0622116B2 (en) Zinc alkaline battery
JPH0622115B2 (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPH0142576B2 (en)
KR890002672B1 (en) Zn-alkali battery
JPH0622118B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPH0685324B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPH0365617B2 (en)
JPH0719600B2 (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPH0682551B2 (en) Zinc alkaline battery
JPS61203563A (en) Alkaline zinc battery
JPH0665031B2 (en) Zinc alkaline battery
JPH0622117B2 (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPH0619993B2 (en) Zinc alkaline battery