JPH0365618B2 - - Google Patents

Info

Publication number
JPH0365618B2
JPH0365618B2 JP60020368A JP2036885A JPH0365618B2 JP H0365618 B2 JPH0365618 B2 JP H0365618B2 JP 60020368 A JP60020368 A JP 60020368A JP 2036885 A JP2036885 A JP 2036885A JP H0365618 B2 JPH0365618 B2 JP H0365618B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
mercury
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020368A
Other languages
Japanese (ja)
Other versions
JPS61181064A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60020368A priority Critical patent/JPS61181064A/en
Publication of JPS61181064A publication Critical patent/JPS61181064A/en
Publication of JPH0365618B2 publication Critical patent/JPH0365618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活物質として亜鉛、電解液とし
てアルカリ水溶液、正極活物質として二酸化マン
ガン、酸化銀、酸化水銀、酸素、水酸化ニツケル
等を用いる亜鉛アルカリ電池の負極の改良に関す
るものである。 従来の技術 亜鉛アルカリ電池の共通した問題点として、保
存中の負極亜鉛の電解液による腐食が挙げられ
る。従来、亜鉛に5〜10重量%程度の水銀を添加
した汞化亜鉛粉末を用いて水素過電圧を高め、実
用的に問題のない程度に腐食を抑制することが工
業的な手法として採用されている。しかし近年、
低公害化のため、電池内の含有水銀量を低減させ
ることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛、カドミウ
ム、インジウムなどを添加した合金粉末を用いて
耐食性を向上させ、汞化率を低減させる方法が提
案されている。これらの腐食抑制効果は、添加元
素の単体の効果以外に複数の添加元素による複合
効果も大きく、インジウムと鉛あるいはこれにさ
らにガリウムを添加したもの、さらにはガリウム
と鉛を添加した亜鉛合金などが従来、有望な系と
して提案されている。 これらはいずれもある程度の耐食性が期待で
き、汞化率の低減もある程度見込めるものの、さ
らに一層、耐食性のよい合金系の探索が必要であ
る。 また、主にマンガン乾電池の改良をめざして、
亜鉛又は亜鉛合金にインジウムを添加した亜鉛合
金を負極に使用することが防食上の効果が大きい
という提案がある(特公昭33−3204号)。 発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、
インジウムの他にFe、Cd、Cr、Pb、Ca、Hg、
Bi、Sb、Al、Ag、Mg、Si、Ni、Mn等を不純
物又は添加物として1又は2種以上を含む場合を
包含して記載されているが、インジウムと鉛を添
加元素として併用した場合の有効性以外には、上
記の雑多な各元素を不純物として含むのか、有効
な元素として添加するのかの区分は明示されてい
なく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム、鉛
以外の記載はない。 これらの元素の組合せの効果について、しかも
これを亜鉛アルカリ電池において検討し、有効な
合金組成を求めることは、なお今後の課題であ
る。 本発明は、負極亜鉛の耐食性、放電性能を劣化
させることなく汞化率を低減させ、低公害で放電
性能、貯蔵性、耐漏液性などの総合性能のすぐれ
た亜鉛アルカリ電池を提供することを目的とす
る。 問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなど
を主成分とするアルカリ水溶液、負極活物質に亜
鉛、正極活物質に二酸化マンガン、酸化銀、酸化
水銀、酸素などを用いるいわゆる亜鉛アルカリ系
電池の負極に、亜鉛を主成分とし、ニツケル
(Ni)を0.01〜0.5重量%、インジウム(In)を
0.01〜0.5重量%、タリウム(Tl)を0.01〜0.5重
量%含有する亜鉛合金を用いたことを特徴とす
る。 本発明は、前記の従来例の亜鉛合金中の添加元
素又は不純物のうち、従来添加効果が知られてい
なかつたNiに注目して実験を行ない、従来から
有効な添加元素として知られているIn、Tlとの
複合効果が極めて顕著に得られることを見出し、
亜鉛負極の低汞化率化に有効な亜鉛合金組成を割
り出したものである。 作 用 Ni、或いはIn、Tlの単独での添加による防食
効果、及びこれらの元素の複合効果についての作
用機構は不明確であるが、次のように推察され
る。 まず、亜鉛に対するNiの溶解度は小さいが噴
射法で粉体化する際の冷却速度が103℃/secのオ
ーダーで非常に大きいため、後述の実施例での適
正な含有量(0.01〜0.5重量%)の程度の亜鉛合
金粉においてはNiが亜鉛と溶体化する可能性が
ある。従つて、亜鉛合金を表面から汞化した場
合、水銀と親和性の小さいNiが結晶内への水銀
の拡散を抑制し、亜鉛合金表面の水銀濃度を高く
維持することに寄与することが期待される。その
反面、亜鉛合金表面の水銀のなじみを却つて悪く
する懸念があり、Niを単独で添加したのみでは
大きな防食効果は得られない。また、In、Tlは
亜鉛合金の水素過電圧を大きくするとともに、水
銀となじみ易いため、汞化により亜鉛合金の表面
状態を均一化するために有効で、さらに、亜鉛合
金の表面や結晶粒界に水銀を固定する役割も期待
される。またIn、Tlの上記の防食用添加元素と
しての効果はInまたはTlを単独で添加するより
も同時に添加した方がより大きいことが知られて
いる。本発明は少量の水銀の使用により、亜鉛合
金の表面の水銀濃度を極力高めてより優れた耐食
性の低汞化率亜鉛負極を得るために、Niによる
結晶内への水銀拡散抑制作用、Ti、Inの併存に
よる亜鉛合金表面と結晶粒界での水銀の固定作用
を複合させたものである。本発明は以上の推察の
もとに実験的な検討を行ない、負極に用いる亜鉛
合金の耐食性を著しく改善して低汞化率化に成功
し、放電性能と貯蔵性にすぐれた低公害の亜鉛ア
ルカリ電池を提供したものである。 実施例 純度99.997%以上の亜鉛地金に、次表に示す各
種の元素を添加した各種の亜鉛合金を作成し、約
500℃で溶融して圧縮空気により噴射して粉体化
し、50〜150メツシユの粒度範囲にふるい分けし
た。次いで、か性カリの10重量%水溶液中に上記
粉体を投入し、攪拌しながら所定量の水銀を滴下
して汞化した。その後水洗し、アセトンで置換し
て乾燥し、汞化亜鉛合金粉を作成した。さらに本
発明の実施例以外の汞化亜鉛粉、又は汞化亜鉛合
金粉についても比較例として同様の方法で作成し
た。 これらの汞化粉末を用い、図に示すボタン形酸
化銀電池を製作した。図において、1はステンレ
ス鋼製の封口板で、その内面には銅メツキ1′が
施されている。2はか性カリの40重量%水溶液に
酸化亜鉛を飽和させた電解液をカルボキシメチル
セルロースによりゲル化し、このゲル中に汞化亜
鉛合金粉末を分散させた亜鉛負極である。3はセ
ルロース系の保液材、4は多孔性ポリプロピレン
製のセパレータ、5は酸化銀に黒鉛を混合して加
圧成形した正極、6は鉄にニツケルメツキを施し
た正極リング、7はステンレス鋼製の正極缶で、
その内外面にはニツケルメツキが施されている。
8はポリプロピレン製のガスケツトで、正極缶の
折り曲げにより正極缶と封口板との間に圧縮され
ている。 試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、また水
銀の添加量(汞化率)は、亜鉛合金粉に対し、い
ずれも1重量%とした。 試作した電池の亜鉛合金の組成と、60℃で1カ
月間保存した後の放電性能と電池総高の変化を次
表に示す。なお放電性能は、20℃において510Ω
で0.9Vを終止電圧として放電したときの放電持
続時間で表わした。
INDUSTRIAL APPLICATION FIELD The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using zinc as the negative electrode active material, an alkaline aqueous solution as the electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide, etc. as the positive electrode active material. It is something. Prior Art A common problem with zinc-alkaline batteries is corrosion of the negative electrode zinc by electrolyte during storage. Conventionally, an industrial method has been used to increase the hydrogen overvoltage by using zinc chloride powder containing 5 to 10% by weight of mercury to suppress corrosion to a level that poses no practical problems. . However, in recent years,
In order to reduce pollution, there is a growing social need to reduce the amount of mercury contained in batteries, and various studies are being conducted. For example, a method has been proposed in which an alloy powder in which lead, cadmium, indium, etc. are added to zinc is used to improve corrosion resistance and reduce the degree of corrosion. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements. It has been proposed as a promising system. Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance. In addition, we mainly aim to improve manganese dry batteries.
It has been proposed that the use of zinc or a zinc alloy prepared by adding indium to a zinc alloy for the negative electrode has a great anticorrosive effect (Japanese Patent Publication No. 33-3204). Problems to be solved by the invention Among the above proposals, as an element in zinc alloy,
In addition to indium, Fe, Cd, Cr, Pb, Ca, Hg,
The description includes cases in which one or more of Bi, Sb, Al, Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of corrosion prevention, there is no clear distinction as to whether each of the miscellaneous elements listed above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention. There is no description of the amount of addition other than indium and lead. It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition. The present invention aims to provide a zinc-alkaline battery with low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance, by reducing the corrosion resistance and discharge performance of the negative electrode zinc. purpose. Means for Solving the Problems The present invention uses an aqueous alkaline solution containing caustic potash, caustic soda, etc. as the main components in the electrolyte, zinc as the negative electrode active material, manganese dioxide, silver oxide, mercury oxide, etc. as the positive electrode active material, The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. is made mainly of zinc, with 0.01 to 0.5% by weight of nickel (Ni) and indium (In).
It is characterized by using a zinc alloy containing 0.01 to 0.5% by weight and 0.01 to 0.5% by weight of thallium (Tl). In the present invention, among the additive elements or impurities in the conventional zinc alloy, experiments were conducted focusing on Ni, for which the effects of addition were not known. , found that the combined effect with Tl was extremely significant,
This study determined the effective zinc alloy composition for reducing the rate of reduction of zinc negative electrodes. Effect The mechanism of action regarding the anticorrosion effect of adding Ni, In, or Tl alone, and the combined effect of these elements is unclear, but it is inferred as follows. First, although the solubility of Ni in zinc is small, the cooling rate during powderization by the injection method is extremely high, on the order of 10 3 °C/sec. %), there is a possibility that Ni may become solution with zinc in zinc alloy powder. Therefore, when a zinc alloy is oxidized from the surface, Ni, which has a low affinity for mercury, is expected to suppress the diffusion of mercury into the crystal and contribute to maintaining a high mercury concentration on the surface of the zinc alloy. Ru. On the other hand, there is a concern that the adhesion of mercury to the surface of the zinc alloy may become worse, and adding Ni alone will not provide a significant anticorrosion effect. In addition, In and Tl increase the hydrogen overvoltage of zinc alloys and are easily compatible with mercury, so they are effective in making the surface condition of zinc alloys uniform through oxidation, and they also improve the surface and grain boundaries of zinc alloys. It is also expected to play a role in fixing mercury. Furthermore, it is known that the effects of In and Tl as the above-mentioned anticorrosion additive elements are greater when In and Tl are added simultaneously than when added alone. The present invention uses a small amount of mercury to maximize the mercury concentration on the surface of the zinc alloy to obtain a zinc negative electrode with better corrosion resistance and a lower rate of corrosion. This combines the fixation of mercury on the zinc alloy surface and grain boundaries due to the coexistence of In. The present invention has been made through experimental studies based on the above speculations, and has succeeded in significantly improving the corrosion resistance of the zinc alloy used in the negative electrode and lowering the rate of oxidation. It provides alkaline batteries. Example: Various zinc alloys were created by adding various elements shown in the following table to zinc ingot with a purity of 99.997% or more.
It was melted at 500°C, pulverized by blasting with compressed air, and sieved to a particle size range of 50-150 mesh. Next, the powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise to the solution while stirring. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc chloride alloy powder. Further, zinc chloride powder or zinc chloride alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples. The button-shaped silver oxide battery shown in the figure was manufactured using these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40% by weight aqueous solution of caustic potassium saturated with zinc oxide with carboxymethyl cellulose, and dispersing zinc oxide alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is made of stainless steel. With the positive electrode can,
Its inner and outer surfaces are decorated with nickel metal.
A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the oxidized powder of the negative electrode was unified to 193 mg, and the amount of mercury added (the oxidized ratio) was 1% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance is 510Ω at 20℃.
It is expressed as the discharge duration when discharge is performed with a final voltage of 0.9V.

【表】【table】

【表】 この表における、電池総高の変化については、
電池封口後、経時的に各電池構成要素間への応力
の関係が安定化するまでの期間は電池総高が減少
するのが通例である。しかし、亜鉛負極の腐食に
伴う水素ガス発生の多い電池では、上記の電池総
高の減少力に対抗する電池内圧の上昇により電池
総高を増大させる傾向が強くなる。従つて、貯蔵
による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な
電池では、電池総高が増大するほか、電池内圧の
上昇により耐漏液性が劣化するとともに、腐食に
よる亜鉛の消耗、亜鉛表面の酸化膜の形成や、水
素ガスの内在による放電反応の阻害等により放電
性能が著しく劣化することになり、放電持続時間
も又亜鉛負極の耐食性に依存する要素が大きい。 表において、本発明の比較例として挙げたNo.1
〜6のうち、単独で添加元素を添加した亜鉛合金
を使用した場合(No.1、2、3)よりも二種の元
素を添加した場合(No.4、5、6)の方が亜鉛負
極の耐食性、放電性能とも幾分改善されている。
しかし、Ni、In、Tlの三元素を適正な含有量で
併存させた本発明の実施例(No.8、9、10、13、
14、17、18)の場合には前記の比較例に較べ、一
段と耐食性、放電性能がすぐれ、添加元素の複合
効果が顕著に示される。一方、上記の三元素を併
存させた場合でも含有量に過不足のある場合(No.
7、11、12、15、16、19)は比較例と大差なく、
複合効果が乏しい。上述の通り、本発明は上記の
三元素を適正な含有量で併存させた亜鉛合金を負
極に用いることにより低汞化率化に成功したもの
で、各元素の含有量は0.01≦Ni≦0.5重量%、0.01
≦In≦0.5重量%、0.01≦Tl≦0.5重量%とするの
が適切である。 以上のように本発明は前述の添加元素の組合わ
せによる相乗効果により負極に用いる亜鉛合金の
耐食性が向上することを見出し、適切な含有量を
割り出して低公害で実用性能のすぐれた亜鉛アル
カリ電池を実現したものである。なお、実施例に
おいては汞化亜鉛負極を用いた電池について説明
したが、開放式の空気電池や水素吸収機構を備え
た密閉型の亜鉛アルカリ電池などにおいては、水
素ガスの発生許容量は比較的多いので、このよう
な場合に本発明を適用する場合は、さらに低汞化
率、場合によつては無汞化のまま実施することも
できる。 発明の効果 以上のように本発明は、負極亜鉛の汞化率を低
減し、低公害の亜鉛アルカリ電池を得るに極めて
効果的である。
[Table] Regarding changes in total battery height in this table,
After the battery is sealed, the total height of the battery typically decreases during the period until the stress relationship between the battery components becomes stable over time. However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on the change in total battery height due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. The discharge performance is significantly deteriorated due to inhibition of the discharge reaction by the zinc negative electrode, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode. In the table, No. 1 listed as a comparative example of the present invention
- 6, zinc alloys with two elements added (Nos. 4, 5, 6) contain more zinc than when using zinc alloys with only one additive element added (Nos. 1, 2, 3). Both the corrosion resistance and discharge performance of the negative electrode have been improved to some extent.
However, Examples of the present invention (Nos. 8, 9, 10, 13,
In the case of Nos. 14, 17, and 18), the corrosion resistance and discharge performance are even better than those of the comparative examples, and the combined effects of the added elements are clearly exhibited. On the other hand, even when the above three elements coexist, there is an excess or deficiency in their content (No.
7, 11, 12, 15, 16, 19) are not significantly different from the comparative examples,
The combined effect is poor. As mentioned above, the present invention has succeeded in reducing the reduction rate by using a zinc alloy in which the above three elements coexist in appropriate contents in the negative electrode, and the content of each element is 0.01≦Ni≦0.5. Weight%, 0.01
It is appropriate that ≦In≦0.5% by weight and 0.01≦Tl≦0.5% by weight. As described above, the present invention has found that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and by determining the appropriate content, we have developed a zinc-alkaline battery with low pollution and excellent practical performance. This has been realized. In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively small. Therefore, when applying the present invention to such cases, it is possible to further reduce the rate of change, or in some cases, it may be carried out without changing the rate of change. Effects of the Invention As described above, the present invention is extremely effective in reducing the oxidation rate of negative electrode zinc and obtaining a low-pollution zinc-alkaline battery.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電
池の一部を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸
化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケルを0.01〜0.5重量%、インジウムを
0.01〜0.5重量%、タリウムを0.01〜0.5重量%含
有する亜鉛合金を負極活物質に用いた亜鉛アルカ
リ電池。
1 0.01-0.5% by weight of nickel, indium
A zinc-alkaline battery using a zinc alloy containing 0.01 to 0.5% by weight and 0.01 to 0.5% by weight of thallium as a negative electrode active material.
JP60020368A 1985-02-05 1985-02-05 Zinc alkaline cell Granted JPS61181064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020368A JPS61181064A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020368A JPS61181064A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Publications (2)

Publication Number Publication Date
JPS61181064A JPS61181064A (en) 1986-08-13
JPH0365618B2 true JPH0365618B2 (en) 1991-10-14

Family

ID=12025133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020368A Granted JPS61181064A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS61181064A (en)

Also Published As

Publication number Publication date
JPS61181064A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
JPH0365618B2 (en)
JPH0142576B2 (en)
JPH0365621B2 (en)
JPH0365619B2 (en)
JPH0622119B2 (en) Zinc alkaline battery
JPH0365620B2 (en)
JPS62123653A (en) Zinc-alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0365623B2 (en)
JPH0365622B2 (en)
JPH0143429B2 (en)
JPS6290860A (en) Zinc alkaline cell
JPH0622118B2 (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPS636747A (en) Zince alkaline battery
JPH0365617B2 (en)
JPS6290851A (en) Zinc alkaline cell
JPS6290855A (en) Zinc alkaline cell
JPH0441470B2 (en)
JPS61181066A (en) Zinc alkaline cell
JPS61140068A (en) Zinc alkali battery
JPS61181067A (en) Zinc alkaline cell
JPS61140065A (en) Zinc alloy battery