JPH0365620B2 - - Google Patents

Info

Publication number
JPH0365620B2
JPH0365620B2 JP60020373A JP2037385A JPH0365620B2 JP H0365620 B2 JPH0365620 B2 JP H0365620B2 JP 60020373 A JP60020373 A JP 60020373A JP 2037385 A JP2037385 A JP 2037385A JP H0365620 B2 JPH0365620 B2 JP H0365620B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
mercury
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020373A
Other languages
Japanese (ja)
Other versions
JPS61181069A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60020373A priority Critical patent/JPS61181069A/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to DE8585308930T priority patent/DE3562307D1/en
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to CN85109759.6A priority patent/CN1004391B/en
Publication of JPS61181069A publication Critical patent/JPS61181069A/en
Priority to US07/029,343 priority patent/US4861688A/en
Publication of JPH0365620B2 publication Critical patent/JPH0365620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活物質として亜鉛、電解液とし
てアルカリ水溶液、正極活物質として二酸化マン
ガン、酸化銀、酸化水銀、酸素、水酸化ニツケル
等を用いる亜鉛アルカリ電池の負極の改良に関す
るものである。 従来の技術 亜鉛アルカリ電池の共通した問題点として、保
存中の負極亜鉛電解液による腐食が挙げられる。
従来、亜鉛に5〜10重量%程度の水銀を添加した
汞化亜鉛粉末を用いて水素過電圧を高め、実用的
に問題のない程度に腐食を抑制することが工業的
な手法として採用されている。しかし近年、低公
害化のため、電池内の含有水銀量を低減させるこ
とが社会的ニーズとして高まり、種々の研究がな
されている。例えば、亜鉛中に鉛、カドミウム、
インジウム、ガリウムなどを添加した合金粉末を
用いて耐食性を向上させ、汞化率を低減させる方
法が提案されている。これらの腐食抑制効果は、
添加元素の単体の効果以外に複数の添加元素によ
る複合効果も大きく、インジウムと鉛あるいはこ
れにさらにガリウムを添加したもの、さらにはガ
リウムと鉛を添加した亜鉛合金などが従来、有望
な系として提案されている。 これらはいずれもある程度の耐食性が期待で
き、汞化率の低減もある程度見込めるものの、さ
らに一層、耐食性のよい合金系の探索が必要であ
る。 また、主にマンガン乾電池の改良をめざして、
亜鉛又は亜鉛合金にインジウムを添加した亜鉛合
金を負極に使用することが防食上の効果が大きい
という提案がある((特公昭33−3204号)。 発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、
インジウムの他にFe、Cd、Cr、Pb、Ca、Hg、
Bi、Sb、Al、Ag、Mg、Si、Ni、Mn等を不純
物又は添加物として一又は二種以上を含む場合を
包含して記載されているが、インジウムと鉛を添
加元素として併用した場合の有効性以外には、上
記の雑多な各元素を不純物として含むのか、有効
な元素として添加するのかの区分は明示されてい
なく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム、鉛
以外の記載はない。 これらの元素の組合せの効果について、しかも
これを亜鉛アルカリ電池において検討し、有効な
合金組成を求めることは、なお今後の課題であ
る。 本発明は、負極亜鉛の耐食性、放電性能を劣化
させることなく汞化率を低減させ、低公害で放電
性能、貯蔵性、耐漏液性などの総合性能のすぐれ
た亜鉛アルカリ電池を提供することを目的とす
る。 問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなど
を主成分とするアルカリ水溶液、負極活物質に亜
鉛、正極活物質に二酸化マンガン、酸化銀、酸化
水銀、酸素などを用いるいわゆる亜鉛アルカリ系
電池の負極に、亜鉛を主成分とし、ニツケル
(Ni)を0.01〜0.5重量%、アルミニウム(Al)を
0.005〜0.2重量%、インジウム(In)、タリウム
(Tl)の1種または2種を総量で0.01〜0.5重量%
含有する亜鉛合金を用いたことを特徴とする。 本発明は、前記の従来例の亜鉛合金中の添加元
素又は不純物のうち、Ni、Alは安価で、環境汚
染の懸念がないが、添加効果について殆ど未検討
であることに注目し、Ni、Alの添加効果と従来
から有効な添加元素とされているIn、Tlとの複
合効果について実験を行ない、上記の如く添加元
素の適切な組合わせと含有量において、極めて著
しい複合的な防食効果が得られることを見出して
完成したものである。 作 用 Ni、或いはAl、或いはIn、Tlの単独での添加
による防食効果、及びこれらの元素の複合効果に
ついての作用機構は不明確であるが、次のように
推察される。 まず、亜鉛に対するNiの溶解度は小さいが噴
射法で粉体化する際の冷却速度が103℃/secのオ
ーダーで非常に大きいため、後述の実施例での適
正な含有量の程度の亜鉛合金粉においてはNiが
亜鉛と溶体化する可能性がある。従つて、亜鉛合
金を表面から汞化した場合、水銀と親和性の小さ
いNiが結晶内への水銀の拡散を抑制し、亜鉛合
金表面の水銀濃度を高く維持することに寄与する
ことが考えられる。その反面、亜鉛合金表面の水
銀のなじみを却つて悪くする懸念がある。また、
AlとNiと同様に水銀との親和性が小さいので、
亜鉛合金の内部への水銀の拡散の抑制に寄与する
ものと考えられる。さらに、噴射法により粉体化
した亜鉛合金の粒子はAlの添加により表面が平
滑化される傾向が確認されており、反応表面積の
減少による腐食抑制の効果も期待される。しかし
Alは亜鉛より卑な金属なので、電解液中で亜鉛
より優先して腐食し易く、前記の防食面で期待さ
れる作用とのバランスを考慮する必要があると考
えられ、特に過剰な添加は却つて耐食性を損うこ
とを確認している。また、In、Tlは亜鉛合金の
水素過電圧を大きくするとともに、水銀となじみ
易いため亜鉛合金を汞化した場合、表面を汞化に
より均一化するのに有効であり、さらに亜鉛合金
の表面や結晶粒界に水銀を固定する役割も期待さ
れる。上述の通り、各添加元素は、各々異なつた
作用が期待されるので、本発明はこれらを総合し
た複合効果により、亜鉛合金の水素過電圧を高
め、しかも、少量の水銀の使用により、表面の水
銀濃度が高く維持され、表面状態も均一で表面積
が小さく、極めて耐食性の優れた亜鉛合金組成を
見出したものである。即ち、NiとAlの併存によ
り結晶粒内への水銀の拡散の抑制力を強め、Al
による表面積減少効果を付加し、さらにIn、Tl
により亜鉛合金の水素過電圧を大きくするととも
に汞化亜鉛合金の表面を均一化し、表面や粒界に
水銀を固定するという各々の添加元素の想定され
る作用を総合して著しく改善された複合効果を得
たものである。 以上のように、本発明は負極に用いる亜鉛合金
の耐食性を著しく改善し、低汞化率の耐食性亜鉛
負極を実現し、放電性能と貯蔵性にすぐれた低公
害の亜鉛アルカリ電池を提供したものである。 以下、実施例により詳細に説明する。 実施例 純度99.997%以上の亜鉛地金に、次表に示す各
種の元素を添加した各種の亜鉛合金を作成し、約
500℃で溶融して圧縮空気により噴射して粉体化
し、50〜150メツシユの粒度範囲にふるい分けし
た。次いで、か性カリの10重量%水溶液中に上記
粉体を投入し、攪拌しながら所定量の水銀を滴下
して汞化した。その後水洗し、アセトンで置換し
て乾燥し、汞化亜鉛合金粉を作成した。さらに本
発明の実施例以外の汞化亜鉛粉、又は汞化亜鉛合
金粉についても比較例として同様の方法で作成し
た。 これらの汞化粉末を用い、図に示すボタン形酸
化銀電池を製作した。図において、1はステンレ
ス鋼製の封口板で、その内面には銅メツキ1′が
施されている。2はか性カリの40重量%水溶液に
酸化亜鉛を飽和させた電解液をカルボキシメチル
セルロースによりゲル化し、このゲル中に汞化亜
鉛合金粉末を分散させた亜鉛負極である。3はセ
ルロース系の保液材、4は多孔性ポリプロピレン
製のセパレータ、5は酸化銀に黒鉛を混合して加
圧成形した正極、6は鉄にニツケルメツキを施し
た正極リング、7はステンレス鋼製の正極缶で、
その内外面にはニツケルメツキが施されている。
8はポリプロピレン製のガスケツトで、正極缶の
折り曲げにより正極缶と封口板との間に圧縮され
ている。 試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、水銀の
添加量(汞化率)は、亜鉛合金粉に対し、いずれ
も1重量%とした。 試作した電池の亜鉛合金の組成と、60℃で1カ
月間保存した後の放電性能と電池総高の変化を次
表に示す。なお放電性能は、20℃において510Ω
で0.9Vを終止電圧として放電したときの放電持
続時間で表わした。
INDUSTRIAL APPLICATION FIELD The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using zinc as the negative electrode active material, an alkaline aqueous solution as the electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide, etc. as the positive electrode active material. It is something. Prior Art A common problem with zinc-alkaline batteries is corrosion caused by the negative electrode zinc electrolyte during storage.
Conventionally, an industrial method has been used to increase the hydrogen overvoltage by using zinc chloride powder containing 5 to 10% by weight of mercury to suppress corrosion to a level that poses no practical problems. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, lead, cadmium,
A method has been proposed in which alloy powder containing indium, gallium, etc. is added to improve corrosion resistance and reduce the corrosion rate. These corrosion inhibiting effects are
In addition to the effect of a single additive element, the combined effect of multiple additive elements is also large, and systems such as indium and lead or those with gallium added to them, and zinc alloys with gallium and lead added have been proposed as promising systems. has been done. Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance. In addition, we mainly aim to improve manganese dry batteries.
There is a proposal that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode has a great anticorrosion effect ((Japanese Patent Publication No. 33-3204). Problems to be Solved by the Invention The above proposal As an element in zinc alloys,
In addition to indium, Fe, Cd, Cr, Pb, Ca, Hg,
The description includes cases where one or more of Bi, Sb, Al, Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of corrosion prevention, there is no clear distinction as to whether each of the miscellaneous elements listed above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention. There is no description of the amount of addition other than indium and lead. It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition. The present invention aims to provide a zinc-alkaline battery with low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance, by reducing the corrosion resistance and discharge performance of the negative electrode zinc. purpose. Means for Solving the Problems The present invention uses an aqueous alkaline solution containing caustic potash, caustic soda, etc. as the main components in the electrolyte, zinc as the negative electrode active material, manganese dioxide, silver oxide, mercury oxide, etc. as the positive electrode active material, The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. is made mainly of zinc, 0.01 to 0.5% by weight of nickel (Ni), and aluminum (Al).
0.005-0.2% by weight, one or both of indium (In) and thallium (Tl) in a total amount of 0.01-0.5% by weight
It is characterized by using a zinc alloy containing zinc. The present invention focuses on the fact that, among the additive elements or impurities in the conventional zinc alloys, Ni and Al are inexpensive and have no concerns about environmental pollution, but the effects of their addition have hardly been investigated. We conducted experiments on the combined effect of the addition of Al and In and Tl, which have traditionally been considered effective additive elements, and found that with the appropriate combination and content of the additive elements as described above, an extremely remarkable combined anticorrosion effect was achieved. It was completed after discovering what could be achieved. Effect The mechanism of action regarding the anticorrosive effect of adding Ni, Al, In, or Tl alone, and the combined effect of these elements is unclear, but it is inferred as follows. First, although the solubility of Ni in zinc is small, the cooling rate during powderization by the injection method is extremely high, on the order of 10 3 °C/sec, so the zinc alloy with an appropriate content in the examples described below In powder, Ni may become solution with zinc. Therefore, when a zinc alloy is oxidized from the surface, it is thought that Ni, which has a low affinity for mercury, suppresses the diffusion of mercury into the crystal and contributes to maintaining a high mercury concentration on the surface of the zinc alloy. . On the other hand, there is a concern that the adhesion of mercury to the surface of the zinc alloy may become worse. Also,
Like Al and Ni, it has a low affinity for mercury, so
It is thought that this contributes to suppressing the diffusion of mercury into the interior of the zinc alloy. Furthermore, it has been confirmed that the surface of zinc alloy particles pulverized by the injection method tends to be smoothed by the addition of Al, and the effect of inhibiting corrosion by reducing the reaction surface area is also expected. but
Since Al is a metal that is more base than zinc, it is more likely to corrode than zinc in an electrolytic solution, and it is thought that it is necessary to consider the balance with the anti-corrosion effect mentioned above, and in particular, excessive addition should be avoided. It has been confirmed that corrosion resistance is impaired. In addition, In and Tl increase the hydrogen overvoltage of zinc alloys and are easily compatible with mercury, so when a zinc alloy is made into a grain, it is effective in making the surface uniform by making it into a grain. It is also expected to play a role in fixing mercury at grain boundaries. As mentioned above, each additive element is expected to have a different effect, so the present invention increases the hydrogen overvoltage of the zinc alloy by the combined effect of these elements, and also reduces the mercury on the surface by using a small amount of mercury. We have discovered a zinc alloy composition that maintains a high concentration, has a uniform surface condition, has a small surface area, and has extremely excellent corrosion resistance. In other words, the coexistence of Ni and Al strengthens the ability to suppress the diffusion of mercury into crystal grains, and
In, Tl
By integrating the expected effects of each additive element, we have achieved a significantly improved combined effect of increasing the hydrogen overvoltage of the zinc alloy, making the surface of the zinc chloride alloy uniform, and fixing mercury on the surface and grain boundaries. That's what I got. As described above, the present invention significantly improves the corrosion resistance of the zinc alloy used for the negative electrode, realizes a corrosion-resistant zinc negative electrode with a low rate of deterioration, and provides a low-pollution zinc-alkaline battery with excellent discharge performance and storage stability. It is. Hereinafter, it will be explained in detail using examples. Example: Various zinc alloys were created by adding various elements shown in the following table to zinc ingot with a purity of 99.997% or more.
It was melted at 500°C, pulverized by blasting with compressed air, and sieved to a particle size range of 50-150 mesh. Next, the powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise to the solution while stirring. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc chloride alloy powder. Further, zinc chloride powder or zinc chloride alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples. The button-shaped silver oxide battery shown in the figure was manufactured using these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40% by weight aqueous solution of caustic potassium saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc oxide alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is made of stainless steel. With the positive electrode can,
Its inner and outer surfaces are decorated with nickel metal.
A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the oxidized powder of the negative electrode was unified to 193 mg, and the amount of mercury added (the oxidized ratio) was 1% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance is 510Ω at 20℃.
It is expressed as the discharge duration when discharge is performed with a final voltage of 0.9V.

【表】【table】

【表】 この表における、電池総高の変化については、
電池封口後、経時的に各電池構成要素間への応力
の関係が安定化するまでの期間は電池総高が減少
するのが通例である。しかし、亜鉛負極の腐食に
伴う水素ガス発生の多い電池では、上記の電池総
高の減少力に対抗する電池内圧の上昇により電池
総高を増大させる傾向が強くなる。従つて、貯蔵
による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な
電池では、電池総高が増大するほか、電池内圧の
上昇により耐漏液性が劣化するとともに、腐食に
よる亜鉛の消耗、亜鉛表面の酸化膜の形成や、水
素ガスの内在による放電反応の阻害等により放電
性能が著しく劣化することになり、放電持続時間
も又亜鉛負極の耐食性に依存する要素が大きい。 表において、本発明の比較例として挙げたNo.1
〜7のうち、添加元素を単独で添加した場合(No.
1、2、3、4)よりも二種の元素を添加した場
合(No.5、6、7)の方が亜鉛負極の耐食性、放
電性能とも幾分改善されている。しかし、Ni、
に加えInおよびTlの一種または二種と、Alを適
正な含有量で併存させた本発明の実施例(No.9、
10、11、14、15、18、19、22、23、25、26、)の
場合には前記の比較例に較べ、一段と耐食性、放
電性能がすぐれ、添加元素の複合効果が顕著に示
される。一方、上記の三元素を併存させた場合で
も含有量に過不足のある場合(No.8、12、13、
16、17、20、21、24)は比較例と大差なく、複合
効果が乏しい。上述の通り、本発明は上記の3ま
たは4元素を適正な組ませ、適正な含有量で併存
させた亜鉛合金を負極に用いることにより低汞化
率化に成功したもので、各元素の含有量はNiが
0.01〜0.5重量%InおよびTlの一種または二種の
総量(和)が0.01〜0.5重量%Alが0.005〜0.2重量
%とするのが適切である。 以上のように、本発明は前述の添加元素の組合
わせによる相乗効果により負極に用いる亜鉛合金
の耐食性が向上することを見出し、適切な含有量
を割り出して低公害で実用性能のすぐれた亜鉛ア
ルカリ電池を実現したものである。なお、実施例
においては汞化亜鉛負極を用いた電池について説
明したが、開放式の空気電池や水素吸収機構を備
えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このよ
うな場合に本発明を適用する場合は、さらに低汞
化率、場合によつては無汞化のまま実施すること
もできる。 発明の効果 以上のように本発明は、負極亜鉛の汞化率を低
減でき、低公害の亜鉛アルカリ電池を得るに極め
て効果的である。
[Table] Regarding changes in total battery height in this table,
After the battery is sealed, the total height of the battery typically decreases during the period until the stress relationship between the battery components becomes stable over time. However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on the change in total battery height due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. The discharge performance is significantly deteriorated due to inhibition of the discharge reaction by the zinc negative electrode, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode. In the table, No. 1 listed as a comparative example of the present invention
~7, when the additive element is added alone (No.
Both the corrosion resistance and discharge performance of the zinc negative electrode were somewhat improved in the cases where two types of elements were added (Nos. 5, 6, and 7) compared to those in Nos. 1, 2, 3, and 4). However, Ni,
Examples of the present invention (No. 9,
In the case of 10, 11, 14, 15, 18, 19, 22, 23, 25, 26,), the corrosion resistance and discharge performance are even better than in the above comparative example, and the combined effect of the added elements is clearly demonstrated. . On the other hand, even when the above three elements coexist, there is an excess or deficiency in their content (No. 8, 12, 13,
16, 17, 20, 21, 24) are not much different from the comparative examples, and the combined effect is poor. As mentioned above, the present invention has succeeded in reducing the rate of reduction by properly combining the above three or four elements and using a zinc alloy in the negative electrode in an appropriate content. The amount of Ni
It is appropriate that the total amount (sum) of one or both of In and Tl be 0.01 to 0.5% by weight, and that Al be 0.005 to 0.2% by weight. As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it can be carried out with a lower rate of hydrogenation, or in some cases, with no rate of hydrogenation. Effects of the Invention As described above, the present invention can reduce the oxidation rate of negative electrode zinc, and is extremely effective in obtaining a low-pollution zinc-alkaline battery.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電
池の一部を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸
化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】 1 ニツケルを0.01〜0.5重量%、アルミニウム
を0.005〜0.2重量%、インジウム、タリウムの1
種または2種を総量で 0.01〜0.5重量%含有する亜鉛合金を負極活物
質に用いた亜鉛アルカリ電池。
[Claims] 1 0.01 to 0.5% by weight of nickel, 0.005 to 0.2% by weight of aluminum, 1 of indium and thallium.
A zinc-alkaline battery using a zinc alloy containing 0.01 to 0.5% by weight of one or both species as a negative electrode active material.
JP60020373A 1984-12-12 1985-02-05 Zinc alkaline cell Granted JPS61181069A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60020373A JPS61181069A (en) 1985-02-05 1985-02-05 Zinc alkaline cell
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
CN85109759.6A CN1004391B (en) 1984-12-12 1985-12-11 Zinc-alkali cells
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020373A JPS61181069A (en) 1985-02-05 1985-02-05 Zinc alkaline cell

Publications (2)

Publication Number Publication Date
JPS61181069A JPS61181069A (en) 1986-08-13
JPH0365620B2 true JPH0365620B2 (en) 1991-10-14

Family

ID=12025257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020373A Granted JPS61181069A (en) 1984-12-12 1985-02-05 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS61181069A (en)

Also Published As

Publication number Publication date
JPS61181069A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPH0365620B2 (en)
JPH0142576B2 (en)
JPH0365621B2 (en)
JPH0365619B2 (en)
JPH0365618B2 (en)
JPH0622119B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0143429B2 (en)
JPH0365623B2 (en)
JPH0365622B2 (en)
JPS6290860A (en) Zinc alkaline cell
JPS6273565A (en) Zinc alkaline battery
JPS6290852A (en) Zinc alkaline cell
JPH0365617B2 (en)
JPS6290859A (en) Zinc alkaline cell
JPS6290855A (en) Zinc alkaline cell
JPS61181070A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPS636747A (en) Zince alkaline battery
JPS6290851A (en) Zinc alkaline cell
JPS61181066A (en) Zinc alkaline cell
JPH0622116B2 (en) Zinc alkaline battery
JPS61181067A (en) Zinc alkaline cell
JPS61140062A (en) Zinc alkali battery