JPH0441470B2 - - Google Patents

Info

Publication number
JPH0441470B2
JPH0441470B2 JP59033424A JP3342484A JPH0441470B2 JP H0441470 B2 JPH0441470 B2 JP H0441470B2 JP 59033424 A JP59033424 A JP 59033424A JP 3342484 A JP3342484 A JP 3342484A JP H0441470 B2 JPH0441470 B2 JP H0441470B2
Authority
JP
Japan
Prior art keywords
zinc
mercury
negative electrode
discharge
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033424A
Other languages
Japanese (ja)
Other versions
JPS60177553A (en
Inventor
Akira Miura
Ryoji Okazaki
Tsukasa Oohira
Kanji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3342484A priority Critical patent/JPS60177553A/en
Publication of JPS60177553A publication Critical patent/JPS60177553A/en
Publication of JPH0441470B2 publication Critical patent/JPH0441470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活物質として亜鉛、電解液とし
てアルカリ水溶液、正極活物質として二酸化マン
ガン、酸化銀、酸化水銀、酸素等を用いる亜鉛ア
ルカリ一次電池の負極の改良に係るものである。 従来の構成とその問題点 上記の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げ
られる。従来、亜鉛に5〜10%程度の水銀を添加
した汞化粉末を用いて水素過電圧を高め、実用的
に問題のない程度に腐食を抑制することが工業的
な手法として採用されている。しかし近年、低公
害化のため、電池内の含有水銀量を低減させるこ
とが社会的ニーズとして高まり、種々の研究がな
されている。例えば、亜鉛中に鉛、カドミウム、
インジウムなどの添加した合金粉末を用いて耐食
性を向上させ、汞化率を低減させる方法が提案さ
れている。これは腐食抑制には効果があるが、汞
化率を低減させることにより強放電性能が悪化す
るという逆効果が見られる。これらの提案におい
て、強放電性能が劣化する原因は明確ではない
が、低汞化率の場合、放電生成物が活性な亜鉛の
表面を被い、放電反応に必要な水銀イオンの亜鉛
表面への供給をさまたげる度合が水銀含量の多い
場合に比較して大きいためと考えられ、耐食性が
十分で、強放電性能など電池性能が劣化されるこ
となく汞化率を低減させることが今後の重要課題
とされている。 発明の目的 本発明は負極亜鉛の耐食性、放電性能を劣化さ
せることなく汞化率を低減させ、低公害で、放電
性能、貯蔵性、耐漏液性などの性能のすぐれた亜
鉛アルカリ一次電池を提供することを目的とす
る。 発明の構成 本発明は亜鉛を主成分とし、アルミニウム、マ
グネシウム、カルシウムからなる群より選ばれた
少なくとも一種の元素を含有する亜鉛合金を粉体
化し、その表面にタリウム、インジウム、ガリウ
ム、銀からなる群より選ばれた一種以上の被覆元
素を付着した粉体を亜鉛アルカリ電池の負極活物
質に用いることを特徴とし、さらに詳しくはこの
粉体の少くとも表面層の被覆元素を亜鉛に対し3
%以下の水銀量で汞化して亜鉛アルカリ一次電池
の負極活物質に用いるものである。 本発明はまず、放電反応生成物が活性な亜鉛表
面を被い、水銀イオンの供給を阻害し、大電流で
の放電反応が円滑に進行しない傾向が特に汞化率
の低い亜鉛を用いる場合に顕著に表われる問題を
アルミニウム、マグネシウム、カルシウムから選
ばれた元素を亜鉛に添加して合金化することによ
り解決し、さらに汞化率の低い状態で耐食性を確
保するためインジウム、タリウム、ガリウム、銀
からなる群より選ばれた水銀の親和性と水素過電
圧が大きい元素で前記亜鉛合金表面を被覆し、こ
の被覆層を優先的に汞化することにより表面の水
銀濃度を耐食性を確保するに十分な高濃度とし、
亜鉛合金粉末の中心部に至る程低濃度としたもの
で含有する水銀の総量が低い状態で耐食性の大電
流放電性能を同時に得ることを可能にしたもので
ある。前記のアルミニウム、マグネシウム、カル
シウムを亜鉛合金の添加元素とした場合の大電流
放電性能向上の効果は、後述の実施例のように明
白であるが、その作用機構の解明は不十分であ
り、推定するに負極亜鉛中に合金として含まれて
いる亜鉛より卑な電位を有するアルミニウム、マ
グネシウム、カルシウムが亜鉛とともに放電し、
その放電生成物が亜鉛の放電生成物の電解液中へ
の溶解を促進させるか、未溶解の放電生成物の層
がち密化して、亜鉛表面が不働態化する作用を緩
和する役割を果しているものと考えられる。 これにより亜鉛粉末の活性面に水酸イオンが豊
富に供給される状態が亜鉛が消耗し尽すまで継続
して確保され、亜鉛の放電反応の利用率が高まる
ものと考えられる。 上記の亜鉛合金の表面を被覆するインジウム、
タリウム、ガリウム、銀からなる群より選ばれた
元素の役割は低汞化率で亜鉛負極の防食を果すこ
とにあり、これらの被覆元素は水銀との親和性が
大きいので、汞化された被覆層から亜鉛合金内部
へ水銀が拡散するのを防止でき、表面の水銀濃度
が高く、亜鉛合金内部の濃度の低い状態を維持で
きることにより、低汞化率で耐食性が確保され
る。以上のように本発明は、添加合金元素により
放電時の不働態化を抑止し、被覆元素により少量
の水銀で表面汞化層の確保することにより保存
性、放電性能ともにすぐれた低汞化率亜鉛負極を
提供するものである。次に実施例により詳細に説
明する。 実施例の説明 純度、99.997%で鉛、カドミウム、鉄を不純物
として微量含む亜鉛地金に、アルミニウム、マグ
ネシウム、カルシウム、又はこれらの元素を組合
せて添加した各種の合金を作成し、約500℃で溶
融して圧縮空気により噴射して噴射とし、50〜
150メツシユの粒度範囲にフルイ別けた。次いで、
タリウム、ガリウム、インジウム、銀の各硫酸円
又はその混合物の所定量を3%塩酸水溶液中に溶
解又は分散させ、前記の各亜鉛合金粉を撹拌しな
がら添加し、置換反応により亜鉛合金の表面の前
記の各金属元素を被覆させた。次いで、所定量の
水銀を撹拌しながら添加し、表面層から汞化させ
た。この後水洗し、アセトンで置換して乾燥し、
汞化亜鉛合金粉末を作成した。 さらに、比較例として、合金元素を添加しない
地金を粒粉体化して被覆元素を被覆し、ついで汞
化したもの及び亜鉛合金粉末に被覆元素を被覆し
ないで汞化したものを各々作成した。 これらの各汞化粉末を用い、図に示すボタン形
酸化銀電池を製作した。図において、1はステン
スレスチール製の封口板であり、その内面には銅
メツキ1′が施されている。2は濃度40%のか性
カリ水溶液に酸化亜鉛を飽和させた電解液をカル
ボキシメチルセルロースによりゲル化し、このゲ
ル中に汞化粉末を分散させた亜鉛負極、3はセル
ロース系の保液材、4は多孔性ポリプロピレン製
のスパレータ、5は酸化銀に黒鉛を混合して加圧
成型した正極、5′は鉄にニツケルメツキを施し
た正極リング、6はステンレススチール製の正極
缶であり、内外面にニツケルメツキが施されてい
る。7はポリプロピレン製のガスケツトで、正極
缶の折り曲げにより密封している。試作した電池
は直径11.6mm、高さ5.4mmで負極の汞化粉末の重
量を193mgに統一した。 試作した電池の内訳と60℃で1カ月保存した後
の放電試験(20℃、510Ω、0.9V終止)の結果
(n=3の平均値)と電池総高の保存による変化
量を測定した結果(n=20の平均値)とを次表に
示す。尚、水銀の添加量(汞化率)は亜鉛合金
(亜鉛)粉に対しいずれも3wt%とした。
Industrial Application Field The present invention relates to the improvement of the negative electrode of a zinc-alkaline primary battery that uses zinc as the negative electrode active material, an alkaline aqueous solution as the electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as the positive electrode active material. be. Conventional configuration and its problems A common problem with the above-mentioned zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage. Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by using a hydrogenated powder made by adding about 5 to 10% mercury to zinc, and to suppress corrosion to a level that causes no practical problems. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead, cadmium,
A method has been proposed in which alloy powder added with indium or the like is used to improve corrosion resistance and reduce the degree of corrosion. Although this is effective in suppressing corrosion, it has the opposite effect of deteriorating strong discharge performance by reducing the rate of corrosion. In these proposals, the cause of the deterioration of strong discharge performance is not clear, but when the rate of discharge is low, the discharge products cover the active zinc surface, and the mercury ions necessary for the discharge reaction are transferred to the zinc surface. This is thought to be because the degree of supply disruption is greater than when the mercury content is high, and an important future challenge is to reduce the oxidation rate without deteriorating battery performance such as strong discharge performance with sufficient corrosion resistance. has been done. Purpose of the Invention The present invention provides a zinc-alkaline primary battery in which the corrosion resistance of the negative electrode zinc and the corrosion rate are reduced without deteriorating the discharge performance, and the battery is low in pollution and has excellent performance such as discharge performance, storage performance, and leakage resistance. The purpose is to Structure of the Invention The present invention involves powdering a zinc alloy containing zinc as a main component and at least one element selected from the group consisting of aluminum, magnesium, and calcium, and coating the surface with thallium, indium, gallium, and silver. It is characterized in that a powder to which one or more coating elements selected from the group is attached is used as a negative electrode active material of a zinc-alkaline battery, and more specifically, the coating element in at least the surface layer of this powder has a ratio of 3 to 3 with respect to zinc.
% or less of mercury and used as a negative electrode active material for zinc-alkaline primary batteries. The present invention first addresses the problem that the discharge reaction products cover the active zinc surface, inhibiting the supply of mercury ions, and preventing the discharge reaction from proceeding smoothly at large currents, especially when zinc with a low oxidation rate is used. We solved this problem by alloying zinc with elements selected from aluminum, magnesium, and calcium, and further added indium, thallium, gallium, and silver to ensure corrosion resistance even in a low corrosion rate state. The surface of the zinc alloy is coated with an element selected from the group consisting of mercury having a large affinity for mercury and hydrogen overvoltage, and this coating layer is preferentially oxidized to increase the mercury concentration on the surface to a level sufficient to ensure corrosion resistance. High concentration,
The zinc alloy powder has a low concentration near the center, making it possible to simultaneously obtain corrosion resistance and high current discharge performance while containing a low total amount of mercury. The effect of improving large current discharge performance when the above-mentioned aluminum, magnesium, and calcium are used as additive elements in zinc alloy is obvious as shown in the examples below, but the mechanism of action is not fully elucidated, and it is difficult to estimate Then, aluminum, magnesium, and calcium, which are contained as an alloy in the negative electrode zinc and have a more base potential than zinc, are discharged together with zinc.
The discharge products play the role of promoting the dissolution of the zinc discharge products into the electrolytic solution, or by densely forming a layer of undissolved discharge products, and mitigating the effect of passivating the zinc surface. considered to be a thing. It is thought that this ensures that hydroxide ions are continuously supplied to the active surface of the zinc powder in abundance until the zinc is completely exhausted, increasing the utilization rate of the zinc discharge reaction. Indium coating the surface of the above zinc alloy,
The role of the elements selected from the group consisting of thallium, gallium, and silver is to protect the zinc negative electrode with a low rate of corrosion, and since these coating elements have a high affinity for mercury, It is possible to prevent mercury from diffusing from the layer into the inside of the zinc alloy, and to maintain a high mercury concentration on the surface and a low concentration inside the zinc alloy, corrosion resistance is ensured with a low rate of corrosion. As described above, the present invention suppresses passivation during discharge with the added alloying element, and secures a surface layer with a small amount of mercury with the coating element, thereby achieving a low rate of dehydration that is excellent in both storage stability and discharge performance. It provides a zinc negative electrode. Next, it will be explained in detail using examples. Description of Examples Various alloys were created by adding aluminum, magnesium, calcium, or a combination of these elements to zinc ingots with a purity of 99.997% and containing trace amounts of lead, cadmium, and iron as impurities, and heated at approximately 500°C. Melt it and inject it with compressed air to make an injection, 50 ~
The sieve was divided into particle size ranges of 150 mesh. Then,
A predetermined amount of each sulfate of thallium, gallium, indium, and silver or a mixture thereof is dissolved or dispersed in a 3% aqueous hydrochloric acid solution, and each of the above-mentioned zinc alloy powders is added with stirring, and the surface of the zinc alloy is Each of the metal elements mentioned above was coated. Next, a predetermined amount of mercury was added while stirring to form a liquid from the surface layer. After that, wash with water, replace with acetone and dry.
Zinc alloy powder was prepared. Furthermore, as a comparative example, a base metal without any alloying element was pulverized, coated with a coating element, and then made into a grain, and a zinc alloy powder was made into a grain without being coated with a coating element. The button-shaped silver oxide battery shown in the figure was manufactured using each of these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolyte containing zinc oxide saturated in a caustic potassium aqueous solution with a concentration of 40% with carboxymethyl cellulose, and dispersing aqueous powder in this gel; 3 is a cellulose-based liquid retaining material; 4 is a 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded; 5' is a positive electrode ring made of iron with nickel plating; 6 is a positive electrode can made of stainless steel, with nickel plating on the inner and outer surfaces. is applied. 7 is a gasket made of polypropylene, which is sealed by bending the positive electrode can. The prototype battery had a diameter of 11.6 mm, a height of 5.4 mm, and the weight of the negative electrode chloride powder was unified to 193 mg. Details of the prototype battery, results of discharge test (20℃, 510Ω, 0.9V termination) after storage at 60℃ for one month (average value of n = 3), and results of measuring the amount of change in total battery height due to storage. (average value of n=20) are shown in the following table. In addition, the amount of mercury added (concentration rate) was 3 wt% relative to the zinc alloy (zinc) powder.

【表】 この表に見られるように、本発明を適用した場
合(b〜k)は、いずれも従来法(a又は1)に
比べて、放電性能が良好で、ガス発生による電池
膨張も少い。すなわち、aの場合は、表面のガリ
ウムに水銀が高濃度で担持されているので、ガス
発生は抑止されているが、合金元素を含有しない
ので、負極の放電利用率が低く、放電持続時間が
短くなつている。又、1の場合は表面に被覆元素
がないので、添加された水銀は粒子内部に拡散
し、粒子表面の水銀濃度を高く維持できないため
に水素ガスの発生を抑止できず、亜鉛合金中のア
ルミニウムの不働態抑止効果が、内蔵ガスや電池
膨張による接触不良により打ち消され、十分な放
電性能が得られていない。一方b〜kは、前記の
ように被覆元素と合金添加元素との作用により、
放電性能がa、1よりも良好であり、被覆元素又
は合金添加元素の各々複数の組合せた場合にも同
様に効果が得られている。 発明の効果 以上のように本発明は、負極亜鉛の低汞化率化
(3%以下)を果す上で有効であり、低公害の亜
鉛アルカリ一次電池を得るに極めて効果的であ
る。
[Table] As seen in this table, the cases in which the present invention is applied (b to k) all have better discharge performance and less battery expansion due to gas generation than the conventional methods (a or 1). stomach. In other words, in case a, gas generation is suppressed because mercury is supported at a high concentration on gallium on the surface, but since it does not contain alloying elements, the discharge utilization rate of the negative electrode is low and the discharge duration is short. It's getting shorter. In addition, in case 1, since there is no coating element on the surface, the added mercury diffuses inside the particles, and the mercury concentration on the particle surface cannot be maintained high, making it impossible to suppress the generation of hydrogen gas, and the aluminum in the zinc alloy The passive state suppression effect is canceled out by poor contact due to built-in gas and battery expansion, and sufficient discharge performance is not obtained. On the other hand, b to k are due to the action of the coating element and the alloy additive element as described above.
The discharge performance was better than that of a and 1, and similar effects were obtained when a plurality of coating elements or alloy additive elements were combined. Effects of the Invention As described above, the present invention is effective in reducing the rate of negative electrode zinc (3% or less), and is extremely effective in obtaining a low-pollution zinc-alkaline primary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の効果を検討するため製作したボタ
ン形態化銀電池の断面図である。 1……封口板、2……亜鉛負極、3……保液
材、4……セパレータ、5……酸化銀正極、5′
……正極リング、6……正極缶、7……ガスケツ
ト。
The figure is a cross-sectional view of a button-formed silver battery manufactured to examine the effects of the present invention. 1... Sealing plate, 2... Zinc negative electrode, 3... Liquid retaining material, 4... Separator, 5... Silver oxide positive electrode, 5'
...Positive electrode ring, 6...Positive electrode can, 7...Gasket.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛を主成分とし、アルミニウム、マグネシ
ウム、カルシウムからなる群より選ばれた少なく
とも一種の元素を含む亜鉛合金の表面に、タリウ
ム、銀、ガリウム、インジウムからなる群より選
ばれた一種以上の被覆元素を付着させ、この表面
層の少なくとも被覆元素を亜鉛に対し3%以下の
水銀量で汞化して負極活物質に用いたことを特徴
とする亜鉛アルカリ一次電池。
1. One or more coating elements selected from the group consisting of thallium, silver, gallium, and indium on the surface of a zinc alloy containing zinc as the main component and at least one element selected from the group consisting of aluminum, magnesium, and calcium. 1. A zinc-alkaline primary battery, characterized in that at least the coating element of this surface layer is oxidized with an amount of mercury of 3% or less relative to zinc, and used as a negative electrode active material.
JP3342484A 1984-02-23 1984-02-23 Zinc alkaline primary battery Granted JPS60177553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342484A JPS60177553A (en) 1984-02-23 1984-02-23 Zinc alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342484A JPS60177553A (en) 1984-02-23 1984-02-23 Zinc alkaline primary battery

Publications (2)

Publication Number Publication Date
JPS60177553A JPS60177553A (en) 1985-09-11
JPH0441470B2 true JPH0441470B2 (en) 1992-07-08

Family

ID=12386174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342484A Granted JPS60177553A (en) 1984-02-23 1984-02-23 Zinc alkaline primary battery

Country Status (1)

Country Link
JP (1) JPS60177553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077348A1 (en) 2012-11-17 2014-05-22 株式会社ミマキエンジニアリング System for printing on three-dimensional object and program for printing on three-dimensional object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69217127D1 (en) * 1991-06-11 1997-03-13 Fuji Electrochemical Co Ltd Alkaline battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS584268A (en) * 1981-06-29 1983-01-11 Hitachi Maxell Ltd Silver oxide secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS584268A (en) * 1981-06-29 1983-01-11 Hitachi Maxell Ltd Silver oxide secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077348A1 (en) 2012-11-17 2014-05-22 株式会社ミマキエンジニアリング System for printing on three-dimensional object and program for printing on three-dimensional object

Also Published As

Publication number Publication date
JPS60177553A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
JPS60175368A (en) Zinc-alkaline primary cell
JPH0441470B2 (en)
JPH0441469B2 (en)
JPH0142576B2 (en)
JPS62123653A (en) Zinc-alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
KR890002672B1 (en) Zn-alkali battery
JPS63133450A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPH0365617B2 (en)
JPH0622118B2 (en) Zinc alkaline battery
JPH0365621B2 (en)
JPS61253764A (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPS60177552A (en) Zinc alkaline primary battery
JPS60177551A (en) Zinc alkaline primary battery
JPS60165052A (en) Zinc alkaline primary battery
JPH0534778B2 (en)
JPS61140067A (en) Zinc alkali battery
JPH0365619B2 (en)
JPH0365623B2 (en)
JPH0365618B2 (en)