JPS61140067A - Zinc alkali battery - Google Patents
Zinc alkali batteryInfo
- Publication number
- JPS61140067A JPS61140067A JP59262140A JP26214084A JPS61140067A JP S61140067 A JPS61140067 A JP S61140067A JP 59262140 A JP59262140 A JP 59262140A JP 26214084 A JP26214084 A JP 26214084A JP S61140067 A JPS61140067 A JP S61140067A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc alloy
- negative pole
- mercury
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in negative electrodes for zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.
従来の技術
亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。A common problem with conventional zinc-alkaline batteries is corrosion of the negative electrode zinc by the electrolyte during storage.
従来、亜鉛に5〜10重量−程度の水銀全添加した汞化
亜鉛粉末全周いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし近年、低公害化のため、電池内の含
有水銀量全低減させることが社会的ニーズとして高まり
、種々の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム。Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage by adding around 5 to 10 parts of mercury to the zinc powder all over the zinc powder, thereby suppressing corrosion to the extent that there is no practical problem. . However, in recent years, there has been an increasing social need to completely reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead and cadmium in zinc.
イyジウム、ガリウムなどを添加した合金粉末を用いて
耐食性全向上させ、汞化率を低減させる方法が提案され
ている。これらの腐食抑制効果は、添加元素の単体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムと鉛あるいはこれにさらにガリウム?添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。A method has been proposed in which the corrosion resistance is completely improved by using an alloy powder to which iridium, gallium, etc. are added, and the corrosion rate is reduced. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements, such as indium, lead, or gallium? In the past, zinc alloys with added gallium and lead have been proposed as promising systems.
これらはいずれもある程度の耐食性が期待でき、汞化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance.
また、主にマンガン乾電池の改良?めざして、亜鉛又は
亜鉛合金にインジウム全添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。Also, mainly improvements to manganese dry batteries? To this end, there is a proposal that using zinc or a zinc alloy in which indium is completely added to the zinc alloy for the negative electrode has a large anticorrosion effect (Japanese Patent Publication No. 3204/1983).
発明が解決しようとする問題点
上記の提案の中では亜鉛合金中の元素として、インジウ
ムノ他にFe、Cd、Or、Pb、Ca、Hg。Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Or, Pb, Ca, and Hg are used as elements in the zinc alloy.
Bi、Sb、ム1.ムq+ ”J s S11” +
” 4$’l”不純物又は添加物として1又は2種以上
を含む場合を包含して記載されているが、インジウムと
鉛を添加元素として併用した場合の有効性以外には、上
記の雑多な各元素全不純物として含むのか、有効な元素
として添加するのかの区分は明示されていなく、どの元
素が防食に有効なのかさえ不明であり、その適切な添加
量についてはインジウム。Bi, Sb, Mu1. Mq+ “J s S11” +
"4$'l" is described including the case where one or more types of impurities or additives are included, but apart from the effectiveness when indium and lead are used together as additive elements, the above miscellaneous It is not clearly stated whether each element is included as a total impurity or added as an effective element, and it is not even clear which elements are effective for corrosion prevention, and the appropriate amount to add is indium.
鉛板外の記載はない。There is no description other than the lead plate.
これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition.
本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく汞化率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。The present invention reduces the oxidation rate without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves the discharge performance, storability, and storability with low pollution.
The purpose is to provide a zinc-alkaline battery with excellent overall performance such as leakage resistance.
問題点を解決するための手段
本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二漬化マンガン、酸化銀、酸化水銀、酸素など全周い
るいわゆる亜鉛アルカリ系電池の負極に、ニッケル(N
i)全0.01〜0.5重量%、銀(ムq)’to、0
1〜0.5重量%含有する亜鉛合金金用いたことを特徴
とする。Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components in the electrolyte, zinc as the negative electrode active material, and manganese dichloride, silver oxide, and oxide as the positive electrode active material. Nickel (N
i) Total 0.01-0.5% by weight, silver (muq)'to, 0
It is characterized by using zinc alloy gold containing 1 to 0.5% by weight.
本発明は前記の従来例の亜鉛合金中の添加元素のうち、
Niが安価で環境汚染の心配のない無公害性の元素であ
ることに注目し、Niの添加効果について実験を行い、
Ni f単独で添加した亜鉛合金は防食性に乏しいが、
Niとムqt同時に添加した場合には、双方の元素を単
独に添加した場合に比べて顕著な相乗的防食効果が得ら
れることを見出して完成したものである。The present invention provides that among the additive elements in the conventional zinc alloy,
Focusing on the fact that Ni is an inexpensive and non-polluting element that does not cause environmental pollution, we conducted an experiment to determine the effect of Ni addition.
Zinc alloys containing Ni f alone have poor corrosion protection, but
This work was completed based on the discovery that when Ni and Muqt are added at the same time, a remarkable synergistic anticorrosion effect can be obtained compared to when both elements are added alone.
作用
Niあるいは的の単体での添加による防食効果、E″゛
8”°′″o’4114#’Ih*IcQ“101−1
1不明確であるが、次のように推察される。まず、亜
鉛(Zn)に対し、Niの溶解性は小さいが、噴射法で
粉体化する際の冷却速度が約102°C/seeのオー
ダーと非常に大きいので、後述の実施例での適正な含有
量(0,01〜0.5重i%)の程度では亜鉛と溶体化
する可能性がある。従りて、元来、水銀との親和性の小
さいNiが結晶内への水銀の拡散を抑止して、亜鉛合金
表面の水銀濃度を高く維持する役割全果すことが期待さ
れる。その反面、亜鉛合金表面の水銀のなじみを却つて
悪くすることも懸念される。またムqは、元来、水銀と
なじみ易く、亜鉛合金の表面ヲ汞化により均一化するた
めには有効であるが、水銀の粒子内部への拡散を阻止す
る働らきは不十分と考えられる。Corrosion prevention effect by adding Ni or target alone, E″゛8″°′″o'4114#'Ih*IcQ"101-1
1. Although it is unclear, it can be inferred as follows. First, although the solubility of Ni is low compared to zinc (Zn), the cooling rate during powderization by the injection method is very high, on the order of approximately 102°C/see, so it is not suitable for use in the examples described below. If the content is low (0.01 to 0.5% by weight), there is a possibility that it will form a solution with zinc. Therefore, it is expected that Ni, which originally has a low affinity for mercury, will suppress the diffusion of mercury into the crystal and play the role of maintaining a high mercury concentration on the surface of the zinc alloy. On the other hand, there is also a concern that the adhesion of mercury to the surface of the zinc alloy may become worse. In addition, muq is naturally compatible with mercury and is effective in making the surface of zinc alloy homogeneous by making it sticky, but it is thought to be insufficient in preventing mercury from diffusing into the interior of the particles. .
本発明では上記の両元素の作用の不十分な点を補い合い
、各々の長所を活した複合効果が得られたものと考えら
れる。すなわち、亜鉛合金表面の水銀とのなじみを人q
の添加により改善し、粒子内部への水銀の拡散抑止にN
=が強く関与し、結果的に、水素過電圧の大きい亜鉛合
金表面を形成することで耐食性が著しく改善されたもの
と推定される。以上のように、本発明は負極に用いる亜
鉛合金中の添加元素の組合せとその含有量を実験的に検
討し、放電性能と耐食性を兼ね備えた低汞化率の亜鉛負
極を実現したものである。It is believed that the present invention compensates for the insufficiency of the effects of both of the above elements and provides a combined effect that takes advantage of the strengths of each element. In other words, the compatibility of the zinc alloy surface with mercury is
N
= is strongly involved, and as a result, it is presumed that corrosion resistance was significantly improved by forming a zinc alloy surface with a large hydrogen overvoltage. As described above, the present invention has experimentally investigated the combination of additive elements and their contents in the zinc alloy used for the negative electrode, and has realized a zinc negative electrode with a low corrosion rate that combines discharge performance and corrosion resistance. .
以下、実施例により詳細に説明する。Hereinafter, this will be explained in detail using examples.
うに各種の元素を添加した各種の亜鉛合金を作成し、約
500 ’Cで溶融して圧縮空気により噴射して粉体化
し、5o〜150メツシ為の粒度範囲にふるい分けした
。次いで、か性カリの10重量%水溶液中に上記粉体を
投入し、攪拌しながら所定量の水銀を滴下して汞化した
。その後水洗し、アセトンで置換して乾燥し、汞化亜鉛
合金粉を作成した。さらに本発明の実施例以外の汞化亜
鉛合金粉についても比較例として同様の方法で作成した
。Various zinc alloys were prepared with various elements added to them, melted at about 500'C, pulverized by spraying with compressed air, and sieved to a particle size range of 50 to 150 mesh. Next, the powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise to the solution while stirring. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc chloride alloy powder. Furthermore, zinc alloy powders other than the examples of the present invention were also prepared in the same manner as comparative examples.
これらの汞化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、内面には銅メッキ1′が施されている。2はか性カ
リの40重■チ水溶液に酸化亜鉛を飽和させた電解液を
カルボキシメチルセルロースによりゲル化し、このゲル
中に汞化粉末を分散させた亜鉛負極である。3はセルロ
ース系の保液材、4は多孔性ポリプロピレン製のセパレ
ータ、5は酸化銀に黒鉛を混合して加圧成形した正極、
6は鉄にニッケルメッキを施した正極リング、7けステ
ンレス鋼製の正極缶で、内外面にはニッケルメッキが施
されている。8はポリプロピレン製のガスケットで、正
極缶の折り曲げにより正極缶と封口板との間に圧縮され
ている。試作した電池は直径11.611IL、高さ6
.4Bであり、負極の汞化粉末の重量を1931!Ig
に統一し、また水銀の添加量(汞化率)は、亜鉛合金粉
に対し、いずれも3重量%とした。試作した電池の亜鉛
合金の組成と、e o ’cで1力月間保存シた後の放
電性能及び電池総高の変化を次表に示す。放電性能は、
20°Cにおいて510Ωで009Vを終止電圧として
放電したときの放電持続時間で表わした。The button-shaped silver oxide battery shown in the figure was manufactured using these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40-fold aqueous solution of caustic potassium saturated with zinc oxide with carboxymethyl cellulose, and dispersing gelatinized powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded;
6 is a positive electrode ring made of iron with nickel plating, and 7 is a positive electrode can made of stainless steel, and the inside and outside surfaces are nickel plated. A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery has a diameter of 11.611IL and a height of 6
.. 4B, and the weight of the negative electrode powder is 1931! Ig
The amount of mercury added (corrosion rate) was 3% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage for one month at EO'C. The discharge performance is
It is expressed as the discharge duration when discharging at 20°C at 510Ω with a final voltage of 009V.
以下余白
。。7に見、わ、よう、、よ較ヵ0、〜3)を
1相互に比較すると、添加元素の全くない場合(1
)に比べ、単体の元素を添加した場合(2,3)は、貯
蔵後の放電性能は幾分改善され、負極亜鉛の腐食及び水
素ガス発生量の多少を端的に評価できる1池総高の変化
においても多少の改善効果が認められる。Margin below. . 7, see, wa, yo,, compared to ka 0, ~3)
1 Comparing with each other, when there is no added element (1
), when a single element is added (2, 3), the discharge performance after storage is somewhat improved, and the total height of one cell can be easily evaluated to evaluate the corrosion of the negative electrode zinc and the amount of hydrogen gas generated. Some improvement effects were also observed in changes.
しかし、これらの改善効果は実用的には不十分であり、
N1とムqを組み合せて適切な量を含有させた場合(s
、e、7,1o、11)にのみ改善効果が得られ、顕著
な複合効果が認められた。従りて、適切な亜鉛合金組成
の添加元素の含有量を重J1%テ表すと、0.01≦N
i≦0.5%、0.01≦ムq≦O,s%となる。However, these improvement effects are insufficient for practical use.
When N1 and Muq are combined and contained in appropriate amounts (s
, e, 7, 1o, and 11), and a remarkable combined effect was observed. Therefore, if we express the content of additional elements in a suitable zinc alloy composition as heavy J1%, then 0.01≦N
i≦0.5%, 0.01≦muq≦O, s%.
一方、添加元素に過不足のある場合(4+ 8 +9.
12)は比較例のうち良好なもの(31と大差ないか、
却って劣る場合もあり、上述の適正な含有量の範囲にお
いてのみ、顕著な複合効果が認められた。On the other hand, if there is excess or deficiency in the added elements (4+ 8 + 9.
12) is a good comparison example (not much different from 31,
In some cases, it was even worse, and a remarkable composite effect was observed only within the above-mentioned appropriate content range.
従って、適正な含有量の範囲で、Niとムqを含有させ
た亜鉛合金を負極に用いることによジ、低公害で実用性
能のすぐれた亜鉛アルカリ電池を得ることができる。Therefore, by using a zinc alloy containing Ni and Muq in an appropriate content range for the negative electrode, a zinc-alkaline battery with low pollution and excellent practical performance can be obtained.
なお、実施例においては汞化亜鉛負極を用いた電池につ
いて説明したが、開放式の空気電池や水素吸収機構を備
えた密閉形亜鉛アルカリ電池などにおいては水素ガスの
発生許容量は比較的大きいので、このような電池に本発
明を適用する場合は。In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism, the hydrogen gas generation capacity is relatively large. , when applying the present invention to such a battery.
さらに低汞化率、場合によっては無汞化のまま実施する
こともできる。Furthermore, it is possible to carry out the process with a low rate of change or, in some cases, with no rate of change.
発明の効果
以上のように本発明は、負極亜鉛の汞化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
。Effects of the Invention As described above, the present invention can reduce the filtration rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。
2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode.
Claims (1)
.5重量%含有する亜鉛合金を負極活物質に用いた亜鉛
アルカリ電池。0.01-0.5% by weight of nickel, 0.01-0.0% of silver
.. A zinc alkaline battery using a zinc alloy containing 5% by weight as a negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59262140A JPS61140067A (en) | 1984-12-12 | 1984-12-12 | Zinc alkali battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59262140A JPS61140067A (en) | 1984-12-12 | 1984-12-12 | Zinc alkali battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61140067A true JPS61140067A (en) | 1986-06-27 |
Family
ID=17371606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59262140A Pending JPS61140067A (en) | 1984-12-12 | 1984-12-12 | Zinc alkali battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61140067A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284410B1 (en) | 1997-08-01 | 2001-09-04 | Duracell Inc. | Zinc electrode particle form |
-
1984
- 1984-12-12 JP JP59262140A patent/JPS61140067A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284410B1 (en) | 1997-08-01 | 2001-09-04 | Duracell Inc. | Zinc electrode particle form |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3215446B2 (en) | Zinc alkaline battery | |
JPS61140067A (en) | Zinc alkali battery | |
JPS62123653A (en) | Zinc-alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPS6273565A (en) | Zinc alkaline battery | |
JPS61140066A (en) | Zinc alkali battery | |
JPS61140065A (en) | Zinc alloy battery | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS61140064A (en) | Zinc alkali battery | |
JPS61140068A (en) | Zinc alkali battery | |
JPS61140062A (en) | Zinc alkali battery | |
JPH0622118B2 (en) | Zinc alkaline battery | |
JPH0142576B2 (en) | ||
JPS61203563A (en) | Alkaline zinc battery | |
JPS61181065A (en) | Zinc alkaline cell | |
JPH0441470B2 (en) | ||
JPS60175369A (en) | Zinc-alkaline primary cell | |
JPH0622116B2 (en) | Zinc alkaline battery | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS61140063A (en) | Zinc alkali battery | |
JPH0620688A (en) | Zinc alkaline battery | |
JPS61181068A (en) | Zinc alkaline cell | |
JPS6084767A (en) | Zinc alkaline battery | |
JPH0365618B2 (en) | ||
JPS61181070A (en) | Zinc alkaline cell |