JP3532640B2 - Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode - Google Patents

Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode

Info

Publication number
JP3532640B2
JP3532640B2 JP30504794A JP30504794A JP3532640B2 JP 3532640 B2 JP3532640 B2 JP 3532640B2 JP 30504794 A JP30504794 A JP 30504794A JP 30504794 A JP30504794 A JP 30504794A JP 3532640 B2 JP3532640 B2 JP 3532640B2
Authority
JP
Japan
Prior art keywords
nickel
separated
content
positive electrode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30504794A
Other languages
Japanese (ja)
Other versions
JPH08157974A (en
Inventor
和弘 山本
滝川  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP30504794A priority Critical patent/JP3532640B2/en
Publication of JPH08157974A publication Critical patent/JPH08157974A/en
Application granted granted Critical
Publication of JP3532640B2 publication Critical patent/JP3532640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル水素2次電池
のリサイクルに有効なニッケル水素2次電池からの正極
材料回収法及び負極有効金属回収用原料の回収法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a positive electrode material from a nickel-hydrogen secondary battery and a method for recovering a raw material for recovering a negative electrode effective metal which are effective for recycling the nickel-hydrogen secondary battery.

【0002】[0002]

【従来の技術】近年、エレクトロニクス製品のポータブ
ル化に伴う2次電池の需要が急増している。また無公害
な電気自動車用バッテリーとして、ニッケル水素2次電
池の改良が進められ、今後の需要拡大が注目されてい
る。このようにニッケル水素2次電池は、従来のニッケ
ルカドミウム電池に比して特性に優れ、しかも環境問題
も少ないことから今後もその需要の拡大が期待されてい
る。
2. Description of the Related Art In recent years, the demand for secondary batteries has rapidly increased due to the portable electronic products. Further, nickel-metal hydride secondary batteries have been improved as a pollution-free battery for electric vehicles, and attention is focused on future demand expansion. As described above, the nickel-hydrogen secondary battery is superior in characteristics to the conventional nickel-cadmium battery and has less environmental problems. Therefore, it is expected that the demand thereof will be expanded in the future.

【0003】このような需要の拡大に伴い、使用済みの
ニッケル水素2次電池から有効金属を回収し、再利用す
る試みが提案されている。例えば使用済みのニッケル水
素2次電池の負極構成物質と正極構成物質とから負極材
料を回収する方法(PCT公開特許公報WO94/23
073)が知られている。しかし正極構成物質を正極材
料として回収する方法については未だ確立されていな
い。これは従来の化学処理法、溶媒抽出分離法、蒸発分
離法等を用いて回収する場合、新たな原料を使用するよ
りもコスト的に高くなるためであり、また正極材料のみ
を回収する場合、正極構成物質中に含まれる亜鉛が負極
材料中に混入し、回収される負極材料の性能を低下させ
る恐れが生じるからである。従って環境的にも需要の拡
大しつつあるニッケル水素2次電池の正極材料回収法並
びに前記負極材料を回収する方法(PCT公開特許公報
WO94/23073)等の負極材料回収法に利用可能
な純度に優れた負極有効金属回収用原料の回収法の開発
が望まれている。
[0003] With such an increase in demand, there has been proposed an attempt to recover and reuse an effective metal from a used nickel hydrogen secondary battery. For example, a method for recovering a negative electrode material from a negative electrode constituent substance and a positive electrode constituent substance of a used nickel hydrogen secondary battery (PCT published patent publication WO94 / 23).
073) is known. However, a method for recovering the positive electrode constituent substance as a positive electrode material has not yet been established. This is because when using conventional chemical treatment methods, solvent extraction separation methods, evaporation separation methods, etc., the cost is higher than when using new raw materials, and when recovering only the positive electrode material, This is because zinc contained in the positive electrode constituent substance may be mixed in the negative electrode material, and the performance of the recovered negative electrode material may be deteriorated. Therefore, it has a purity that can be used for a negative electrode material recovery method such as a positive electrode material recovery method for a nickel-hydrogen secondary battery whose environment is increasing in demand and a method for recovering the negative electrode material (PCT published patent publication WO94 / 23073). It is desired to develop an excellent method for recovering a raw material for recovering a negative electrode effective metal.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、低コ
ストでしかもニッケル水素2次電池から効率良く正極材
を回収することが可能であり、リサイクル面において
も有効なニッケル水素2次電池からの正極材料回収法を
提供することにある。
An object of the present invention is to provide a, yet low cost it is possible to efficiently recovered positive electrode material of nickel-hydrogen rechargeable batteries, the effective nickel-hydrogen secondary battery also in recycling surface Another object of the present invention is to provide a positive electrode material recovery method.

【0005】本発明の別の目的は、低コストでしかもニ
ッケル水素2次電池から効率良く純度の高い負極材料
収することを可能にするニッケル水素2次電池からの
負極有効金属回収用原料の回収法を提供することにあ
る。
Another object of the present invention, the negative electrode material having high efficiency pure low-cost, yet nickel-hydrogen secondary batteries
And to provide a recovery method of the negative electrode effective metal recovery raw material of nickel-hydrogen rechargeable battery that allows recovered.

【0006】[0006]

【課題を解決するための手段】本発明によれば、ニッケ
ル水素2次電池を破砕して破砕物を得、該破砕物からア
ルカリ分、有機物質及び鉄分を分離して、少なくともア
ルカリ分、有機物質及び鉄分を分離した分離成分を得る
工程(I)と、前記分離成分に苛性アルカリを添加し、
正極材料中の亜鉛分を亜鉛酸アルカリ塩として分離後、
正極材料中のニッケル分及びコバルト分をアンモニア錯
塩として溶解し、分離する工程(II)とを含むニッケル
水素2次電池からの正極材料回収法が提供される。また
本発明によれば、ニッケル水素2次電池を破砕して破砕
物を得、該破砕物からアルカリ分、有機物質及び鉄分を
分離して、少なくともアルカリ分、有機物質及び鉄分を
分離した分離成分を得る工程(I)と、前記分離成分を
アンモニア処理して、正極材料中のニッケル分、コバル
ト分及び亜鉛分を、アンモニア錯塩として溶解し、分離
する工程( III) とを含むニッケル水素2次電池からの正
極材料回収法が提供される。
According to the present invention, a nickel-hydrogen secondary battery is crushed to obtain a crushed product, and an alkali content, an organic substance and an iron content are separated from the crushed product to obtain at least an alkali content and an organic content. A step (I) of obtaining a separated component in which a substance and iron are separated, and adding caustic to the separated component,
After separating the zinc component in the positive electrode material as an alkali zinc salt,
Nickel content and the cobalt content in the positive electrode material was dissolved as an ammonia complex salt, a positive electrode material recovery process from a nickel-hydrogen rechargeable battery comprising a step of separation (II). Also
According to the present invention, the nickel-hydrogen secondary battery is crushed and crushed.
To obtain an alkaline substance, organic substances and iron from the crushed product.
Separate at least alkali, organics and iron
Step (I) of obtaining a separated separated component, and the separated component
After ammonia treatment, nickel content in the positive electrode material, cobalt
Toxin and zinc are dissolved as ammonia complex salt and separated
From the nickel-hydrogen secondary battery including the step ( III)
A polar material recovery method is provided.

【0007】更に本発明によれば、前記工程(I)と、
前記工程 II )とを行った後、前記工程 (II) においてニ
ッケル分及びコバルト分をアンモニア錯塩として溶解
し、分離した際の残存沈澱物を回収することを特徴とす
るニッケル水素2次電池からの負極有効金属回収用原料
の回収法が提供される。更にまた本発明によれば、前記
工程(I)と、前記工程( III) とを行った後、前記工程
(III) において分離した際の残存沈澱物を回収すること
を特徴とするニッケル水素2次電池からの負極有効金属
回収用原料の回収法が提供される。
Further in accordance with the present invention, the above step (I),
After performing the step ( II ) and the step (II) ,
Dissolve nickel and cobalt as ammonia complex salt
And recovery method of the negative electrode effective metal recovery raw material of nickel-hydrogen rechargeable batteries, and recovering the remaining precipitation lees of when the separation is provided. Still further according to the invention, said
After performing the step (I) and the step ( III) , the step
Recovering the residual precipitate when separated in (III)
Effective metal for negative electrode from nickel-hydrogen secondary battery characterized by
A method of recovering a raw material for recovery is provided.

【0008】以下本発明について更に詳細に説明する。
本発明の回収法では、まずニッケル水素2次電池を破砕
して破砕物を得、該破砕物からアルカリ分、有機物質及
び鉄分を分離した分離成分を得る工程(I)を行う。
The present invention will be described in more detail below.
In the recovery method of the present invention, first, a step (I) is performed in which a nickel-hydrogen secondary battery is crushed to obtain a crushed product, and a separated component obtained by separating an alkali content, an organic substance and an iron content from the crushed product is obtained.

【0009】前記ニッケル水素2次電池の破砕は、例え
ば2軸剪断式破砕機等を用いて、好ましくは5mm以下
の細片等に破砕することができる。
The nickel-hydrogen secondary battery can be crushed, for example, by using a biaxial shearing crusher or the like, preferably into small pieces of 5 mm or less.

【0010】前記破砕物から水酸化カリウム等のアルカ
リ分を分離するには、破砕物を洗浄する方法等により行
うことができる。
The alkali content such as potassium hydroxide can be separated from the crushed material by a method of washing the crushed material.

【0011】前記破砕物から有機物質を分離するには、
例えば前記アルカリ分を分離した破砕物を市販の湿式比
重選別機等を用いた湿式比重分別法等により処理するこ
とによって行うことができる。該湿式比重分別法等によ
り、例えばプラスチック、セパレーター等の有機物質を
分離することができる。
To separate the organic substance from the crushed material,
For example, it can be carried out by treating the crushed material from which the alkali content has been separated by a wet specific gravity fractionation method using a commercially available wet specific gravity sorter or the like. Organic materials such as plastics and separators can be separated by the wet specific gravity fractionation method or the like.

【0012】前記破砕物から鉄分を分離するには、例え
ば前記アルカリ分及び有機物質が分離された破砕物を、
磁気分別法、比重分別法、フルイ分別法等の分別法によ
って処理することによって行うことができる。該磁気分
別法としては、例えば電磁式マグネットセパレーター
等、比重分別法としては、例えばシックナー、湿式サイ
クロン等、フルイ分別法としては、例えば湿式振動フル
イ機等により行うことができ、これらの分別法を組合せ
て行うこともできる。
In order to separate the iron content from the crushed material, for example, the crushed material in which the alkali content and the organic substance are separated is
It can be carried out by processing by a fractionation method such as a magnetic fractionation method, a specific gravity fractionation method or a sieve fractionation method. As the magnetic separation method, for example, an electromagnetic magnet separator or the like, as the specific gravity separation method, for example, thickener, wet cyclone, or the like, and as the sieve separation method, for example, a wet vibration sieving machine or the like can be used. It can also be performed in combination.

【0013】前記工程(I)においては、アルカリ分、
有機物質及び鉄分を分離することによりニッケル水素2
次電池から、正極材料中の水酸化ニッケルと、水酸化コ
バルトと、水酸化亜鉛及び/又は酸化亜鉛と、並びに負
極材料中の主構成成分であるニッケル希土類金属合金粉
末等の少なくともアルカリ分、有機物質及び鉄分を分離
した分離成分を回収することができる。
In the step (I), an alkali content,
By separating organic substances and iron, nickel hydrogen 2
From the secondary battery, nickel hydroxide in the positive electrode material, cobalt hydroxide, zinc hydroxide and / or zinc oxide, and at least an alkali component such as nickel rare earth metal alloy powder which is a main constituent in the negative electrode material, organic It is possible to recover a separated component obtained by separating the substance and the iron content.

【0014】次に本発明の回収法では、前記分離成分に
苛性アルカリを添加し、正極材料中の亜鉛分を亜鉛酸ア
ルカリ塩として分離後、正極材料中のニッケル分及びコ
バルト分をアンモニア錯塩として溶解し、分離する工程
(II)を行って、若しくは前記工程(I)で得られた分
離成分をアンモニア処理して、正極材料中のニッケル
分、コバルト分及び亜鉛分を、アンモニア錯塩として溶
し、分離する工程(III)を行うことにより目的の正極
材料を回収することができる。
Next, in the recovery method of the present invention, caustic alkali is added to the separation component to separate the zinc component in the positive electrode material as an alkali zinc salt of zinc, and the nickel component and the cobalt component in the positive electrode material as an ammonia complex salt. dissolved by performing the step of separation (II), or the process by ammoniated the resulting separated components (I), dissolved nickel content in the positive electrode material, a cobalt component and a zinc component, as an ammonia complex salt and by separation to step (III) the rows Ukoto can be recovered cathode material of interest.

【0015】前記(II)工程においては、まず前記分離成
分に苛性アルカリを添加して、正極材料中の亜鉛分を、
亜鉛酸アルカリ塩として溶解分離する。前記苛性アルカ
リとしては、苛性ソーダ、苛性カリ等を挙げることがで
きる。苛性アルカリの添加量は、亜鉛分を亜鉛酸アルカ
リ塩として可溶塩にできる濃度であれば特に限定される
ものではないが、前記分離成分中の水分量と、添加する
苛性アルカリ(水分を含んだ溶液としての添加でも良
い)との合計量に対して、好ましくは濃度10重量%以
上、特に好ましくは濃度10〜85重量%とするのが望
ましい。この際の反応は、好ましくは苛性アルカリ濃度
を前記濃度に保ち、常温〜200℃にて1〜10時間撹
拌反応させる方法等により行うことができる。この際の
反応式は、Zn(OH)2+OH~=[Zn(OH)3]~
となる。この反応は、例えば撹拌機付タンク、湿式ボー
ルミル、ニーダーブレンダー、オートクレーブ等の装置
を用いて行うことができる。
In the step (II), first, caustic alkali is added to the separated component to remove the zinc content in the positive electrode material,
It is dissolved and separated as an alkali zinc salt. Examples of the caustic alkali include caustic soda and caustic potash. The amount of caustic alkali added is not particularly limited as long as it is a concentration capable of converting zinc content into a soluble salt as an zinc salt of zinc acid, but the amount of water in the separated component and the caustic alkali to be added (including water content). However, the concentration is preferably 10% by weight or more, particularly preferably 10 to 85% by weight. The reaction at this time can be carried out preferably by a method in which the caustic alkali concentration is maintained at the above-mentioned concentration and the reaction is stirred at room temperature to 200 ° C. for 1 to 10 hours. The reaction formula at this time is as follows: Zn (OH) 2 + OH ~ = [Zn (OH) 3 ] ~
Becomes This reaction can be carried out using a device such as a tank equipped with a stirrer, a wet ball mill, a kneader blender, and an autoclave.

【0016】前記亜鉛分を亜鉛酸アルカリ塩として、前
記分離成分から分離するには、耐アルカリ性の濾過機を
用いた通常の濾過工程等により行うことができる。この
際後述する濾過後の中和処理を考慮した場合、濾過前若
しくは濾過後の溶液を、水等により希釈し、反応後の苛
性アルカリ濃度を、好ましくはアルカリ濃度5重量%以
下程度に低下させるのが望ましい。このように苛性アル
カリ濃度を低下させることにより、溶液の粘度を低下さ
せ濾過しやすくすることができる。濾過された溶液は、
塩酸、硫酸、硝酸等の酸で中和後、炭酸ソーダ、重炭酸
ソーダ等を添加して塩基性炭酸亜鉛として亜鉛分を沈澱
回収することができる。
Separation of the zinc component as an alkali zinc salt from the separation component can be carried out by a usual filtration process using an alkali-resistant filter. In this case, when the neutralization treatment after filtration is taken into consideration, the solution before or after filtration is diluted with water or the like to reduce the caustic alkali concentration after the reaction, preferably to an alkali concentration of about 5% by weight or less. Is desirable. By lowering the caustic alkali concentration in this way, the viscosity of the solution can be lowered and filtration can be facilitated. The filtered solution is
After neutralization with an acid such as hydrochloric acid, sulfuric acid or nitric acid, sodium carbonate, sodium bicarbonate or the like is added to precipitate and recover the zinc component as basic zinc carbonate.

【0017】次に工程(II)では、亜鉛酸アルカリ塩の分
離後、正極材料中のニッケル分及びコバルト分をアンモ
ニア錯塩として溶解し、分離する。
[0017] In the next step (II), after separation of zinc alkali salts, nickel content and the cobalt content in the positive electrode material was dissolved as an ammonia complex salt, for separation.

【0018】工程(II)において、正極材料中のニッケル
分及びコバルト分をアンモニア錯塩とするには、前記亜
鉛酸アルカリ塩分離後の分離成分に、濃アンモニア水等
を添加して反応させる方法、アンモニアガスを充填し加
圧状態で反応させる方法等により行うことができる。前
記濃アンモニア水又はアンモニアガスの濃度は、含有さ
れるニッケル分(水酸化ニッケル)及びコバルト分(水
酸化コバルト)がアンモニア錯塩として可溶性塩となる
反応が進行する濃度であれば特に限定されるものではな
いが、好ましくは含有されるニッケル分及びコバルト分
の合計molに対して、NH3換算で、7mol比以上
添加するのが望ましい。この際反応は、濃アンモニア水
の添加の場合、常温〜200℃において1〜10時間撹
拌反応させる方法等により行うことができる。この反応
は、撹拌機付タンク、湿式ボールミル等の装置を用いて
実施できる。一方、アンモニアガスで加圧状態にして反
応させる場合には、圧力1〜10気圧において、温度常
温〜200℃で1〜10時間反応させる方法等により行
うことができる。この反応はオートクレーブ等の装置を
用いて実施できる。これらの反応を式で表わすと下記反
応式化1で表わすことができる。
In the step (II), in order to convert the nickel content and the cobalt content in the positive electrode material into an ammonia complex salt, a method of adding concentrated ammonia water or the like to the separated component after the separation of the zinc acid alkali salt and reacting it, It can be carried out by a method of filling ammonia gas and reacting under pressure. The concentration of the concentrated aqueous ammonia or the ammonia gas is particularly limited as long as the nickel content (nickel hydroxide) and the cobalt content (cobalt hydroxide) contained therein are concentrations that allow the reaction to become soluble salts as ammonia complex salts. However, it is preferable to add 7 mol ratio or more in terms of NH 3 with respect to the total mol of nickel and cobalt contained. At this time, the reaction can be carried out by a method of stirring reaction at room temperature to 200 ° C. for 1 to 10 hours when adding concentrated ammonia water. This reaction can be carried out using an apparatus such as a tank equipped with a stirrer and a wet ball mill. On the other hand, when the reaction is carried out in a pressurized state with ammonia gas, the reaction can be carried out at a pressure of 1 to 10 atmospheres and a temperature of room temperature to 200 ° C. for 1 to 10 hours. This reaction can be carried out using a device such as an autoclave. These reactions can be represented by the following reaction formula 1.

【0019】[0019]

【化1】 [Chemical 1]

【0020】また前記反応を促進させるために、塩化ア
ンモニア、硝酸アンモニア等のアンモニア塩類を反応系
に更に添加することもできる。アンモニア塩類の添加量
は、含有されるニッケル分及びコバルト分の合計mol
に対して、0〜10mol比で添加するのが好ましい。
Further, in order to accelerate the above reaction, ammonia salts such as ammonium chloride and ammonium nitrate can be further added to the reaction system. The added amount of ammonia salts is the total mol of nickel and cobalt contained.
However, it is preferable to add it in a ratio of 0 to 10 mol.

【0021】このようにして得られたニッケル分及びコ
バルト分のアンモニア錯塩は、可溶性塩として溶解する
が、該アンモニア錯塩を分離するには、通常の加圧濾過
等により濾過する方法等により分離することができ
る。分離された溶液は、塩酸、硫酸、硝酸等の酸で中和
後、炭酸ソーダ、重炭酸ソーダ等を添加してニッケルコ
バルト混合塩基性炭酸塩として沈澱回収することができ
る。この際濾過をしやすくするために、前述の亜鉛分の
分離と同様に、濾過前において水等でアンモニア錯塩含
有溶液を希釈する方法等を用いることができる。
[0021] Such nickel content and ammonia complexes of cobalt values obtained in is dissolved as soluble salts, to separation of the ammonia complex salt, a method to more filtration to normal pressure filtration machine or the like, etc. Can be separated by. The separated solution may be neutralized with an acid such as hydrochloric acid, sulfuric acid or nitric acid, and then sodium carbonate, sodium bicarbonate or the like may be added thereto to precipitate and recover it as a nickel-cobalt mixed basic carbonate. At this time, in order to facilitate the filtration, a method of diluting the ammonia complex salt-containing solution with water or the like before the filtration can be used as in the case of separating the zinc content described above.

【0022】本発明の負極有効金属回収用原料の回収法
では、前述のように正極材料としての亜鉛分、ニッケル
分及びコバルト分を分離後の残存沈澱物を回収すること
により行うことができる。得られたは負極有効金属回収
用原料は、水洗後焼成して酸化物を得、前記酸化物を電
解用溶融塩浴による溶融塩電解法によって処理する例え
ば公知の方法(PCT公開特許公報WO94/2307
3)等を利用することによって、ニッケル水素2次電池
から負極有効金属を回収することができる。
[0022] In the recovery process of the negative electrode effective metal recovery material of the present invention, the zinc content of the positive electrode material as described above, be carried out by recovering the residual presence precipitate after separation of the nickel content and the cobalt content it can. The obtained raw material for recovering the negative electrode effective metal is washed with water and then calcined to obtain an oxide, and the oxide is treated by a molten salt electrolysis method in a molten salt bath for electrolysis. For example, a known method (PCT published patent publication WO94 / 2307
By utilizing 3) or the like, the negative electrode effective metal can be recovered from the nickel-hydrogen secondary battery.

【0023】一方本発明における工程(III)では、前記
工程(I)で得られた分離成分をアンモニア処理して、
正極材料中のニッケル分、コバルト分及び亜鉛分を、ア
ンモニア錯塩として溶解し、分離する。
On the other hand, in the step (III) of the present invention, the separated component obtained in the step (I) is treated with ammonia,
Nickel content in the positive electrode material, a cobalt component and a zinc component, dissolved as the ammonia complex salt, for separation.

【0024】工程(III)におけるアンモニア処理は、前
記工程(II)のアンモニア錯塩形成と同様な方法で行うこ
とができる。即ち、正極材料中のニッケル分、コバルト
分及び亜鉛分を、アンモニア錯塩とするには、前記工程
(I)で得られた分離成分に、濃アンモニア水等を添加
して反応させる方法、アンモニアガスを充填し加圧状態
で反応させる方法等により行うことができる。前記濃ア
ンモニア水又はアンモニアガスの濃度は、含有されるニ
ッケル分(水酸化ニッケル)、コバルト分(水酸化コバ
ルト)及び亜鉛分(水酸化亜鉛及び/又は酸化亜鉛)が
アンモニア錯塩として可溶性塩となる反応が進行する濃
度であれば特に限定されるものではないが、好ましくは
含有されるニッケル分、コバルト分及び亜鉛分の合計m
olに対して、NH3換算で、7mol比以上添加する
のが望ましい。この際反応は、濃アンモニア水の添加の
場合、常温〜200℃において1〜10時間撹拌反応さ
せる方法等により行うことができる。一方、アンモニア
ガスで加圧状態にして反応させる場合には、圧力1〜1
0気圧において、温度常温〜200℃で1〜10時間反
応させる方法等により行うことができる。これらの反応
を式で表わすと下記反応式化2で表わすことができる。
The treatment with ammonia in step (III) can be carried out in the same manner as in the formation of the ammonia complex salt in step (II). That is, in order to convert the nickel content, the cobalt content and the zinc content in the positive electrode material into an ammonia complex salt, a method of adding concentrated ammonia water or the like to the separated components obtained in the step (I) and reacting them, ammonia gas It can be carried out by a method of filling and reacting under pressure. Regarding the concentration of the concentrated ammonia water or ammonia gas, the nickel content (nickel hydroxide), cobalt content (cobalt hydroxide) and zinc content (zinc hydroxide and / or zinc oxide) contained therein become a soluble salt as an ammonia complex salt. The concentration is not particularly limited as long as it is a concentration at which the reaction proceeds, but preferably the total m of nickel, cobalt and zinc contained
It is desirable to add at least 7 mol ratio in terms of NH 3 with respect to ol. At this time, the reaction can be carried out by a method of stirring reaction at room temperature to 200 ° C. for 1 to 10 hours when adding concentrated ammonia water. On the other hand, when the reaction is carried out in a pressurized state with ammonia gas, the pressure is 1 to 1
The reaction can be carried out at a temperature of room temperature to 200 ° C. at 0 atmosphere for 1 to 10 hours. These reactions can be represented by the following reaction formula 2.

【0025】[0025]

【化2】 [Chemical 2]

【0026】また前記反応を促進させるために、塩化ア
ンモニア、硝酸アンモニア等のアンモニア塩類を反応系
に更に添加することもできる。アンモニア塩類の添加量
は、含有されるニッケル分、コバルト分及び亜鉛分の合
計molに対して、0〜10mol比で添加するのが好
ましい。
In order to accelerate the above reaction, ammonia salts such as ammonium chloride and ammonium nitrate may be further added to the reaction system. The ammonia salt is preferably added in a ratio of 0 to 10 mol based on the total mol of the nickel component, the cobalt component and the zinc component contained.

【0027】前記工程(III)において、正極材料中のニ
ッケル分、コバルト分及び亜鉛分を、アンモニア錯塩と
して溶解する前に、亜鉛を、錯体化が促進される形に変
える処理を行うことができる。該処理としては、塩化ア
ンモンを、正極材料に存在する亜鉛量の2mol倍量以
上、好ましくは5〜20mol倍量となるように、20
重量%以上の濃度の水溶液若しくは固型粉の形態で添加
・混合し、50〜150℃の温度で1〜5時間反応さ
せ、含有される亜鉛分(酸化亜鉛)を錯体化が促進しや
すい水酸化亜鉛若しくはオキシ塩化錯塩等の形に変化さ
せる方法等により行うことができる。
In the step (III), before the nickel content, the cobalt content and the zinc content in the positive electrode material are dissolved as an ammonia complex salt, a treatment for converting zinc into a form that promotes complexation can be performed. . In the treatment, ammonium chloride is added in an amount of 2 mol times or more, preferably 5 to 20 mol times the amount of zinc present in the positive electrode material.
Water in which the zinc content (zinc oxide) contained therein is easily promoted to be complexed by adding and mixing in the form of an aqueous solution or a solid powder having a concentration of not less than wt% and reacting at a temperature of 50 to 150 ° C. for 1 to 5 hours. It can be carried out by a method of changing it into a form such as zinc oxide or an oxychloride complex salt.

【0028】このようにして得られたアンモニア錯塩
は、可溶性塩として溶解するが、該アンモニア錯塩を分
離するには、通常の加圧濾過機等により濾過する方法等
によって分離することができる。分離された溶液は、塩
酸、硫酸、硝酸等の酸で中和後、炭酸ソーダ、重炭酸ソ
ーダ等を添加して混合塩基性炭酸塩として沈澱回収する
ことができる。この際濾過をしやすくするためには、濾
過前において水等でアンモニア錯塩含有溶液を希釈する
方法等を用いることができる。
The ammonia complex salt thus obtained is dissolved as a soluble salt, and in order to separate the ammonia complex salt , it is separated by a conventional method such as filtration with a pressure filter. be able to. The separated solution may be neutralized with an acid such as hydrochloric acid, sulfuric acid or nitric acid, and then sodium carbonate, sodium bicarbonate or the like may be added thereto to precipitate and collect it as a mixed basic carbonate. At this time, in order to facilitate the filtration, a method of diluting the ammonia complex salt-containing solution with water or the like before the filtration can be used.

【0029】本発明の負極有効金属回収用原料の回収法
では、前述のように正極材料としての亜鉛分、ニッケル
分及びコバルト分を分離後の残存沈澱物を回収すること
により行うことができる。得られた負極有効金属回収用
原料は、水洗後焼成して酸化物を得、前記酸化物を電解
用溶融塩浴による溶融塩電解法によって処理する例えば
公知の方法(PCT公開特許公報WO94/2307
3)等を利用することによって、ニッケル水素2次電池
から負極有効金属を回収することができる。
[0029] In the recovery process of the negative electrode effective metal recovery material of the present invention, the zinc content of the positive electrode material as described above, be carried out by recovering the residual presence precipitate after separation of the nickel content and the cobalt content it can. The obtained raw material for recovering the negative electrode effective metal is washed with water to obtain an oxide, and the oxide is treated by a molten salt electrolysis method in a molten salt bath for electrolysis. For example, a known method (PCT published patent publication WO94 / 2307).
By utilizing 3) or the like, the negative electrode effective metal can be recovered from the nickel-hydrogen secondary battery.

【0030】[0030]

【発明の効果】本発明の正極材料回収法では、負極材料
と正極材料をそれぞれに分離できるので負極合金に有害
な亜鉛が負極材料に混入するのを防止することができ
る。またニッケル水素2次電池から正極材料を効率良く
回収することができるので、有効な電極材料のリサイク
ルが可能となり、しかも通常の分離、精製に比して安価
に且つ大量に回収することができる。更に工程(III)に
おいて、亜鉛を、錯体化が促進される形に変えておくこ
とにより、亜鉛の正極材料としての回収をより確実にす
ることができる。
The positive electrode material recovery method of the present invention, the negative electrode material
Since it can separate the positive electrode material and the positive electrode material, it is harmful to the negative electrode alloy.
A zinc can be prevented from being mixed in the negative electrode material. Further, since the positive electrode material can be efficiently recovered from the nickel-hydrogen secondary battery, the effective electrode material can be recycled, and moreover, it can be recovered inexpensively and in a large amount in comparison with ordinary separation and purification. Further, in the step (III), by changing zinc to a form that promotes complexation, it is possible to more reliably recover zinc as a positive electrode material.

【0031】本発明の負極有効金属回収用原料の回収法
では、前記正極材料回収法における残存物の回収により
行うことができるので、回収された原料は、負極材料に
おいて有害な亜鉛の混入の無い原料として、純度の高い
負極有効金属の回収に利用することができる。
In the method for recovering the raw material for recovering the effective metal of the negative electrode of the present invention, the residual material in the recovery method for the positive electrode material can be recovered, so that the recovered raw material does not contain harmful zinc in the negative electrode material. As a raw material, it can be used to recover a high-purity negative electrode effective metal.

【0032】[0032]

【実施例】以下実施例により更に詳細に説明するが本発
明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0033】[0033]

【実施例1】使用済みのニッケル水素2次電池(回収に
必要な正極材575g、負極材820g)を、2軸剪断
式破砕機により5mm以下の細片に破砕後、撹拌機付容
器に投入して水を流しながら撹拌してオーバーフローで
アルカリ分を除去した。次いで湿式比重選別機により有
機物質を除去した後、残存金属分を湿式電磁振動フルイ
機により鉄分を除去し、濾過して正極の水酸化ニッケ
ル、水酸化コバルト、水酸化亜鉛と、負極のニッケル希
土類合金粉の混合物を工程(I)回収物として得た。こ
の濾過ケーキをステンレス製のボールミルに入れ、少量
の水と100gの苛性ソーダを加えて10時間撹拌し
た。温度は自己発熱で60℃まで上昇した。
Example 1 A used nickel hydrogen secondary battery (575 g of a positive electrode material necessary for recovery, 820 g of a negative electrode material) was crushed into small pieces of 5 mm or less by a biaxial shearing crusher, and then charged into a container with a stirrer. Then, the mixture was stirred while flowing water, and the alkali content was removed by overflow. Then, after removing organic substances with a wet specific gravity sorter, the residual metal is removed with a wet electromagnetic vibrating screen to remove iron, filtered, and then nickel hydroxide, cobalt hydroxide, zinc hydroxide of the positive electrode and nickel rare earth of the negative electrode A mixture of alloy powders was obtained as the recovered product of step (I). The filter cake was placed in a stainless steel ball mill, a small amount of water and 100 g of caustic soda were added, and the mixture was stirred for 10 hours. The temperature rose to 60 ° C due to self-heating.

【0034】次に水で内容物を流し出し濾過した。得ら
れた濾液を塩酸で中和し、pHを6.3としてから40
0g/リットルの炭酸ソーダ溶液250mlを加えて塩
基性炭酸亜鉛を沈澱させ濾別した。回収した塩基性炭酸
亜鉛はZnOとして25.9g得られた。
Next, the contents were poured out with water and filtered. The resulting filtrate was neutralized with hydrochloric acid to adjust the pH to 6.3 and then 40
250 ml of 0 g / liter sodium carbonate solution was added to precipitate basic zinc carbonate, which was filtered off. The recovered basic zinc carbonate was obtained as ZnO in an amount of 25.9 g.

【0035】一方残存固型物は水酸化ニッケル、水酸化
コバルト、ニッケル希土類金属合金であるので、水で良
く洗浄してアルカリ残存分を除去後、15Nの濃アンモ
ニア水2000mlと共に撹拌機付容器に入れ、60℃
で5時間撹拌反応させた。反応物を取り出し加圧濾過機
で濾過した。濾過液を塩酸で中和し、pH6.3におい
て炭酸ソーダ液を加えてニッケルコバルト混合塩基性炭
酸塩を沈澱させ、濾過した後、硝酸に溶解して正極用水
酸化物製造用原液とした。回収したニッケルはNi純分
として320g、コバルトはCo純分として17.6g
であった。
On the other hand, since the residual solid matter is nickel hydroxide, cobalt hydroxide and nickel rare earth metal alloy, it is washed well with water to remove the residual alkali, and then 2000 ml of concentrated 15N ammonia water is added to a container with a stirrer. Put, 60 ℃
And reacted with stirring for 5 hours. The reaction product was taken out and filtered with a pressure filter. The filtrate was neutralized with hydrochloric acid, sodium carbonate solution was added at pH 6.3 to precipitate nickel-cobalt mixed basic carbonate, which was filtered and then dissolved in nitric acid to prepare a stock solution for producing hydroxide for positive electrode. The recovered nickel is 320 g as pure Ni, and cobalt is 17.6 g as pure Co.
Met.

【0036】また残存の負極のニッケル希土類合金を含
む負極有効金属回収用原料を回収した。この原料を80
0℃で2時間電気炉で焼成し、酸化物に変えた。得られ
た酸化物は1033gであった。その組成は、NiO:
55.2重量%、酸化物希土類金属:26.9重量%、
Co23:7.8重量%、Al23:2.8重量%、M
nO2:5.3重量%であった。
A raw material for recovering the negative electrode effective metal containing the remaining nickel rare earth alloy of the negative electrode was recovered. 80 this raw material
It was baked in an electric furnace at 0 ° C. for 2 hours to change to an oxide. The obtained oxide was 1033 g. Its composition is NiO:
55.2% by weight, oxide rare earth metal: 26.9% by weight,
Co 2 O 3: 7.8 wt%, Al 2 O 3: 2.8 wt%, M
nO 2 : It was 5.3% by weight.

【0037】[0037]

【実施例2】実施例1と同様に処理し、使用済みのニッ
ケル水素2次電池から工程(I)回収物(正極材574
g、負極材820g含有)を得た。この濾過ケーキを撹
拌機付オートクレーブに入れ、塩化アンモニア150
g、15Nアンモニア水2300mlを加えて、100
℃で5時間撹拌反応させた。反応終了後、加圧濾過機で
濾過し、ニッケル・コバルト・亜鉛アンモニア錯塩溶液
と負極ニッケル希土類金属合金を得た。アンモニア錯塩
溶液は塩酸で中和後、pH6.3で400g/リットル
の炭酸ソーダ溶液550mlを加え、ニッケル・コバル
ト・亜鉛混合塩基性炭酸塩を沈澱させた。次いで沈澱物
を濾別し、硝酸に溶解して正極水酸化物製造溶融塩電解
用原料とした。回収したニッケルはNi純分として34
3g、コバルトはCo純分として21.9g、亜鉛はZ
n純分として22.4gであった。
[Example 2] The same treatment as in Example 1 was carried out to recover a used product (a positive electrode material 574) from a used nickel-hydrogen secondary battery in step (I).
g, containing 820 g of the negative electrode material). This filter cake is placed in an autoclave equipped with a stirrer, and 150 ml of ammonium chloride is added.
g, 2300 ml of 15N ammonia water was added to 100
The mixture was reacted with stirring at 5 ° C for 5 hours. After completion of the reaction, the mixture was filtered with a pressure filter to obtain a nickel-cobalt-zinc ammonia complex salt solution and a negative electrode nickel rare earth metal alloy. The ammonia complex salt solution was neutralized with hydrochloric acid, and then 550 ml of a 400 g / liter sodium carbonate solution having a pH of 6.3 was added to precipitate a nickel-cobalt-zinc mixed basic carbonate. Then, the precipitate was filtered off and dissolved in nitric acid to obtain a raw material for molten salt electrolysis for producing a positive electrode hydroxide. The recovered nickel is 34% pure Ni.
3g, cobalt is 21.9g as pure Co, and zinc is Z
The amount of pure n was 22.4 g.

【0038】一方残存の負極のニッケル希土類合金を含
む負極有効金属回収用原料を回収した。この原料を80
0℃で2時間焼成し、酸化物に変えた。得られた酸化物
は985gであり、その組成はNiO:51.5重量
%、酸化希土類金属:28.3重量%、Co23:7.
6重量%、Al23:3.0重量%、MnO2:5.6
重量%であった。
On the other hand, the raw material for recovering the negative electrode effective metal containing the remaining nickel rare earth alloy of the negative electrode was recovered. 80 this raw material
It was calcined at 0 ° C. for 2 hours to change to an oxide. The obtained oxide was 985 g, and the composition thereof was NiO: 51.5% by weight, rare earth metal oxide: 28.3% by weight, Co 2 O 3 : 7.
6% by weight, Al 2 O 3 : 3.0% by weight, MnO 2 : 5.6
% By weight.

【0039】[0039]

【実施例3】実施例2で得られた負極有効金属回収用原
料からの酸化物985gに、ミッシュメタル原料用酸化
希土類金属1106gを混合し、希土類金属フッ化物
(RF3)65重量%、LiF20重量%及びBaF215
重量%の電解用溶融塩浴に投入しながら、950℃で電
解処理して合金を得た。得られた合金は1410gであ
り、その合金の組成は重量比で、希土類金属69.9
%、ニッケル23.5%、コバルト3.1%、アルミニ
ウム0.9%、マンガン2.5%であった。この合金
は、組成調整し、アルゴン雰囲気高周波炉で溶解するこ
とにより、ニッケル水素2次電池の負極材料として再生
することができた。
Example 3 A rare earth metal fluoride was prepared by mixing 1985 g of the rare earth metal oxide for the misch metal raw material with 985 g of the oxide from the raw material for recovering the negative electrode effective metal obtained in Example 2.
(RF 3 ) 65% by weight, LiF 20% by weight and BaF 2 15
An alloy was obtained by performing electrolytic treatment at 950 ° C. while pouring it into a molten salt bath for electrolysis of wt%. The weight of the obtained alloy was 1410 g, and the composition of the alloy was 69.9 of rare earth metal.
%, Nickel 23.5%, cobalt 3.1%, aluminum 0.9%, and manganese 2.5%. By adjusting the composition of this alloy and melting it in an argon atmosphere high frequency furnace, it was possible to regenerate it as a negative electrode material for a nickel-hydrogen secondary battery.

フロントページの続き (56)参考文献 特開 昭48−50931(JP,A) 特開 昭51−86002(JP,A) 特開 昭52−46303(JP,A) 特開 昭52−108321(JP,A) 特開 昭53−53516(JP,A) 特開 平1−126221(JP,A) 特開 平5−263156(JP,A) 特開 平6−207227(JP,A) 国際公開94/023073(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 H01M 10/54 Continuation of the front page (56) Reference JP-A-48-50931 (JP, A) JP-A-51-86002 (JP, A) JP-A-52-46303 (JP, A) JP-A-52-108321 (JP , A) JP 53-53516 (JP, A) JP 1-126221 (JP, A) JP 5-263156 (JP, A) JP 6-207227 (JP, A) International Publication 94 / 023073 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) C22B 1/00-61/00 H01M 10/54

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル水素2次電池を破砕して破砕物
を得、該破砕物からアルカリ分、有機物質及び鉄分を分
離して、少なくともアルカリ分、有機物質及び鉄分を分
離した分離成分を得る工程(I)と、前記分離成分に苛
性アルカリを添加し、正極材料中の亜鉛分を亜鉛酸アル
カリ塩として分離後、正極材料中のニッケル分及びコバ
ルト分をアンモニア錯塩として溶解し、分離する工程
(II)とを含むニッケル水素2次電池からの正極材料回
収法。
1. A crushed nickel-hydrogen secondary battery is obtained to obtain a crushed product, and an alkali component, an organic substance and an iron component are separated from the crushed substance to obtain a separated component in which at least an alkali component, an organic substance and an iron component are separated. and step (I), adding the separated components in the caustic, after separation of the zinc content in the positive electrode material as zinc alkaline salt, to dissolve the nickel content and the cobalt content in the positive electrode material as an ammonia complex salt, to separation A method for recovering a positive electrode material from a nickel-hydrogen secondary battery, including the step (II).
【請求項2】 ニッケル水素2次電池を破砕して破砕物
を得、該破砕物からアルカリ分、有機物質及び鉄分を分
離して、少なくともアルカリ分、有機物質及び鉄分を分
離した分離成分を得る工程(I)と、前記分離成分をア
ンモニア処理して、正極材料中のニッケル分、コバルト
分及び亜鉛分を、アンモニア錯塩として溶解し、分離す
る工程( III) とを含むニッケル水素2次電池からの正極
材料回収法。
2. A crushed product obtained by crushing a nickel-hydrogen secondary battery.
From the crushed material to separate alkali content, organic matter and iron content.
Away at least alkali, organics and iron
The step (I) of obtaining separated separated components, and
Nickel and cobalt in the positive electrode material after ammonia treatment
And zinc components are dissolved as ammonia complex salts and separated.
Positive electrode from nickel-hydrogen secondary battery including the step ( III)
Material recovery method.
【請求項3】 前記工程(III)において、前記分離成分
をアンモニア処理して、正極材料中のニッケル分、コバ
ルト分及び亜鉛分を、アンモニア錯塩として溶解させる
際に、アンモニア塩類を添加することを特徴とする請求
記載のニッケル水素2次電池からの正極材料回収
法。
3. The separated component in the step (III)
Treated with ammonia to remove the nickel content and
Lute and zinc are dissolved as ammonia complex salt
The positive electrode material recovery method from a nickel-hydrogen secondary battery according to claim 2 , wherein an ammonia salt is added at this time .
【請求項4】 ニッケル水素2次電池を破砕して破砕物
を得、該破砕物からアルカリ分、有機物質及び鉄分を分
離して、少なくともアルカリ分、有機物質及び鉄分を分
離した分離成分を得る工程(I)と、前記分離成分に苛
性アルカリを添加し、正極材料中の亜鉛分を亜鉛酸アル
カリ塩として分離後、正極材料中のニッケル分及びコバ
ルト分をアンモニア錯塩として溶解し、分離する工程
II )とを行った後、前記工程 (II) においてニッケル分
及びコバルト分をアンモニア錯塩として溶解し、分離し
た際の残存沈澱物を回収することを特徴とするニッケル
水素2次電池からの負極有効金属回収用原料の回収法。
4. A crushed product is obtained by crushing a nickel-hydrogen secondary battery, and an alkali component, an organic substance and an iron component are separated from the crushed substance to obtain a separated component in which at least an alkali component, an organic substance and an iron component are separated. and step (I), adding the separated components in the caustic, after separation of the zinc content in the positive electrode material as zinc alkaline salt, to dissolve the nickel content and the cobalt content in the positive electrode material as an ammonia complex salt, to separation Process
(II) and after, nickel content in the step (II)
And cobalt content are dissolved as ammonia complex salt and separated.
Recovery process of the negative electrode effective metal recovery raw material of nickel-hydrogen rechargeable batteries, and recovering the remaining precipitation lees of time was.
【請求項5】 ニッケル水素2次電池を破砕して破砕物
を得、該破砕物からアルカリ分、有機物質及び鉄分を分
離して、少なくともアルカリ分、有機物質及び鉄分を分
離した分離成分を得る工程(I)と、前記分離成分をア
ンモニア処理して、正極材料中のニッケル分、コバルト
分及び亜鉛分を、アンモニア錯塩として溶解し、分離す
る工程( III) とを行った後、前記工程 (III) において分
離した際の残存沈澱物を回収することを特徴とするニッ
ケル水素2次電池からの負極有効金属回収用原料の回収
法。
5. A crushed material obtained by crushing a nickel hydrogen secondary battery.
From the crushed material to separate alkali content, organic matter and iron content.
Away at least alkali, organics and iron
The step (I) of obtaining separated separated components, and
Nickel and cobalt in the positive electrode material after ammonia treatment
And zinc components are dissolved as ammonia complex salts and separated.
That step (III) and after, minutes in the step (III)
A nickel-based product characterized by recovering the remaining precipitate when separated.
Recovery of raw materials for negative electrode effective metal recovery from hydrogen secondary batteries
Law.
【請求項6】 前記工程 (III) において、前記分離成分
をアンモニア処理して、正極材料中のニッケル分、コバ
ルト分及び亜鉛分を、アンモニア錯塩として溶解させる
際に、アンモニア塩類を添加することを特徴とする請求
項5記載のニッケル水素2次電池からの負極有効金属回
収用原料の回収法。
6. The separated component in the step (III)
Treated with ammonia to remove the nickel content and
Lute and zinc are dissolved as ammonia complex salt
At that time, the claim characterized by adding ammonia salts
Item 5. The negative electrode effective metal element from the nickel-hydrogen secondary battery according to Item 5.
Recovery method for expropriated raw materials.
JP30504794A 1994-12-08 1994-12-08 Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode Expired - Fee Related JP3532640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30504794A JP3532640B2 (en) 1994-12-08 1994-12-08 Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30504794A JP3532640B2 (en) 1994-12-08 1994-12-08 Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode

Publications (2)

Publication Number Publication Date
JPH08157974A JPH08157974A (en) 1996-06-18
JP3532640B2 true JP3532640B2 (en) 2004-05-31

Family

ID=17940478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30504794A Expired - Fee Related JP3532640B2 (en) 1994-12-08 1994-12-08 Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode

Country Status (1)

Country Link
JP (1) JP3532640B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534889B1 (en) * 1999-12-31 2005-12-08 현대자동차주식회사 Nagative pole recycling method for Ni-MH battery
JP4608773B2 (en) * 2000-12-12 2011-01-12 住友金属鉱山株式会社 Method of recovering valuable metals from used nickel metal hydride secondary batteries
KR100820163B1 (en) * 2006-08-25 2008-04-10 한국과학기술연구원 A method of extracting cobalt from cathodic active material of lithium battery
RU2506328C1 (en) * 2012-07-09 2014-02-10 Рафаэль Арташевич Оганян Method for extraction of nickel and cadmium from used alkali accumulators and batteries

Also Published As

Publication number Publication date
JPH08157974A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
CN111466051B (en) Battery recycling by treating leach liquor with metallic nickel
EP4372112A2 (en) Process for the recovery of cathode materials in the recycling of batteries
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
CN110371943B (en) Selective recovery process of nickel cobalt lithium manganate and lithium iron phosphate mixed waste
CN101831548A (en) Method for recovering valuable metals from waste lithium manganese oxide battery
CN101886178B (en) Comprehensive recovery method for nickel-hydrogen waste battery
JP2000015216A (en) Method for recycling positive electrode active material from lithium ion secondary battery
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
CN109097581A (en) The recovery method of valuable metal in waste and old nickel cobalt manganese lithium ion battery
CN109004307A (en) The recyclable device of valuable metal in waste and old nickel cobalt manganese lithium ion battery
JP5568977B2 (en) Method for recovering manganese from batteries
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP6459797B2 (en) Method and apparatus for recovering raw material for producing ferronickel from waste nickel metal hydride battery
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
KR102324910B1 (en) Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
KR20240049385A (en) Method and equipment for recovering metal from black mass
US8974754B2 (en) Method for producing nickel-containing acid solution
JP4407061B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP6402686B2 (en) Method and apparatus for recovering raw materials for producing nickel, cobalt, and aluminum secondary batteries from waste nickel metal hydride batteries
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP2004182533A (en) Method of recovering cobalt
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees