JPH0682551B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0682551B2
JPH0682551B2 JP61280218A JP28021886A JPH0682551B2 JP H0682551 B2 JPH0682551 B2 JP H0682551B2 JP 61280218 A JP61280218 A JP 61280218A JP 28021886 A JP28021886 A JP 28021886A JP H0682551 B2 JPH0682551 B2 JP H0682551B2
Authority
JP
Japan
Prior art keywords
zinc
battery
negative electrode
zinc alloy
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61280218A
Other languages
Japanese (ja)
Other versions
JPS63133450A (en
Inventor
晃 三浦
寛治 高田
良二 岡崎
豊秀 植村
恵市 賀川
暢順 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61280218A priority Critical patent/JPH0682551B2/en
Publication of JPS63133450A publication Critical patent/JPS63133450A/en
Publication of JPH0682551B2 publication Critical patent/JPH0682551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン,酸化銀,
酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛アルカ
リ電池において特に負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention relates to zinc as a negative electrode active material, an alkaline electrolyte as an electrolytic solution, and manganese dioxide, silver oxide as a positive electrode active material.
The present invention particularly relates to the improvement of the negative electrode in zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられ
る。これまで亜鉛に5〜10重量%程度の水銀を添加した
汞化亜鉛粉末を用いて水素過電圧を高め、実用的に問題
のない程度に腐食を抑制すること工業的な手法として採
用されている。
2. Description of the Related Art Conventionally, a common problem of this type of zinc alkaline battery is corrosion of the negative electrode zinc during storage by an electrolytic solution. Hitherto, it has been adopted as an industrial method to increase hydrogen overvoltage by using zinc fluoride powder in which about 5 to 10% by weight of mercury is added to zinc to suppress corrosion to the extent that there is no practical problem.

しかし近年、低公害化のため、電池内の含有水銀を低減
させることが社会的ニーズとして高まり、種々の研究が
なされている。例えば、亜鉛中に鉛,カドミウム,イン
ジウム,ガリウムなどを添加した合金粉末を用いて耐食
性を向上させ、汞化率を低減させる方法が提案されてい
る。これらの腐食抑制効果は、添加元素の単体の効果以
外の複数の添加元素による複合効果も大きく、インジウ
ムと鉛あるいはこれらにガリウムを添加したもの、さら
にはガリウムと鉛を添加した亜鉛合金などが従来、有望
な系として提案されている。
However, in recent years, reduction of the mercury contained in the battery has become a social need to reduce pollution, and various studies have been conducted. For example, a method has been proposed in which an alloy powder obtained by adding lead, cadmium, indium, gallium, or the like to zinc is used to improve the corrosion resistance and reduce the conversion rate. These corrosion inhibition effects are largely due to the combined effect of multiple additive elements in addition to the effect of the additive element alone. Indium and lead, or those in which gallium is added, and zinc alloys in which gallium and lead are added are conventionally used. , Has been proposed as a promising system.

また、鉛,ガドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61−78062号公報),ガリウムおよびタリウ
ムにアルミニウムを添加した亜鉛合金(特開昭61−7806
1号公報),アルミニウムと鉛と銀,ガリウム,タリウ
ム,カドミウムの一種または二種以上を添加した亜鉛合
金(特開昭61−78059号公報)等がある。
Further, a zinc alloy in which gallium and silver are added to lead and gadmium (JP-A-61-78062), and a zinc alloy in which aluminum is added to gallium and thallium (JP-A-61-7806).
No. 1), a zinc alloy containing one or more of aluminum, lead, silver, gallium, thallium, and cadmium (Japanese Patent Laid-Open No. 61-78059).

発明が解決しようとする問題点 上記の提案の亜鉛合金は、いずれもある程度の耐食性は
期待でき、汞化率の低減もある程度見込めたが、これら
の元素の組み合わせの効果については現状では十分でな
く、有効な組み合わせによる合金組成を解明することは
なお今後の課題である。
Problems to be Solved by the Invention The zinc alloys of the above proposals can be expected to have corrosion resistance to some extent, and a reduction in the conversion rate can be expected to some extent, but the effect of the combination of these elements is not sufficient at present. , Elucidation of alloy composition by effective combination is still a future subject.

本発明はこのような問題点を解決するもので、負極亜鉛
の耐蝕性を劣化させることなく、汞化率を低減させ、低
公害で放電性能,貯蔵性能,耐漏液性などの総合性能に
すぐれた亜鉛負極を提供することを目的とするものであ
る。
The present invention solves such a problem, and reduces deterioration rate without deteriorating the corrosion resistance of the negative electrode zinc, and is excellent in overall performance such as discharge performance, storage performance and liquid leakage resistance with low pollution. Another object of the present invention is to provide a zinc negative electrode.

問題点を解決するための手段 本発明は、電解液にか性カリ,か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン,酸化銀,酸化水銀,酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、添加元素として、インジウムを0.001〜0.5重量
%、アルミニウム,カルシウム,マグネシウムからなる
群のうち一種以上を0.001〜0.3重量%、バリウムを0.00
1〜0.5重量%含有する亜鉛合金を用いたことを特徴とす
る。
MEANS FOR SOLVING THE PROBLEMS The present invention is directed to an electrolytic solution containing an alkaline aqueous solution containing caustic potash, caustic soda, etc. as a main component, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide as a positive electrode active material. In the negative electrode of a so-called zinc alkaline battery using oxygen or the like, zinc is the main component, indium is 0.001 to 0.5 wt% as an additive element, and at least one of the group consisting of aluminum, calcium and magnesium is 0.001 to 0.3 wt%, 0.00 barium
A zinc alloy containing 1 to 0.5% by weight is used.

本発明は防食効果が比較的大きい元素として知られてい
るInと併用して、単独の添加では防食効果が乏しい、A
l,Ca,Mgから選んだ元素とBaを添加することにより、In
を単独で添加した亜鉛合金よりも数段すぐれた亜鉛合金
が得られることを見出し、添加元素の組合せと添加率を
実験的に検討して完成したものである。
The present invention is used in combination with In, which is known to have a relatively large anticorrosion effect, and the anticorrosion effect is poor when added alone.
By adding an element selected from l, Ca, Mg and Ba,
It was found that a zinc alloy that is several steps better than the zinc alloy added alone was obtained, and it was completed by experimentally examining the combination of addition elements and the addition ratio.

作用 本発明による亜鉛合金における各添加元素の作用機構は
不明確であるが、防食に関する相乗効果は下記のように
推察される。
Action The action mechanism of each additional element in the zinc alloy according to the present invention is unclear, but the synergistic effect on corrosion protection is presumed as follows.

まず、Inは水素過電圧を高める作用と、水銀との親和性
が大きいため、汞化のために添加した水銀を亜鉛合金の
表面や粒界に固定し、少量の水銀の添加で亜鉛合金の表
面や粒界の水銀濃度を高く維持する作用とにより大きな
防食効果があるものと考えられる。又、Al,Ca,Mgの添加
効果は粉体化して負極に用いる亜鉛合金粉の表面積を減
少させて亜鉛合金の腐食を抑制することにある。即ち、
通常負極に用いる亜鉛合金粉は溶融状態の亜鉛合金を高
圧のガスで噴霧固化することによって作られるアトマイ
ズ粉であり、通常の亜鉛又は亜鉛合金のアトマイズ粉の
表面は凝固時に生じる微細な皺で覆われているが、Al,C
a,Mgを添加するとその皺が減少し、粒子の表面を平滑化
することができ、電解液との接触により腐食反応を行う
表面積を減少させ、耐食性を増すことができる。
First, since In has the effect of increasing the hydrogen overvoltage and has a high affinity with mercury, the mercury added for the purpose of fixation is fixed on the surface and grain boundaries of the zinc alloy, and a small amount of mercury is added to the surface of the zinc alloy. It is considered that there is a large anticorrosion effect due to the action of maintaining a high mercury concentration at the grain boundaries and grain boundaries. Further, the effect of adding Al, Ca, and Mg is to reduce the surface area of the zinc alloy powder used for the negative electrode by pulverizing it to suppress corrosion of the zinc alloy. That is,
The zinc alloy powder normally used for the negative electrode is an atomized powder produced by spray-solidifying a molten zinc alloy with high-pressure gas, and the surface of ordinary zinc or zinc alloy atomized powder is covered with fine wrinkles generated during solidification. Al, C
When a and Mg are added, the wrinkles are reduced, the surface of the particles can be smoothed, and the surface area for the corrosion reaction by contact with the electrolytic solution can be reduced to increase the corrosion resistance.

さらに、Baは水銀との親和性が大きいので、Inの防食作
用と類似の作用効果が期待され、Inの作用を補う役割を
果すものと推定される。以上の如く、本発明に用いる亜
鉛合金は少量の水銀で汞化することにより、亜鉛合金の
表面の水銀濃度を高く維持でき、しかも亜鉛合金粉の表
面積を小さくできるので、耐食性が極めてすぐれている
ものと考えられる。本発明は係る亜鉛合金中の添加元素
の組合せとその含有量を実験的に検討し、低汞化率で十
分な耐食性と放電性能を兼ね備えた低公害で実用性の高
い亜鉛アルカリ電池を実現するに有効な手段を完成した
ものである。以下、実施例により詳細に説明する。
Furthermore, since Ba has a high affinity for mercury, it is expected to have a similar action effect to the anticorrosion action of In, and it is presumed that it plays a role of supplementing the action of In. As described above, since the zinc alloy used in the present invention can be maintained with a high mercury concentration on the surface of the zinc alloy by using a small amount of mercury, and the surface area of the zinc alloy powder can be reduced, the corrosion resistance is extremely excellent. It is considered to be a thing. The present invention experimentally examines the combination of additive elements and the content thereof in such a zinc alloy, and realizes a low-pollution and highly-practical zinc-alkaline battery having both low corrosion rate and sufficient corrosion resistance and discharge performance. It has been completed the effective means. Hereinafter, detailed description will be given with reference to examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元素を添
加した各種の亜鉛合金を作成し、約500℃で溶融して圧
縮空気により噴射して粉体化し、50〜150メッシュの粒
度範囲にふるい分けした。次いで、か性カリの10重量%
水溶液中に上記粉体を投入し、撹拌しながら所定量の水
銀を滴下して汞化した。その後、水洗し、アセトンで置
換して乾燥し、汞化亜鉛合金粉を作成した。さらに本発
明の実施例以外の汞化亜鉛粉又は汞化亜鉛合金粉につい
ても比較例として同様の方法で作成した。
Example Various zinc alloys were prepared by adding various elements shown in the following table to a zinc ingot having a purity of 99.997%, melted at about 500 ° C., sprayed with compressed air to be powdered, and 50 to 150 mesh. It screened in the particle size range of. Then 10% by weight of caustic potash
The above-mentioned powder was put into an aqueous solution, and a predetermined amount of mercury was dropped to the solution while agitating it. Then, it was washed with water, replaced with acetone and dried to prepare a zinc hydride alloy powder. Further, zinc fluorinated powder or zinc hydride alloy powder other than the examples of the present invention was prepared by the same method as a comparative example.

これらの汞化粉末を用い図に示すボタン形酸化銀電池を
製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解液
をカルボキシメチルセルロースによりゲル化し、このゲ
ル中に汞化亜鉛合金粉末を分散させた亜鉛負極である。
3はセルロース系の保液材、4は多孔性ポリプロピレン
製のセパレータ、5は酸化銀に黒鉛を混合して加圧成形
した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はニッケルメッキを施したステンレス鋼製の正極
缶である。8はポリプロピレン製のガスケットで、正極
缶7の開口部の折り曲げにより正極缶7と封口板1との
間に圧縮されている。試作した電池は直径11.6mm,高さ
5.4mmで負極の汞化粉末の重量を193mgに統一し、水銀の
添加量(汞化率)は亜鉛合金粉に対し、いずれも1.0重
量%とした。
A button type silver oxide battery shown in the figure was manufactured using these selected powders. In the figure, 1 is a stainless steel sealing plate, the inner surface of which is plated with copper 1 '. Reference numeral 2 is a zinc negative electrode in which a 40 wt% aqueous solution of caustic potash was used to gel an electrolytic solution saturated with zinc oxide by carboxymethyl cellulose, and a zinc halide alloy powder was dispersed in the gel.
3 is a cellulosic liquid-retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing silver oxide with graphite and pressure-molded, 6 is a positive electrode ring made of nickel plated on iron, and 7 is nickel plated It is a positive electrode can made of stainless steel. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 by bending the opening of the positive electrode can 7. The prototype battery has a diameter of 11.6 mm and a height.
At 5.4 mm, the weight of the selective powder of the negative electrode was unified to 193 mg, and the amount of mercury added (selective rate) was 1.0% by weight with respect to the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60℃で1ケ月保存し
た後の放電性能と電池総高の変化、及び目視判定での漏
液電池の個数を次表に示す。放電性能は、20℃において
510Ωで0.9Vを終止電圧として放電した時の放電持続時
間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, the change in discharge performance and total battery height after storage at 60 ° C for 1 month, and the number of leakage batteries by visual judgment. Discharge performance at 20 ℃
It was expressed as the discharge duration when discharged at a termination voltage of 0.9 V at 510 Ω.

この表において、電池総高の変化は電池封口後、各電池
構成要素間への応力の関係が安定化するまでの期間は経
時的に電池総高が減少するのが通例である。しかし亜鉛
負極の腐食に伴う水素ガス発生の多い電池では上記の電
池総高の減少に対抗する電池内圧の上昇により、電池総
高を増大させる傾向が強くなる。従って、貯蔵による電
池総高の増減により亜鉛負極の耐食性を評価することが
できる。また、耐食性が不十分な電池では電池総高が増
大するほか、電池内圧の上昇により耐漏液性が劣化する
とともに、腐食による亜鉛の消耗,亜鉛表面の酸化膜の
形成,水素ガスの内在による放電反応の阻害等により、
放電性能が著しく劣化することになり、耐漏液性,放電
持続時間とも、亜鉛負極の耐食性に大きく依存する。
In this table, the change in the total battery height generally indicates that the total battery height decreases with time in the period after the sealing of the battery and until the relation of the stress between the battery constituent elements is stabilized. However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, the increase in the battery internal pressure against the above-described decrease in the battery total height increases the tendency to increase the battery total height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by increasing or decreasing the total height of the battery due to storage. In addition, in the case of batteries with insufficient corrosion resistance, the total height of the battery increases, and the leakage resistance deteriorates due to the increase in the battery internal pressure, and zinc consumption due to corrosion, formation of an oxide film on the zinc surface, and discharge due to the internal hydrogen gas Due to reaction inhibition, etc.
The discharge performance is significantly deteriorated, and both the leakage resistance and the discharge duration depend largely on the corrosion resistance of the zinc negative electrode.

この表に見られるように、Inを単独で添加したNo.1の電
池に対し、Al,Ca,Agのいずれかを併在させたNo.2,3,4の
場合はいずれもNo.1の電池より耐食性が良く、特にCa,A
lの複合効果が大きい。しかしこれらは、1.0重量%とい
う低汞化率では実用的に満足すべき特性が得られておら
ず、耐食性が十分とは言えない。
As can be seen in this table, in the case of No. 1 battery in which In was added alone, Al, Ca, and Ag were co-existed in No. 2, 3, and 4, all were No. 1 Corrosion resistance is better than other batteries, especially Ca, A
The combined effect of l is large. However, these do not have practically satisfactory characteristics at a low weight reduction rate of 1.0% by weight, and thus cannot be said to have sufficient corrosion resistance.

これらの従来例に対し、InとAl,Ca,Mgの一種以上を併存
させ、これにさらにBaを併存させたNo.5〜27のうち、各
添加元素の含有量が適切なものでは、さらにすぐれた特
性を示しており、これはBaと他元素との複合効果による
もので、例えば、No.2とNo.10,No.3とNo.15,No.4とNo.1
8の対比により明らかである。また、各元素の適切な含
有量は、Inが0.001〜0.5重量%、Al,Ca,Mgから選ばれた
元素の一種以上の元素の含有量の和が0.001〜0.3重量
%、Baが0.001〜0.5重量%の範囲で各々含有されている
亜鉛合金が有効で、各添加元素の含有量が上記より過
剰、又は不足の場合は従来例と大差ないか、逆効果の特
性値を示している。以上の如く、本発明はIn,Baを必須
添加元素とし、さらに、Al,Ca,Mgのうち一種以上を必須
添加元素として、各々の適切な量を含有させた亜鉛合金
を負極に用いることにより、低汞化率で放電性能,貯蔵
性,耐漏液性など、実用性能のすぐれた低公害の亜鉛ア
ルカリ電池を完成したものである。
In contrast to these conventional examples, In and Al, Ca, one or more of Mg, coexisting, in addition to Ba No. 5 ~ 27, the content of each additive element is appropriate, further, It shows excellent properties, which is due to the combined effect of Ba and other elements.For example, No.2 and No.10, No.3 and No.15, No.4 and No.1
This is clear from the contrast of 8. Further, a suitable content of each element is 0.001 to 0.5 wt% In, the total content of one or more elements selected from Al, Ca, Mg is 0.001 to 0.3 wt%, Ba 0.001 to The zinc alloys each contained in the range of 0.5% by weight are effective, and when the content of each additive element is excessive or insufficient from the above, it is not much different from the conventional example or shows the characteristic value of the opposite effect. As described above, the present invention, In, Ba as an essential additive element, further, Al, Ca, as an essential additive element of one or more of Mg, by using a zinc alloy containing an appropriate amount of each for the negative electrode We have completed a low-pollution zinc-alkaline battery with low practicality, excellent discharge performance, storability, and leakage resistance.

尚、実施例において、添加元素を添加する方法として、
溶融亜鉛地金中に添加する方法を採ったが、アマルガム
化し易いInやBaを添加する場合には、予め添加元素を溶
解させて、汞化と同時に添加する方法を採ることもでき
る。また、亜鉛よりイオン化傾向の小さいInを添加する
場合、例えば塩化インジウムなどの溶液中で、Znとの置
換反応で、亜鉛合金の表面に析出させて合金化すること
もでき、いずれの方法を採っても、本発明と同様の効果
を得ることができ、本発明の実施態様に包含される。
In the examples, as a method for adding the additional element,
Although the method of adding into the molten zinc ingot is adopted, when adding In or Ba that easily forms an amalgam, it is also possible to dissolve the additive element in advance and add it at the same time as the selective conversion. Further, in the case of adding In, which has a smaller ionization tendency than zinc, for example, in a solution of indium chloride or the like, it can be deposited on the surface of a zinc alloy by a substitution reaction with Zn to form an alloy, and any method is adopted. However, the same effects as those of the present invention can be obtained and are included in the embodiments of the present invention.

また、実施例においては、1.0重量%の汞化亜鉛負荷を
用いた電池について説明したが、極めて厳密な貯蔵性能
や耐漏液性を要求される場合は3重量%程度を上限と
し、1.0重量%以上の汞化率を適用するのが適切な場合
があり、逆に、排気装置を備えた空気電池や、水素吸収
機構を備えた密閉形の亜鉛アルカリ電池などにおいては
水素ガスの発生許容量は比較的多いので、1.0重量%未
満の汞化率、場合によっては無汞化のまま実施すること
もできる。
Further, in the examples, a battery using a 1.0 wt% zinc hydride load was described, but when extremely strict storage performance and liquid leakage resistance are required, the upper limit is about 3 wt% and 1.0 wt% In some cases, it is appropriate to apply the above conversion rates, and conversely, in an air battery equipped with an exhaust device or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism, the allowable hydrogen gas generation amount is Since the amount is relatively large, it is possible to carry out the treatment with a reduction ratio of less than 1.0% by weight, and in some cases without reduction.

発明の効果 以上のように本発明は、負極亜鉛の汞化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的であ
る。
Effects of the Invention As described above, the present invention can reduce the conversion rate of negative electrode zinc,
It is extremely effective in obtaining a low-pollution zinc alkaline battery.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸化銀正
極。
The figure is a side view in which a button-shaped silver oxide battery used in an example of the present invention is partially sectioned. 2 ... Zinc negative electrode, 4 ... Separator, 5 ... Silver oxide positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植村 豊秀 広島県竹原市竹原町652−15 (72)発明者 賀川 恵市 広島県竹原市竹原町652−15 (72)発明者 笠原 暢順 広島県竹原市竹原町1531−45 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Megumi City, Hiroshima Prefecture Takehara City, Takehara Town 652-15 (72) Inventor Nobuyoshi Kasahara 1531-45 Takehara Town, Takehara City, Hiroshima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インジウムを0.001〜0.5重量%,アルミニ
ウム,カルシウム,マグネシウムからなる群のうち1種
以上を0.001〜0.3重量%,バリウムを0.001〜0.5重量%
含有する亜鉛合金を負極活物質に用いた亜鉛アルカリ電
池。
1. Indium is 0.001 to 0.5% by weight, at least one of the group consisting of aluminum, calcium and magnesium is 0.001 to 0.3% by weight, and barium is 0.001 to 0.5% by weight.
A zinc alkaline battery using the contained zinc alloy as a negative electrode active material.
JP61280218A 1986-11-25 1986-11-25 Zinc alkaline battery Expired - Lifetime JPH0682551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280218A JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280218A JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS63133450A JPS63133450A (en) 1988-06-06
JPH0682551B2 true JPH0682551B2 (en) 1994-10-19

Family

ID=17621958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280218A Expired - Lifetime JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0682551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003415A6 (en) * 1989-11-10 1992-03-17 Acec Union Miniere Zinc powder for alkaline batteries.

Also Published As

Publication number Publication date
JPS63133450A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0371738B2 (en)
JPH0682551B2 (en) Zinc alkaline battery
JPH0719600B2 (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPH0142576B2 (en)
JPH0622120B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPH0685324B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0622116B2 (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS61203563A (en) Alkaline zinc battery
JPS61290651A (en) Zinc alkaline battery
JPH0365617B2 (en)
JPH0622117B2 (en) Zinc alkaline battery
JPS63178453A (en) Zinc alkaline battery
JPH0534778B2 (en)
JPS61181067A (en) Zinc alkaline cell
JPH0365618B2 (en)
JPH0622115B2 (en) Zinc alkaline battery