JPH0620688A - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPH0620688A JPH0620688A JP4069428A JP6942892A JPH0620688A JP H0620688 A JPH0620688 A JP H0620688A JP 4069428 A JP4069428 A JP 4069428A JP 6942892 A JP6942892 A JP 6942892A JP H0620688 A JPH0620688 A JP H0620688A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- alloy powder
- zinc alloy
- weight
- indium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、負極活物質として亜鉛
合金粉末、電解液としてアルカリ電解液、正極活物質と
して二酸化マンガン、酸化銀、酸素、水酸化ニッケル等
を用いた亜鉛アルカリ電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery using a zinc alloy powder as a negative electrode active material, an alkaline electrolyte as an electrolytic solution, and manganese dioxide, silver oxide, oxygen, nickel hydroxide or the like as a positive electrode active material.
【0002】[0002]
【従来の技術】従来、この種の亜鉛アルカリ電池に共通
した問題点として、保存中における負極活物質の電解液
による腐食が挙げられる。その対策としては、工業的手
段として5〜10重量%程度の水銀を添加した汞化亜鉛
粉末を負極活物質として用い、負極活物質の水素過電圧
を高め、負極活物質の電解液による腐食を実用的に問題
のない程度に抑制することが行われてきた。2. Description of the Related Art Conventionally, a common problem in this type of zinc-alkaline battery is corrosion of a negative electrode active material during storage by an electrolytic solution. As a countermeasure, as industrial means, zinc hydride powder added with about 5 to 10% by weight of mercury is used as a negative electrode active material, the hydrogen overvoltage of the negative electrode active material is increased, and corrosion of the negative electrode active material by an electrolytic solution is practically used. It has been suppressed to such an extent that there is no problem.
【0003】しかし、近年、低公害化のために、電池内
の含有水銀を低減させることが社会的なニーズとして高
まり、種々の研究がなされ、例えば、亜鉛中に鉛やアル
ミニウムを含有させた亜鉛合金をインジウム−水銀合金
にて汞化し、含有水銀量を0.6重量%程度に低減させ
た汞化亜鉛合金粉末(特公平1−42114号)等が負
極活物質として用いられるようになった。そして、更に
技術改良がなされ、含有水銀量を0.15重量%程度に
した亜鉛合金粉末が負極活物質として用いられている。However, in recent years, in order to reduce pollution, reduction of mercury contained in a battery has increased as a social need, and various researches have been made. For example, zinc containing lead or aluminum in zinc. Zinc hydride alloy powder (Japanese Patent Publication No. 1-42114) in which the alloy is selectively reduced by an indium-mercury alloy and the content of mercury is reduced to about 0.6% by weight has come to be used as a negative electrode active material. . Further, technical improvements have been made, and zinc alloy powder having a mercury content of about 0.15 wt% is used as a negative electrode active material.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、近年、
水銀による環境汚染が問題となり、水銀を全く含有しな
い電池の開発が強く期待されるようになった。上記の従
来の技術では、汞化率が0.6重量%、更には0.15
重量%という非常に低い濃度ではあるにせよ、負極活物
質に水銀が含有されていることに変わりはなく、環境問
題を解消したとは言い切れない。また、環境問題に加え
て資源問題を考えるならば、使用済みの電池から亜鉛等
を再生することが望ましいが、亜鉛に水銀が随伴してい
ると、再生工程における水銀対策が問題となる。However, in recent years,
Environmental pollution due to mercury has become a problem, and development of batteries containing no mercury has been strongly expected. In the above conventional technique, the conversion ratio is 0.6% by weight, and further 0.15%.
Despite the extremely low concentration of wt%, the negative electrode active material still contains mercury, and it cannot be said that the environmental problems have been solved. Further, if considering the resource problem in addition to the environmental problem, it is desirable to regenerate zinc or the like from a used battery, but if mercury is associated with zinc, countermeasures against mercury in the regeneration process become a problem.
【0005】本発明はこのような問題点を解決するため
のもので、無汞化としても耐食性及び電池としての放電
性能を低下させることのない亜鉛合金粉末を負極活物質
として用いた亜鉛アルカリ電池を提供することを目的と
するものである。The present invention is intended to solve such a problem, and is a zinc-alkaline battery using a zinc alloy powder as a negative electrode active material, which does not deteriorate corrosion resistance and discharge performance as a battery even if it is made smooth. It is intended to provide.
【0006】[0006]
【課題を解決するための手段】本発明者等は、この目的
に沿って鋭意研究した結果、スズを含有し、更にビスマ
ス、アルミニウム及びカルシウムから選択された1種以
上を含有する亜鉛合金粉末の表面にインジウムを添加被
覆してなる被覆亜鉛合金粉末を負極活物質として用いる
ことにより、無汞化で、耐食性及び電池としての放電性
能上問題のない亜鉛アルカリ電池を提供できることを見
出し、本発明を完成した。Means for Solving the Problems As a result of intensive studies conducted by the present inventors for this purpose, a zinc alloy powder containing tin and further containing at least one selected from bismuth, aluminum and calcium was obtained. By using a coated zinc alloy powder obtained by coating the surface with indium added as a negative electrode active material, it has been found that it is possible to provide a zinc-alkali battery that is free of problems and has no problem in corrosion resistance and discharge performance as a battery. completed.
【0007】ここで、被覆亜鉛合金粉末中のインジウム
含有率は0.05〜0.80重量%が好ましい。インジ
ウム含有率がこの範囲にある場合は腐食によるガス発生
量が許容範囲内に抑えられるが、インジウム含有率がこ
の範囲を外れると腐食によるガス発生量が許容範囲を越
えてしまうからである。The indium content in the coated zinc alloy powder is preferably 0.05 to 0.80% by weight. This is because when the indium content ratio is within this range, the gas generation amount due to corrosion can be suppressed within the allowable range, but when the indium content ratio is outside this range, the gas generation amount due to corrosion exceeds the allowable range.
【0008】また、被覆亜鉛合金粉末中のスズ含有率は
0.005〜0.05重量%が好ましく、被覆亜鉛合金
粉末中のビスマス含有率は0.005〜0.05重量%
が好ましい。スズ及びビスマスの含有率がこれらの範囲
にある場合は腐食によるガス発生量が許容範囲内に抑え
られるが、これらの範囲を外れると腐食によるガス発生
量が許容範囲を越えてしまうからである。The tin content in the coated zinc alloy powder is preferably 0.005 to 0.05% by weight, and the bismuth content in the coated zinc alloy powder is 0.005 to 0.05% by weight.
Is preferred. This is because when the content ratios of tin and bismuth are within these ranges, the gas generation amount due to corrosion can be suppressed within the allowable range, but when the content ratios deviate from these ranges, the gas generation amount due to corrosion exceeds the allowable range.
【0009】また、被覆亜鉛合金粉末中のアルミニウム
含有率は0.01〜0.05重量%が好ましく、被覆亜
鉛合金粉末中のカルシウム含有率は0.01〜0.05
重量%が好ましい。アルミニウム及びカルシウムの含有
率がこれらの範囲内にある場合は腐食によるガス発生量
が許容範囲内に抑えられるが、アルミニウム及びカルシ
ウムの含有率がこれらの範囲を外れると腐食によるガス
発生量が許容範囲を越えてしまうからである。The content of aluminum in the coated zinc alloy powder is preferably 0.01 to 0.05% by weight, and the content of calcium in the coated zinc alloy powder is 0.01 to 0.05.
Weight percent is preferred. When the content ratio of aluminum and calcium is within these ranges, the gas generation amount due to corrosion is suppressed within the allowable range, but when the content ratios of aluminum and calcium are outside these ranges, the gas generation amount due to corrosion is within the allowable range. Because it will exceed.
【0010】[0010]
【作用】まず、インジウムの被覆による作用について考
えると、亜鉛合金粉末の表面にインジウムを被覆させる
と負極活物質の水素過電圧が高まって腐食によるガス発
生が抑制され、また負極活物質である被覆亜鉛合金粉末
の粒子間の接触が良好になって電池としての放電性能が
良好になると思われる。また、スズ及びビスマスの合金
化の作用について考えると、亜鉛合金粉末にスズ及びビ
スマスを合金化させると負極活物質の水素過電圧が高ま
って腐食によるガス発生が抑制されると思われる。更
に、アルミニウム、カルシウムの合金化による作用につ
いて考えると、亜鉛合金粉末にアルミニウム、カルシウ
ムを合金化させると負極活物質である被覆亜鉛合金粉末
の表面が平滑化されて反応表面積が減少し、腐食による
ガス発生が抑制されると思われる。First, considering the effect of the coating of indium, coating the surface of the zinc alloy powder with indium increases the hydrogen overvoltage of the negative electrode active material and suppresses gas generation due to corrosion. It is considered that the contact between the particles of the alloy powder is improved and the discharge performance of the battery is improved. Considering the alloying effect of tin and bismuth, it is considered that alloying tin and bismuth with zinc alloy powder increases the hydrogen overvoltage of the negative electrode active material and suppresses gas generation due to corrosion. Furthermore, considering the effect of alloying aluminum and calcium, alloying zinc and zinc alloy powder with aluminum and calcium smoothes the surface of the coated zinc alloy powder that is the negative electrode active material, reduces the reaction surface area, and causes corrosion. It seems that gas generation is suppressed.
【0011】[0011]
【実施例】以下、実施例及び比較例によって本発明を具
体的に説明する。なお、以下の図表中に付する「%」
は、特記しない限り、全て重量%である。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. In addition, "%" attached in the following chart
All are by weight unless otherwise specified.
【0012】亜鉛合金粉末の調製:純度99.995重
量%以上の亜鉛地金を約500℃で熔融したもの、及び
これにスズ、ビスマス、アルミニウム、カルシウムを所
定量添加して亜鉛合金熔湯を調製した。そして、これら
の熔湯を高圧ガスによる噴霧法により粉体化し、その
後、これらの粉体を各々篩別して所定粒度の亜鉛合金粉
末を得た。Preparation of zinc alloy powder: A zinc ingot having a purity of 99.995% by weight or more melted at about 500 ° C., and a predetermined amount of tin, bismuth, aluminum and calcium added thereto to obtain a zinc alloy melt. Prepared. Then, these melts were pulverized by a spray method using high-pressure gas, and then these powders were sieved to obtain a zinc alloy powder having a predetermined particle size.
【0013】A.この篩別により所定粒度とした亜鉛合
金粉末の所定量とインジウム粒の所定量とを、加熱装置
を備えた混合器(回転ドラム)内に投入し、この混合器
内を窒素雰囲気とし、180℃で1時間混合した。この
操作により、融点156.4℃のインジウムを亜鉛合金
粉の粒子表面に溶着させ、供試用の本発明用途の被覆亜
鉛合金粉末を得た。A. A predetermined amount of zinc alloy powder and a predetermined amount of indium particles having a predetermined particle size by this sieving are put into a mixer (rotary drum) equipped with a heating device, and the inside of the mixer is set to a nitrogen atmosphere at 180 ° C. And mixed for 1 hour. By this operation, indium having a melting point of 156.4 ° C. was deposited on the surface of the zinc alloy powder particles to obtain a test zinc alloy powder for use in the present invention.
【0014】B.同じく、篩別により所定粒度とした亜
鉛合金粉末の所定量をインジウム塩(硫酸インジウム
等)の所定量を溶解させた水溶液中に投入し、30分間
攪拌し、イオン置換法によってインジウムを亜鉛合金粉
末の粒子表面に添加した。得られた亜鉛合金粉末を純水
(イオン交換水)で水洗し、その後アセトンにて付着水
を置換後、45℃で一昼夜乾燥して、供試用の本発明用
途の被覆亜鉛合金粉末を得た。B. Similarly, a predetermined amount of zinc alloy powder having a predetermined particle size by sieving is put into an aqueous solution in which a predetermined amount of indium salt (indium sulfate or the like) is dissolved, stirred for 30 minutes, and indium is converted into zinc alloy powder by an ion substitution method. Was added to the surface of the particles. The obtained zinc alloy powder was washed with pure water (ion-exchanged water), and then the attached water was replaced with acetone, followed by drying at 45 ° C. for one day to obtain a coated zinc alloy powder for use in the present invention as a test sample. .
【0015】実施例・比較例の1:先ず本発明品の放電
性能を調べるために、スズ、ビスマス、アルミニウム、
カルシウムを含まない純度99.995重量%以上の純
亜鉛粉末にインジウムを均一に合金化したもの(試料
a)と、前記A,Bにより亜鉛合金粉末の粒子表面にイ
ンジウムを添加した本発明用途の被覆亜鉛合金粉末(試
料bA ,bB )と、従来から使用されているインジウム
−水銀合金にて効果した亜鉛合金粉末(インジウム0.
02重量%、鉛0.05重量%、アルミニウム0.05
重量%、水銀0.6重量%(試料c)と、純亜鉛粉末
(試料d)とを調製した。そして、これらの試料を用
い、図1に示すLR6タイプの電池を作成し、その放電
性能(3.9Ω、0.9V終止)を測定した。これらの
結果を表1に示して比較する。Example 1 and Comparative Example 1: First, in order to investigate the discharge performance of the product of the present invention, tin, bismuth, aluminum,
A pure zinc powder having a purity of 99.995% by weight or more that does not contain calcium and indium uniformly alloyed (sample a), and the use of the present invention in which indium is added to the particle surface of the zinc alloy powder according to the above A and B. Coated zinc alloy powder (samples b A and b B ) and zinc alloy powder (indium 0.
02 wt%, lead 0.05 wt%, aluminum 0.05
% By weight, 0.6% by weight of mercury (sample c), and pure zinc powder (sample d) were prepared. Then, using these samples, an LR6 type battery shown in FIG. 1 was prepared, and its discharge performance (3.9Ω, 0.9V termination) was measured. The results are shown in Table 1 for comparison.
【0016】図1において、1は正極缶、2は負極端
子、3は封口体、4は負極集電体、5は二酸化マンガン
と黒鉛を混合して加圧成形した正極活物質、6はセパレ
ーター、7はKOHの40重量%水溶液に酸化亜鉛を飽
和させた電解液をポリアクリル酸等によりゲル化してこ
のゲル中に亜鉛合金粉末又は純亜鉛粉末を分散させた負
極である。なお、試料a,bA ,bB 中のインジウム含
有率は、一律0.10重量%とした。In FIG. 1, 1 is a positive electrode can, 2 is a negative electrode terminal, 3 is a sealing body, 4 is a negative electrode current collector, 5 is a positive electrode active material obtained by mixing manganese dioxide and graphite under pressure, and 6 is a separator. Reference numerals 7 and 7 are negative electrodes in which an electrolytic solution obtained by saturating zinc oxide in a 40% by weight aqueous solution of KOH is gelled with polyacrylic acid or the like and zinc alloy powder or pure zinc powder is dispersed in the gel. The indium content in the samples a, b A and b B was uniformly 0.10% by weight.
【0017】[0017]
【表1】 [Table 1]
【0018】表1に示す結果から明らかなように、試料
bA ,bB のインジウムを亜鉛合金粉末の粒子表面に添
加する本発明品用途のものを使用すると、試料cの従来
から使用されているインジウム−水銀合金にて汞化した
亜鉛合金粉末を使用した場合と同等の放電性能を有して
いることが分かる。また、インジウムの添加方式による
差異(A.とB.との差異)はない。試料dの純亜鉛粉
末及び試料aの純亜鉛粉末にインジウムを均一に合金化
したものは、放電性能が劣っている。As is clear from the results shown in Table 1, when the samples b A and b B of the present invention for which indium is added to the particle surface of the zinc alloy powder are used, the samples c are conventionally used. It can be seen that it has the same discharge performance as the case of using the zinc alloy powder which is selectively converted from the existing indium-mercury alloy. Further, there is no difference due to the method of adding indium (difference between A. and B.). The pure zinc powder of sample d and the pure zinc powder of sample a obtained by uniformly alloying indium have inferior discharge performance.
【0019】実施例・比較例の2:次に、本発明品用途
の被覆亜鉛合金粉末の合金組成を種々変化させてガス発
生試験を行った。ガス発生試験は、電解液として、濃度
40重量%のKOH水溶液に酸化亜鉛を飽和させたもの
5mlに対して被覆亜鉛合金粉末をそれぞれ10gを浸
漬して60℃で30日間保持した際のガス発生量を求め
た。その結果を表2の試料3〜6に示す。比較のため、
実施例・比較例の1の場合と同様に、試料cの亜鉛合金
粉末やビスマス、アルミニウム、カルシウムを含まない
もの、更にはスズを含まないものについても同様の試験
を行った。その結果を合わせて表2の試料1,2,7に
示す。Example 2 and Comparative Example 2: Next, a gas generation test was conducted by changing various alloy compositions of the coated zinc alloy powder for use in the present invention. The gas generation test was performed by dipping 10 g of the coated zinc alloy powder in 5 ml of a saturated KOH aqueous solution having a concentration of 40% by weight as an electrolytic solution and holding the coated zinc alloy powder at 60 ° C. for 30 days. The amount was calculated. The results are shown in Samples 3 to 6 in Table 2. For comparison,
Similar to the case of Example 1 and Comparative Example 1, the same test was carried out for the zinc alloy powder of sample c, the one not containing bismuth, aluminum and calcium, and the one not containing tin. The results are shown together in Samples 1, 2, and 7 in Table 2.
【0020】[0020]
【表2】 [Table 2]
【0021】表2から明らかなように、インジウムのみ
の試料1(純亜鉛粉末の粒子表面に単にインジウムを添
加被覆したもの)やインジウムとスズを含有する試料2
は汞化亜鉛合金である試料7(試料c)に比べ2倍強の
ガス発生量であるが、インジウムとスズと更にビスマ
ス、アルミニウム及びカルシウムの3種中から選ばれた
1種以上を含有する本発明の範囲に属する試料3〜6の
場合には汞化亜鉛合金である試料7(試料c)よりもガ
ス発生量が少ないことがわかる。As is apparent from Table 2, sample 1 containing only indium (a sample of pure zinc powder in which the surface of particles was simply added with indium) or sample 2 containing indium and tin was used.
Has a gas generation amount twice as high as that of the sample 7 (sample c) which is a zinc fluoride alloy, but contains indium and tin, and further one or more kinds selected from three kinds of bismuth, aluminum and calcium. It can be seen that the samples 3 to 6 within the scope of the present invention generate less gas than the sample 7 (sample c) which is a zinc hydride alloy.
【0022】実施例・比較例の3:次にインジウム、ス
ズ、ビスマス、アルミニウム及びカルシウムの良好含有
率を調べるために合金組成を多水準に変化させて、前記
実施例・比較例の2と同様のガス発生試験を行った。そ
の結果を図2〜図6に示す。Example 3 and Comparative Example 3: Next, the alloy composition was changed to various levels in order to examine the good contents of indium, tin, bismuth, aluminum and calcium, and the same as in Example 2 and Comparative Example 2 above. The gas generation test was conducted. The results are shown in FIGS.
【0023】図2は、スズとビスマスを一律0.02重
量%とし、インジウムを多水準に変化させて添加したも
のである。図3はスズの含有率を多水準に変化させたも
のであり、この亜鉛合金粉末の粒子表面に添加したイン
ジウムは一律0.10重量%、ビスマスは一律0.02
重量%である。図4はビスマスの含有率を多水準に変化
させたものであり、スズは一律0.02重量%とし、こ
の亜鉛合金粉末の粒子表面に添加被覆したインジウムは
一律0.10重量%である。図5はアルミニウムの含有
率を多水準に変化させたものであり、スズは一律0.0
2重量%とし、この亜鉛合金粉末の粒子表面に添加被覆
したインジウムは一律0.10重量%である。図6はカ
ルシウムの含有率を多水準に変化させたものであり、ス
ズは一律0.02重量%とし、この亜鉛合金粉末の粒子
表面に添加被覆したインジウムは一律0.10重量%で
ある。In FIG. 2, tin and bismuth are uniformly 0.02% by weight, and indium is added in various levels. FIG. 3 shows the tin content varied at various levels. The indium added to the surface of the particles of this zinc alloy powder was uniformly 0.10% by weight, and the bismuth was uniformly 0.02.
% By weight. FIG. 4 shows that the content of bismuth is changed to various levels, tin is uniformly 0.02% by weight, and indium added and coated on the particle surface of this zinc alloy powder is uniformly 0.10% by weight. Fig. 5 shows that the aluminum content is changed to multiple levels, and tin is uniformly 0.0
The content of indium added to the surface of the particles of this zinc alloy powder was 0.10% by weight. In FIG. 6, the content of calcium is changed to various levels, tin is uniformly 0.02% by weight, and indium added to and coated on the surface of the particles of this zinc alloy powder is uniformly 0.10% by weight.
【0024】図2〜図6に示した結果より明らかなよう
に、インジウム含有率は0.05〜0.80重量%、ス
ズは0.005〜0.05重量%、ビスマスは0.00
5〜0.5重量%、アルミニウムは0.01〜0.05
重量%が、カルシウムは0.01〜0.005重量%が
良好範囲であることがわかる。As is clear from the results shown in FIGS. 2 to 6, the indium content is 0.05 to 0.80% by weight, the tin is 0.005 to 0.05% by weight, and the bismuth is 0.00.
5 to 0.5% by weight, aluminum is 0.01 to 0.05
It can be seen that 0.01% to 0.005% by weight of calcium is in a good range.
【0025】[0025]
【発明の効果】以上の説明から明らかなように、本発明
による亜鉛アルカリ電池は、水銀を全く含んでいないに
もかかわらず、耐食性及び電池としての放電性能に優
れ、電池として実用上全く遜色がない。従って、環境衛
生上及び資源リサイクル上、寄与するところ多大のもの
がある。As is apparent from the above description, the zinc-alkali battery according to the present invention is excellent in corrosion resistance and discharge performance as a battery, even though it does not contain mercury at all, and is quite comparable in practical use as a battery. Absent. Therefore, there is a great contribution to environmental hygiene and resource recycling.
【図1】LR6タイプの亜鉛アルカリ電池の縦断面図で
ある。FIG. 1 is a vertical cross-sectional view of an LR6 type zinc alkaline battery.
【図2】インジウム含有率とガス発生量との関係を示す
グラフである。FIG. 2 is a graph showing a relationship between an indium content rate and a gas generation amount.
【図3】スズ含有率とガス発生量との関係を示すグラフ
である。FIG. 3 is a graph showing a relationship between a tin content rate and a gas generation amount.
【図4】ビスマス含有率とガス発生量との関係を示すグ
ラフである。FIG. 4 is a graph showing a relationship between a bismuth content rate and a gas generation amount.
【図5】アルミニウム含有率とガス発生量との関係を示
すグラフである。FIG. 5 is a graph showing a relationship between an aluminum content rate and a gas generation amount.
【図6】カルシウム含有率とガス発生量との関係を示す
グラフである。FIG. 6 is a graph showing a relationship between a calcium content rate and a gas generation amount.
1 正極缶 2 負極端子 3 封口体 4 負極集電体 5 正極活物質 6 セパレーター 7 ゲル状負極 DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode terminal 3 Sealing body 4 Negative electrode current collector 5 Positive electrode active material 6 Separator 7 Gelled negative electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗村 正明 大阪府守口市京阪本通り2丁目18番地 三 洋エクセル株式会社内 (72)発明者 赤井 泰夫 大阪府守口市京阪本通り2丁目18番地 三 洋エクセル株式会社内 (72)発明者 矢野 睦 大阪府守口市京阪本通り2丁目18番地 三 洋電機株式会社内 (72)発明者 三重野 栄一郎 群馬県安中市中宿1443番地 東邦亜鉛株式 会社技術研究所内 (72)発明者 関口 亘 群馬県安中市中宿1443番地 東邦亜鉛株式 会社技術研究所内 (72)発明者 中川 淳三 群馬県安中市中宿1443番地 東邦亜鉛株式 会社技術研究所内 (72)発明者 赤沢 隆則 群馬県安中市中宿1443番地 東邦亜鉛株式 会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaaki Kurimura 2-18, Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Excel Co., Ltd. (72) Inventor Yasuo Akai 2-18, Keihan Hon-dori, Moriguchi City, Osaka Prefecture (72) Inventor Mutsumi Yano 2-18 Keihanhondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Eiichiro Mieno 1443 Nakajuku, Annaka City, Gunma Toho Zinc Co., Ltd. In the laboratory (72) Wataru Sekiguchi 1443 Nakajuku, Annaka-shi, Gunma Toho Zinc Co., Ltd. Technical Research Institute (72) Inventor Junzo Nakagawa 1443 Nakajuku, Annaka-shi, Gunma Toho Zinc Co., Ltd. Technical Research Institute (72 ) Inventor Takanori Akazawa 1443 Nakajuku, Annaka City, Gunma Prefecture Toho Zinc Co., Ltd.
Claims (5)
ウム及びカルシウムから選択された1種以上を含有する
亜鉛合金粉末の表面にインジウムを添加被覆してなる被
覆亜鉛合金粉末を負極活物質として用いたことを特徴と
する亜鉛アルカリ電池。1. A coated zinc alloy powder obtained by adding indium to the surface of a zinc alloy powder containing tin and further containing at least one selected from bismuth, aluminum and calcium was used as a negative electrode active material. A zinc alkaline battery characterized in that
が0.05〜0.80重量%、被覆亜鉛合金粉末中のス
ズ含有率が0.005〜0.05重量%であることを特
徴とする請求項1記載の亜鉛アルカリ電池。2. The coated zinc alloy powder has an indium content of 0.05 to 0.80% by weight, and the coated zinc alloy powder has a tin content of 0.005 to 0.05% by weight. The zinc alkaline battery according to claim 1.
0.005〜0.05重量%であることを特徴とする請
求項1記載の亜鉛アルカリ電池。3. The zinc alkaline battery according to claim 1, wherein the content of bismuth in the coated zinc alloy powder is 0.005 to 0.05% by weight.
率が0.01〜0.05重量%であることを特徴とする
請求項1記載の亜鉛アルカリ電池。4. The zinc alkaline battery according to claim 1, wherein the content of aluminum in the coated zinc alloy powder is 0.01 to 0.05% by weight.
が0.01〜0.05重量%であることを特徴とする請
求項1記載の亜鉛アルカリ電池。5. The zinc alkaline battery according to claim 1, wherein the calcium content in the coated zinc alloy powder is 0.01 to 0.05% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4069428A JPH0620688A (en) | 1992-02-19 | 1992-02-19 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4069428A JPH0620688A (en) | 1992-02-19 | 1992-02-19 | Zinc alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0620688A true JPH0620688A (en) | 1994-01-28 |
Family
ID=13402348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4069428A Pending JPH0620688A (en) | 1992-02-19 | 1992-02-19 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0620688A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811105A (en) * | 1984-07-01 | 1989-03-07 | Canon Kabushiki Kaisha | Image sensor with an image section and a black level detection section for producing image signals to be stored and read out from a storage section |
JP2006179430A (en) * | 2004-12-24 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Zinc alloy powder for alkaline battery |
-
1992
- 1992-02-19 JP JP4069428A patent/JPH0620688A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811105A (en) * | 1984-07-01 | 1989-03-07 | Canon Kabushiki Kaisha | Image sensor with an image section and a black level detection section for producing image signals to be stored and read out from a storage section |
JP2006179430A (en) * | 2004-12-24 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Zinc alloy powder for alkaline battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3215448B2 (en) | Zinc alkaline battery | |
JP3215446B2 (en) | Zinc alkaline battery | |
JP3215447B2 (en) | Zinc alkaline battery | |
JP2003017077A (en) | Sealed alkaline zinc primary battery | |
JP3344486B2 (en) | Method for producing non-melonized zinc alloy powder for alkaline batteries | |
JPS62213064A (en) | Lithium-alloy negative electrode and its manufacture | |
JPH0620688A (en) | Zinc alkaline battery | |
JP3286346B2 (en) | Zinc alkaline battery | |
JPH05299075A (en) | Zinc alkaline battery | |
JPS62123653A (en) | Zinc-alkaline battery | |
JPS59143268A (en) | Solid electrolyte battery | |
CN1229284A (en) | Anode material for use in alkaline manganese cells and process for producing the same | |
JPH0317181B2 (en) | ||
JPH06318456A (en) | Manufacture of non-amalgamated negative electrode zinc alloy powder for alkaline battery | |
JPH0119622B2 (en) | ||
JP3968248B2 (en) | Aluminum battery | |
JP3187862B2 (en) | Zinc alkaline battery | |
JPH0317182B2 (en) | ||
JPH0622119B2 (en) | Zinc alkaline battery | |
JP3219418B2 (en) | Zinc alkaline battery | |
JPH0636764A (en) | Zinc-alkaline battery | |
JPH0685324B2 (en) | Zinc alkaline battery | |
JPH01279564A (en) | Manufacture of amalgamated zinc alloy powder | |
JPH0622116B2 (en) | Zinc alkaline battery | |
JPS61140067A (en) | Zinc alkali battery |