JPS60114548A - Zinc alloy for electrode - Google Patents
Zinc alloy for electrodeInfo
- Publication number
- JPS60114548A JPS60114548A JP22073283A JP22073283A JPS60114548A JP S60114548 A JPS60114548 A JP S60114548A JP 22073283 A JP22073283 A JP 22073283A JP 22073283 A JP22073283 A JP 22073283A JP S60114548 A JPS60114548 A JP S60114548A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- gallium
- lead
- electrode
- indium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inert Electrodes (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、ガリウム−亜鉛系合金特にはガリウム−鉛−
亜鉛合金またはガリウム−鉛−インジウム−亜鉛合金か
らなる電極用合金Gこ関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gallium-zinc alloy, particularly a gallium-lead alloy.
This relates to an electrode alloy G consisting of a zinc alloy or a gallium-lead-indium-zinc alloy.
−次電池用電極として用いられる亜鉛または亜鉛合金は
、電池使用時および貯蔵時における局部腐食やそれに基
づいて発生する水素ガスによる電池容器の変形や容器か
らの漏液がないことが必要条件になっている。これまで
、このような電極用亜鉛の性質を保持するために亜鉛の
氷化が行なわれており、これによって電極の水素過電圧
が効果的に高められて腐食が抑制され、従ってガス発生
量も少なく亜鉛の利用率も高められて(また。し力)し
、水銀を使用することによって一次電池の性能は向上す
るが、近年公害発生防止の面から氷化亜鉛の代替材料あ
るいは氷化に代る改善処理が望まれるようになってきて
いるのも事実である。- Zinc or zinc alloy used as electrodes for secondary batteries must be free from local corrosion during battery use and storage, deformation of the battery container due to hydrogen gas, and no leakage from the container. ing. Until now, zinc has been frozen in order to maintain these properties of zinc for electrodes, which effectively increases the hydrogen overvoltage of the electrode, suppresses corrosion, and therefore reduces the amount of gas generated. The utilization rate of zinc has also been increased, and the performance of primary batteries has been improved by using mercury, but in recent years, from the perspective of preventing pollution, alternative materials for frozen zinc or icing have been developed. It is also true that improved processing is increasingly desired.
このような状況に鑑み9本発明者らは、氷化亜鉛に代替
し得る電極用材料とし先に水銀を含まないガリウム−亜
鉛合金を見出しく特開昭58−26455 )yさらに
高価なガリウムの代り得る材料をめて第2元素としての
インジウムに着目し、結局ガ’Jウムーインジウムの協
同効果域を見出しガリウム−インジウム−亜鉛からなる
電極用亜鉛合金を提供し得たものである(特開昭58−
26456号)。In view of this situation, the present inventors first discovered a mercury-free gallium-zinc alloy as an electrode material that could replace frozen zinc. He focused on indium as a second element in search of alternative materials, and eventually found the cooperative effect range of gallium-indium and was able to provide a zinc alloy for electrodes consisting of gallium-indium-zinc. Showa 58-
No. 26456).
本発明者等は、さら裔こ研究を進め、先の特開昭58−
26456号の発明で有用であることが示唆された鉛を
含めて第2および第3の元素との組合せを検討し、結局
鉛−インジウムーガリウムの協同効果を確認し得たので
ある。鉛とガリウムとの協同効果が特に著しく、それぞ
れ少量の組合せで著しい効果をもたらし、ガリウム−イ
ンジウム−鉛−亜鉛系合金でインジウムがたとえば0.
O1〜o、o o i%というガリウム−インジウム−
亜鉛合金の場合をこ比較してさらに少ないインジウム量
でガ〕入発生量が少なく、さらにはインジウムを含まず
ともガス発生量が少なく、それなりに実用化し得ること
が見出されたものである。The inventors of the present invention proceeded with research on the descendants, and the
They investigated combinations with second and third elements, including lead, which was suggested to be useful in the invention of No. 26456, and eventually confirmed the cooperative effect of lead-indium-gallium. The cooperative effect of lead and gallium is particularly remarkable, and a small amount of each in combination produces a remarkable effect.
O1~o, o o i% gallium-indium-
Compared to the case of zinc alloy, it has been found that the amount of gas generated is small even with a smaller amount of indium, and furthermore, the amount of gas generated is small even without indium, so that it can be put to practical use.
すなわち9本発明はガリウム0.Olないし0.5%お
よび鉛0.01ないし0.5%を含む亜鉛合金、そして
ガリウム0,01ないし0.5%、鉛0,01ないし0
,5%およびインジウム0.001ないし0,01%を
含む亜鉛合金からなる電極用亜鉛合金である。That is, 9 the present invention uses gallium 0. Zinc alloy containing 0.01 to 0.5% Ol and 0.01 to 0.5% lead, and 0.01 to 0.5% gallium, 0.01 to 0 lead
, 5% and 0.001 to 0.01% indium.
本発明をその実施例によって説明する。The present invention will be explained by way of examples thereof.
鉛とガリウムの含有量を変えて噴霧法で製し実用的な4
8〜150メツシユに粒度調整した】II(鉛合金末(
特開昭58−26455号および58−26456号の
方法では200メツシユ以下)について電池特性をみる
ためガス発生率をめた。Practical 4 made by a spraying method with varying lead and gallium contents.
II (lead alloy powder (lead alloy powder) whose particle size was adjusted to 8 to 150 mesh
In the method of JP-A-58-26455 and JP-A-58-26456, the gas generation rate was determined in order to examine the battery characteristics for cells (less than 200 meshes).
ガス発生率は酸化亜鉛を飽和させた45℃の水酸化カリ
ウム35%水溶液に5.0gに秤量した供試亜鉛合金末
を浸漬し3日間におけるガス発生量力箋らめたものであ
る。The gas generation rate was determined by immersing 5.0 g of test zinc alloy powder in a 35% potassium hydroxide aqueous solution at 45° C. saturated with zinc oxide, and determining the amount of gas generated over 3 days.
鉛含有量0.005.0.01.0.05.0.1およ
び0.5%のそれぞれについてガリウムを0.005.
0.Ol。0.005% gallium for each lead content of 0.005%, 0.01%, 0.05%, 0.1% and 0.5%.
0. Ol.
0.05.0.1.0.25および0.5%に添加した
亜鉛合金末を試料としてめられたガス発生率(ttL/
g・日)は第1表のとおりであった。Gas generation rate (ttL/
g/day) were as shown in Table 1.
第 1 表
すなわち、現在実用されている水銀濃度約5%以上のボ
化亜鉛末で得られる3μtag・日以下のガス発生率は
少なくとも鉛0.01%以上およびガリウム0.01%
以上で達成されているのがわかる。Table 1 shows that the gas generation rate of 3 μtag/day or less obtained with zinc boride powder with a mercury concentration of about 5% or more, which is currently in practical use, is at least 0.01% lead and 0.01% gallium.
It can be seen that the above has been achieved.
さらに鉛含有量0.01.0.05.0.1および0.
5%のそれぞれについて、ガリウム含有量を0.01
、0.05゜0.1 、0.25および0.5%に変え
、さらにまたそれぞれを二ついてインジウム含有量を0
.001.0.005゜0.01 、0.05および0
.1%に変えた鉛−ガリウム−インジウム−亜鉛系合金
についてガス発生率をめた結果は、第2表〜第5表のと
おりであ一ンだ。Furthermore, the lead content is 0.01.0.05.0.1 and 0.0.
For each 5%, the gallium content is 0.01
, 0.05°0.1, 0.25 and 0.5%, and then two of each again to reduce the indium content to 0.
.. 001.0.005゜0.01, 0.05 and 0
.. Tables 2 to 5 show the results of gas generation rates for lead-gallium-indium-zinc alloys with a concentration of 1%.
第 2 表
第 3 表
第 4 表
すなわら、概ね鉛の添加量が多く7よるほど、またガリ
ウムの量が多くなるほどガス発生量は減じる傾向にある
が、これら鉛およびガリウムの共存状態のもとではイン
ジウムの最適含有量範囲は。As shown in Table 2, Table 3, and Table 4, the amount of gas generated tends to decrease as the amount of lead added7 or the amount of gallium increases, but under the coexistence of lead and gallium, So what is the optimal content range for indium?
鉛無添加の場合に比べて著しく低ドする傾向であり、0
.01%以下で著効を有することが知見された。It tends to be significantly lower than when no lead is added, and 0
.. It was found that the effect was significant at 0.01% or less.
このような鉛、ガリウムおよびインジウムの複合効果の
理由は今のところ明らかではないが9作用としてはこれ
らが他の鉄環不純物の影響を抑止しているものと思われ
る。The reason for such a combined effect of lead, gallium, and indium is not clear at present, but it is thought that they suppress the effects of other iron ring impurities.
多量の鉛量は電池活物質としての亜鉛量を減少させ、実
質発電、喰を低下させることになっ−(不利であり、ま
た合金製造を困難とし、さらにまた点食を招く恐れもあ
ることから9本発明では]1限は上記実施例で有効と確
認された0、5%とし、下限は上記結果から一応0.0
1%とした。A large amount of lead reduces the amount of zinc as a battery active material, which reduces the actual power generation and consumption (this is disadvantageous, makes alloy manufacturing difficult, and may also lead to pitting). 9 In the present invention, the first limit is 0.5%, which was confirmed to be effective in the above example, and the lower limit is 0.0% based on the above results.
It was set at 1%.
ガリウトは上記のようζこ確実に効果のみられる0、0
1%を下限とした。上限については、高価であると共に
合金化の点などから好ましくは0.5%と考えられるが
、状況に応じてのそれ以上の使用を妨げるものではない
。Galiut is definitely effective as mentioned above.
The lower limit was set at 1%. The upper limit is considered to be preferably 0.5% due to the high cost and alloying considerations, but this does not preclude the use of higher amounts depending on the situation.
インジウムについては無添加でも十分実用Gこ耐えるこ
とは前記鉛−ガリウムー亜鉛系合金の例に見られるとお
りであるが、o、oi%以下o、ooi%の範囲の添加
でより好適な効果が得られるものである。As for indium, it can withstand practical G sufficiently even without addition, as seen in the example of the lead-gallium-zinc alloy, but a more suitable effect can be obtained by adding it in the range of o, ooi% or less. It is something that can be done.
以上の合金について理論放電容量に対する実際放電容量
の比で表わされる亜鉛利用率も従来氷化亜鉛の場合と同
様で問題がなかった。For the above alloys, the zinc utilization rate expressed as the ratio of the actual discharge capacity to the theoretical discharge capacity was the same as in the case of conventional frozen zinc, and there was no problem.
なお9本発明の電極材は合金材であって、単なるガリウ
ム塩ないしインジウム塩溶液からの置換被着亜鉛粉とは
異なり、ガス発生率ははダ均一ζこ推移し、亜鉛利用率
も有効である。Note that the electrode material of the present invention is an alloy material, and unlike zinc powder deposited by displacement from a simple gallium salt or indium salt solution, the gas generation rate remains uniform and the zinc utilization rate is also effective. be.
以上のように本発明は、少量の安価な鉛の添加により、
高価なガリウムおよびインジウムの添加量を抑制しなが
ら、それら金属元素単味での亜鉛への添加の場合には見
られない高度の電池特性を保持し、かつ無氷化である点
から極めて実用性の高い、電極用亜鉛合金である。As described above, the present invention achieves the following by adding a small amount of inexpensive lead.
While suppressing the amount of expensive gallium and indium added, it maintains advanced battery characteristics that cannot be seen when these metal elements are added alone to zinc, and is extremely practical as it is ice-free. It is a zinc alloy for electrodes with high
特許庁長官 若 杉 和 夫 殿
1、事件の表示 特願昭58−220732号2、発明
の名称 電極用亜鉛合金
3、補正をする者
事件との関係 特許出願人
住 所 東京都中央区日本′m3丁目12番2号名 称
東邦亜鉛株式会社
4、代理人
6、補正の対象 明 # 書
7、補正の内容
本願明細書のタイプ文字の大きさが14号活字」より小
さかったので、打直した明i書を添付のとおり提出しま
す。Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case: Japanese Patent Application No. 58-2207322, Title of the invention: Zinc alloy for electrodes 3, Relationship with the person making the amendment: Address of the patent applicant: Nippon', Chuo-ku, Tokyo M3-chome 12-2 Name: Toho Zinc Co., Ltd. 4, Agent 6, Subject of amendment: Akira # 7, Contents of amendment: The size of the typeface in the specification of the application was smaller than "Type 14", so it was retyped. I will submit the certificate as attached.
Claims (2)
1ないし0.5%を含む亜鉛合金からなることを特徴と
する電極用亜鉛合金。(1) Gallium 0.01 to 0.5% and lead 0.0
A zinc alloy for electrodes, characterized in that the zinc alloy contains 1 to 0.5% of zinc.
.001ないLo、01%および鉛0.01ないし0.
5%を含む亜鉛合金からなることを特徴とする電極用亜
鉛合金。(2) Gallium 0.01 to 0.5%, Indium 0
.. Lo, 0.01% and lead 0.01 to 0.001%.
A zinc alloy for electrodes, characterized in that it consists of a zinc alloy containing 5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22073283A JPS60114548A (en) | 1983-11-25 | 1983-11-25 | Zinc alloy for electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22073283A JPS60114548A (en) | 1983-11-25 | 1983-11-25 | Zinc alloy for electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60114548A true JPS60114548A (en) | 1985-06-21 |
Family
ID=16755655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22073283A Pending JPS60114548A (en) | 1983-11-25 | 1983-11-25 | Zinc alloy for electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60114548A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284410B1 (en) | 1997-08-01 | 2001-09-04 | Duracell Inc. | Zinc electrode particle form |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853227A (en) * | 1971-11-09 | 1973-07-26 | ||
JPS5385349A (en) * | 1977-01-07 | 1978-07-27 | Matsushita Electric Ind Co Ltd | Nickel zinc storage battery |
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
-
1983
- 1983-11-25 JP JP22073283A patent/JPS60114548A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853227A (en) * | 1971-11-09 | 1973-07-26 | ||
JPS5385349A (en) * | 1977-01-07 | 1978-07-27 | Matsushita Electric Ind Co Ltd | Nickel zinc storage battery |
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284410B1 (en) | 1997-08-01 | 2001-09-04 | Duracell Inc. | Zinc electrode particle form |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0172255B1 (en) | Zinc alkaline battery | |
JPH035024B2 (en) | ||
JPS60175368A (en) | Zinc-alkaline primary cell | |
US5198315A (en) | Zinc alkaline cells | |
JP3215447B2 (en) | Zinc alkaline battery | |
JPH04284359A (en) | Zinc alkaline battery | |
JPS60114548A (en) | Zinc alloy for electrode | |
JPS6273565A (en) | Zinc alkaline battery | |
JPS636749A (en) | Zinc alkaline battery | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS6032249A (en) | Zinc alloy for negative electrode of primary battery | |
JPS6177265A (en) | Zinc alkaline battery | |
JPH0622116B2 (en) | Zinc alkaline battery | |
JPS60175369A (en) | Zinc-alkaline primary cell | |
JPS6290852A (en) | Zinc alkaline cell | |
JPH0719600B2 (en) | Zinc alkaline battery | |
JPS60177552A (en) | Zinc alkaline primary battery | |
JPH0143429B2 (en) | ||
JPS6178059A (en) | Zinc alkaline battery | |
JPH0365617B2 (en) | ||
JPS6177268A (en) | Zinc alkaline battery | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS61140066A (en) | Zinc alkali battery | |
JPS61181070A (en) | Zinc alkaline cell | |
JPS63133450A (en) | Zinc alkaline battery |