JPH08115752A - Method for recovering effective component from nickel-hydrogen storage alloy secondary battery - Google Patents

Method for recovering effective component from nickel-hydrogen storage alloy secondary battery

Info

Publication number
JPH08115752A
JPH08115752A JP27313994A JP27313994A JPH08115752A JP H08115752 A JPH08115752 A JP H08115752A JP 27313994 A JP27313994 A JP 27313994A JP 27313994 A JP27313994 A JP 27313994A JP H08115752 A JPH08115752 A JP H08115752A
Authority
JP
Japan
Prior art keywords
recovering
active material
nickel
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27313994A
Other languages
Japanese (ja)
Other versions
JP3485208B2 (en
Inventor
Masamoto Sasaki
正元 佐々木
Shigeo Hirayama
成生 平山
Shin Sumimoto
伸 住本
Minoru Sakai
実 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP27313994A priority Critical patent/JP3485208B2/en
Publication of JPH08115752A publication Critical patent/JPH08115752A/en
Application granted granted Critical
Publication of JP3485208B2 publication Critical patent/JP3485208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PURPOSE: To recover a hydrogen storage alloy as a starting metal with a simple process to allow its recycling by removing a component included as impurities, and recovering a negative electrode active material as it is in the form of metal. CONSTITUTION: A nickel-hydrogen storage alloy secondary waste battery is disassembled to take out electrodes and remove terminal parts, and the positive electrode and negative electrode are then dipped in an alkali solution. The electrodes after dipping are crushed by a mechanical means, the crushed material is separated into an active material powder and an electrode base, and the separated active material powder and the electrode base are washed and dried. Consequently, as the hydrogen storage alloy material, zinc and others forming impurities are eluted and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素吸蔵合金
二次廃電池からの有効成分回収方法に関し、特に簡潔な
プロセスで有効成分を金属状態で回収し、そのまま水素
吸蔵合金原料等として再利用することができるニッケル
−水素吸蔵合金二次廃電池からの有効成分回収方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary waste battery, in which the active ingredient is recovered in a metal state by a particularly simple process and reused as it is as a raw material for hydrogen storage alloy. The present invention relates to a method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary waste battery that can be used.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いたニッケル−水素吸
蔵合金二次電池は、その高エネルギー密度で環境にクリ
ーンな電池として商品化され広く使用され始めている
が、コバルト、ニッケル、レアアースといった稀少金属
を活物質の主成分としていることから、その回収、リサ
イクル使用が強く望まれている。
2. Description of the Related Art Nickel-hydrogen storage alloy secondary batteries using hydrogen storage alloys have been commercialized and widely used as environmentally clean batteries due to their high energy density, but rare metals such as cobalt, nickel and rare earths are being used. Since is the main component of the active material, its recovery and recycling are strongly desired.

【0003】特に、このニッケル−水素吸蔵合金二次電
池が地球環境対策の一つとして考えられている電気自動
車用電池の主流を占めると目されているので、電池およ
び稀少金属の回収再資源化は必須である。
In particular, this nickel-hydrogen storage alloy secondary battery is considered to occupy the mainstream of batteries for electric vehicles, which is considered as one of the measures for global environment, and therefore batteries and rare metals are recovered and recycled. Is mandatory.

【0004】ニッケル−水素吸蔵合金二次電池ではその
構成材料が表1に示すように熱的、化学的、物理的に性
質の大幅に異なる成分が多岐にわたって含まれている。
すなわち、正極活物質として水酸化ニッケル、負極活物
質として水素吸蔵合金(ニッケル、コバルト、レアアー
ス(ミッシュメタル)等)、電解液として水酸化カリウ
ム水溶液、有機物セパレーター、さらに電極基板として
のニッケル板やニッケルメッキ鉄板、銅や鉄系の電極端
子材、さらにプラスチックや鋼製のケースと多岐にわた
る材料物質から構成されている。
As shown in Table 1, the nickel-hydrogen storage alloy secondary battery contains a wide variety of components whose properties differ significantly thermally, chemically and physically as shown in Table 1.
That is, nickel hydroxide as a positive electrode active material, hydrogen storage alloy (nickel, cobalt, rare earth (Misch metal), etc.) as a negative electrode active material, potassium hydroxide aqueous solution as an electrolytic solution, an organic separator, and a nickel plate or nickel as an electrode substrate. It consists of a wide variety of materials such as plated iron plates, copper or iron-based electrode terminal materials, and cases made of plastic or steel.

【0005】[0005]

【表1】 [Table 1]

【0006】ところが多岐にわたる成分からなるこの新
しいニッケル−水素吸蔵合金二次電池あるいはその電極
材料の再資源化は、新分野というだけでなく、そのプロ
セスが複雑になりコストがかさむことが想定されたため
か、これまで本格的に検討されたことがなかった。
However, the recycling of the new nickel-hydrogen storage alloy secondary battery or its electrode material composed of various components is not only a new field, but also the process is complicated and the cost is expected to increase. Or, it has never been considered in earnest.

【0007】従来、廃電池の処理といえば、電池の種類
によって処理の方法は異なるとはいえ、乾電池や鉛バッ
テリー、ニッケル−カドミウム電池の処理に見られるご
とく、プラスチックケースを除去した後に、電池の構成
材料を一括してある処理工程にかけることが工業的に行
われている。例えば鉛バッテリーでは溶鉱炉に、ニッケ
ル−カドミウム電池では蒸留炉に投入している。
Conventionally, the treatment of waste batteries is different depending on the type of the battery. However, as seen in the treatment of dry batteries, lead batteries, and nickel-cadmium batteries, after removing the plastic case, It is industrially practiced to collectively apply constituent materials to a certain processing step. For example, lead batteries are placed in a blast furnace, and nickel-cadmium batteries are placed in a distillation furnace.

【0008】この場合、操業の安定化を図るために投入
する原料の均質化が必要であり、廃電池材料の混合が行
われている。
In this case, it is necessary to homogenize the raw materials to be charged in order to stabilize the operation, and the waste battery materials are mixed.

【0009】しかしながら、ニッケル−水素吸蔵合金二
次廃電池を上記のように均質化のため混合してしまった
ならば、回収工程の原料としては複数の成分を有し、所
望の純度を要する有効成分の回収には非常に長く複雑な
プロセスとなり、高価な回収物となってしまう。特に有
効成分を抽出してから分離回収する湿式プロセスを採用
すれば、個々の既存の技術の組合せによって金属として
回収することはできても、溶媒抽出や電解採取といった
コストがかかるプロセスを用いざるを得ず、好ましくな
い。特に、負極活物質が単純なカドミウムでなく、N
i、Co、Mn、Al、Mm(ミッシュメタル)等の熱
的、化学的性質の大幅に異なる多くの成分からなり、特
にAl、Mmは非常に酸化しやすい物質であるため、金
属状態で回収することが容易でない。
However, if the nickel-hydrogen storage alloy secondary waste battery is mixed for homogenization as described above, it has a plurality of components as raw materials for the recovery step, and it is necessary to obtain a desired purity. The recovery of the components can be a very long and complex process, resulting in an expensive recovery. In particular, if a wet process in which the active ingredient is extracted and then separated and recovered is adopted, it is possible to recover the metal as a metal by combining the existing technologies, but it is necessary to use a costly process such as solvent extraction or electrolytic extraction. It is not preferred and not preferable. In particular, the negative electrode active material is not simple cadmium but N
It is composed of many components such as i, Co, Mn, Al, and Mm (Misch metal) that have greatly different thermal and chemical properties. In particular, Al and Mm are very easily oxidizable substances, so they are recovered in a metallic state. Not easy to do.

【0010】このようなニッケル−水素吸蔵合金二次電
池にあっては、次のごとき課題を有していた。
The nickel-hydrogen storage alloy secondary battery as described above has the following problems.

【0011】(1)活物質として再利用するには必要構
成成分以外の成分、すなわち不純物となる成分の混入を
防ぐことが必要である。
(1) In order to reuse as an active material, it is necessary to prevent mixing of components other than the necessary constituent components, that is, components that become impurities.

【0012】(2)電極を構成する材料の一つではあっ
ても、初めから活物質に含まれると不純物となる成分が
ある。例えば、セパレータ中や結合剤として使用される
有機物中の炭素が負極活物質である水素吸蔵合金に一定
量以上含まれると不適とされる。また構成材料である酸
化亜鉛中の亜鉛も同様に不純物となる。
(2) Even though it is one of the materials forming the electrode, there is a component which becomes an impurity when it is contained in the active material from the beginning. For example, it is unsuitable if the hydrogen storage alloy, which is the negative electrode active material, contains a certain amount or more of carbon in the organic material used in the separator or as the binder. Zinc in zinc oxide, which is a constituent material, also becomes an impurity.

【0013】(3)水素吸蔵合金の成分であるレアアー
ス(希土類)金属は非常に酸化され易く、通常の熱ある
いは化学的な処理によって容易に酸化物や塩となってし
まい、金属状態が必要な活物質としては使用できなくな
る。
(3) The rare earth (rare earth) metal, which is a component of the hydrogen storage alloy, is very easily oxidized, and is easily converted into an oxide or salt by ordinary heat or chemical treatment. It cannot be used as an active material.

【0014】このような状況下であることから、ニツケ
ル−水素二次電池のリサイクル技術は未だ本格的に検討
されていなかった。
Under these circumstances, the recycling technology for nickel-hydrogen secondary batteries has not yet been studied in earnest.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、ニッ
ケル−水素吸蔵合金二次廃電池から、特にその活物質の
構成成分である稀少金属をその金属状態を変えることな
く、簡潔なプロセスで活物質の一つである水素吸蔵合金
の原料用金属として回収し、再利用するニッケル−水素
吸蔵合金二次電池からの有効成分回収方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The object of the present invention is to perform a simple process from a nickel-hydrogen storage alloy secondary waste battery, in particular, for a rare metal which is a constituent component of the active material, without changing the metal state. An object of the present invention is to provide a method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery, which is recovered and reused as a raw material metal of a hydrogen storage alloy which is one of active materials.

【0016】[0016]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく、不純物として混入してくる成分をいか
に簡便な方法で除去するか、初めに金属である負極活
物質は金属のまま回収するという二つの観点を基本とし
て鋭意検討した結果、本発明をなすに至ったものであ
る。
In order to solve the above-mentioned problems, the inventors of the present invention have decided how to remove the components mixed in as impurities by a simple method. As a result of intensive studies based on the two viewpoints of recovering as it is, the present invention has been completed.

【0017】すなわち、本発明は、下記〜の工程: ニッケル−水素吸蔵合金二次廃電池を分解して電極
を取り出して端子部を除去した後、該電極を正極と負極
とを別々にあるいは混合して酸またはアルカリ溶液に浸
漬する工程、 該浸漬後の電極を機械的手段によって解砕する工
程、 該解砕物を活物質粉末と電極基板とに分離する工
程、 分離された該活物質粉末と該電極基板を洗浄および
乾燥する工程、からなることを特徴とするニッケル−水
素吸蔵合金二次電池からの有効成分回収方法にある。
That is, the present invention includes the following steps: After disassembling the nickel-hydrogen storage alloy secondary waste battery, taking out the electrode and removing the terminal part, the electrode is separately or mixed with the positive electrode and the negative electrode. And then immersing in an acid or alkaline solution, crushing the electrode after immersing by mechanical means, separating the crushed material into an active material powder and an electrode substrate, and separating the active material powder A method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery, which comprises a step of washing and drying the electrode substrate.

【0018】本発明では、ニッケル−水素吸蔵合金二次
廃電池を分解して電極を取り出し、端子部を除去した
後、この電極を酸またはアルカリ溶液に浸漬する。この
ことによって水素吸蔵合金原料としては不純物となる亜
鉛やその他の成分を溶出除去する。電極は正極と負極を
別々に浸漬しても両者を混合して浸漬してもよい。
In the present invention, the nickel-hydrogen storage alloy secondary waste battery is disassembled to take out the electrode, the terminal portion is removed, and then the electrode is immersed in an acid or alkali solution. As a result, zinc and other components as impurities are eluted and removed from the hydrogen storage alloy raw material. The electrode may be immersed in the positive electrode and the negative electrode separately or in a mixture of both.

【0019】ここで用いられる酸溶液としてはpH3以
下、またアルカリ溶液としてはpH11以上であれば特
に限定されるものではないが、目的とする亜鉛等の添加
物のみを溶出し、それ以外の成分は溶出しない溶液、例
えば水酸化ナトリウムや水酸化カリといった工業的で安
価なアルカリ溶液が好ましく、特に水酸化ナトリウム溶
液が好ましい。浸漬する時間や溶液の温度は特に限定さ
れないが、時間が長く、かつ温度が高いほうが亜鉛等の
添加物の溶出は容易である。
The acid solution used here is not particularly limited as long as it has a pH of 3 or lower and the alkaline solution has a pH of 11 or higher. However, only the desired additive such as zinc is eluted and the other components are eluted. Is a solution that does not elute, for example, an industrial and inexpensive alkaline solution such as sodium hydroxide or potassium hydroxide is preferable, and a sodium hydroxide solution is particularly preferable. The immersion time and the temperature of the solution are not particularly limited, but the longer the time and the higher the temperature, the easier the elution of the additive such as zinc is.

【0020】次に、亜鉛等の添加物を除去した電極(正
極または負極あるいはこれらの混合物)をボールミルや
コンクリートミキサー等の混合解砕機能を備えた装置に
より、電極を機械的に解砕し、基板から活物質を剥離す
る。剥離を容易にするためには溶媒を用いる湿式処理が
好ましい。その溶媒としては電極成分と反応しないもの
であれば特に限定しないが、通常は水溶液であればよ
い。また水溶液のpHを限定されるものではないが、酸
あるいはアルカリ溶液が通常であるが、好ましくは前記
したアルカリ溶液を用い、浸漬と解砕を同一工程で行っ
てもよく、そうすることで亜鉛等の添加物の除去はより
効果的かつ効率的に行うことができる。
Next, the electrode (positive electrode or negative electrode or a mixture thereof) from which additives such as zinc have been removed is mechanically crushed by a device having a mixing and crushing function such as a ball mill or a concrete mixer, The active material is peeled off from the substrate. Wet processing using a solvent is preferable for facilitating peeling. The solvent is not particularly limited as long as it does not react with the electrode component, but is usually an aqueous solution. Although the pH of the aqueous solution is not limited, it is usually an acid or alkaline solution, but preferably the above-mentioned alkaline solution may be used, and the dipping and crushing may be carried out in the same step. Additives such as can be removed more effectively and efficiently.

【0021】なお、上記亜鉛は電池性能を向上させるた
めに負極に添加されたものである。この亜鉛の代わりに
別の金属成分を用いた場合においても酸またはアルカリ
溶液で溶出するものであれば本発明を適用できる。
The zinc is added to the negative electrode in order to improve the battery performance. Even when another metal component is used instead of this zinc, the present invention can be applied as long as it is eluted with an acid or alkali solution.

【0022】一方、この解砕操作中に湿式であっても粉
塵が発生することがある。この粉塵は主として有機物の
結合剤粉末であって、電極基板に塗布する活物質の調製
時に必要なものであり、撥水性が大きいために発塵する
ものである。
On the other hand, during this crushing operation, dust may be generated even if it is wet. This dust is mainly an organic binder powder, which is necessary when preparing an active material to be applied to an electrode substrate, and is dusty because of its high water repellency.

【0023】この有機物中の炭素は活物質そのものにと
っては不純物となるので、解砕時に発生する粉塵を吸引
除去することが望ましい。例えば混合粉砕機能を備えた
装置の上部から吸引排気することによって電極基板に含
まれる有機物粉末の粉塵を装置の外へ除去する。残りの
結合剤は次の分離、洗浄により液と共に廃棄されて除か
れる。
Since carbon in the organic matter becomes an impurity in the active material itself, it is desirable to remove dust generated during crushing by suction. For example, the dust of the organic powder contained in the electrode substrate is removed to the outside of the device by suctioning and exhausting from the upper part of the device having the mixing and crushing function. The remaining binder is discarded together with the liquid by the next separation and washing, and removed.

【0024】解砕によって得られたスラリーは常法によ
って粗粒の電極基板と微粉の活物質とに分離した後、そ
れぞれを洗浄、濾過、乾燥する。これら解砕から乾燥ま
での雰囲気は非酸化性が望ましいが大気中であってもよ
い。
The slurry obtained by crushing is separated into a coarse-grained electrode substrate and a finely divided active material by a conventional method, and then washed, filtered and dried. The atmosphere from crushing to drying is preferably non-oxidizing, but may be in the air.

【0025】この時点で得られるものは、基板としては
多孔状ニッケル板またはニッケルメッキ鉄板、活物質と
しては負極活物質の水素吸蔵合金、正極活物質の水酸化
ニッケルである。
What is obtained at this point is a porous nickel plate or a nickel-plated iron plate as the substrate, a hydrogen storage alloy as the negative electrode active material, and nickel hydroxide as the positive electrode active material as the active material.

【0026】ニッケル板はほぼ純粋ニッケルなので、そ
のままあるいは融解後、鋳造してから水素吸蔵合金の原
料にしてもよいし、他の用途に用いてもよい。ニッケル
メッキ鉄板は鉄を含んでもよい水素吸蔵合金の原料にし
てもよいし、フェロニッケル等の他の用途に利用しても
よい。
Since the nickel plate is almost pure nickel, it may be used as it is, or after being melted and then cast, as a raw material for the hydrogen storage alloy, or may be used for other purposes. The nickel-plated iron plate may be a raw material for a hydrogen storage alloy that may contain iron, or may be used for other purposes such as ferronickel.

【0027】水酸化ニッケルはそのまま正極活物質とし
て用いるか、または単独にあるいは回収した負極活物質
と一緒にして後述する還元処理を行ない、ニッケル金属
として負極活物質のニッケル源に再利用してもよいし、
あるいは他の用途のニッケル原料に使用してもよい。
Nickel hydroxide may be used as a positive electrode active material as it is, or may be reused as a nickel metal for the nickel source of the negative electrode active material by subjecting it to a reduction treatment which will be described later alone or together with the recovered negative electrode active material. Good,
Alternatively, it may be used as a nickel raw material for other purposes.

【0028】回収した負極活物質は、そのまま負極活物
質として用いるか、または融解して鋳造し、金属塊状に
してから負極用水素吸蔵合金の原料に用いてもよい。後
者の場合は前記した回収ニッケル板と一緒に融解しても
よい。
The recovered negative electrode active material may be used as a negative electrode active material as it is, or may be melted and cast into a metal lump and then used as a raw material of a hydrogen storage alloy for a negative electrode. In the latter case, the recovered nickel plate may be melted together.

【0029】融解、鋳造は1000℃以上、好ましくは
1300℃以上の温度で行う。融解、鋳造の雰囲気は非
酸化性であればよく、好ましくはアルゴンガス雰囲気で
ある。融解装置としては雰囲気制御の容易な真空溶解炉
が好ましい。また、融解においては、比較的低融点の希
土類金属と混合して行なってもよい。
Melting and casting are carried out at a temperature of 1000 ° C. or higher, preferably 1300 ° C. or higher. The melting and casting atmosphere may be non-oxidizing, and is preferably an argon gas atmosphere. A vacuum melting furnace whose atmosphere can be easily controlled is preferable as the melting device. The melting may be performed by mixing with a rare earth metal having a relatively low melting point.

【0030】回収した負極活物質から塊状金属への歩留
りは回収活物質の酸化の度合いによって異なり、酸化物
が多ければ歩留りは低くなる。従って、本発明の方法で
は廃電池の負極活物質の初めの酸化状態以上には極力酸
化を進行させないやり方がなされている。
The yield from the recovered negative electrode active material to the bulk metal depends on the degree of oxidation of the recovered active material, and the yield is low if the amount of oxide is large. Therefore, in the method of the present invention, a method is employed in which the oxidation is not advanced as much as possible beyond the initial oxidation state of the negative electrode active material of the waste battery.

【0031】しかし、廃電池としては放置される条件に
よっては活物質、特に酸化の容易なレアアースを主成分
とする負極活物質のある程度の酸化は避けられない。こ
の場合の負極活物質の金属化として二つの方法がある。
However, depending on the conditions under which the waste battery is left unattended, some degree of oxidation of the active material, especially the negative electrode active material whose main component is rare earth, which is easily oxidized, cannot be avoided. There are two methods for metallizing the negative electrode active material in this case.

【0032】一つは上述してきた一連の工程を用いて塊
状金属を得るが、それにならない酸化物残留分を別途乾
式で還元し、金属化する方法である。他の一つは上記融
解処理を行なわず、回収負極活物質を全量直接乾式で還
元して金属化する方法である。
One is a method of obtaining a lumpy metal by using the above-described series of steps, and separately oxidizing the remaining oxides which do not form a lumpy metal, to metallize. The other one is a method in which the entire amount of the recovered negative electrode active material is directly dry-reduced and metallized without performing the melting treatment.

【0033】乾式で還元する場合、上記二つの方法のい
ずれの場合も同様で還元剤としてはレアアースよりも酸
素親和力の大きい物質、通常はカルシウムを用いる。粉
末の回収物とカルシウムをよく混合して成形する。な
お、混合においては、水素吸蔵合金構成元素の酸化物お
よび/または金属を組成調整のために加えてもよい。
In the case of dry reduction, the same applies to both of the above two methods, and as the reducing agent, a substance having a greater oxygen affinity than rare earth, usually calcium is used. Mix the powder recovery and calcium well and mold. In addition, in the mixing, an oxide and / or a metal of a hydrogen storage alloy constituent element may be added for composition adjustment.

【0034】カルシウムはレアアース酸化物を還元する
のに必要な当量以上を加える。次に成形体を非酸化性雰
囲気、通常はアルゴンガス雰囲気下で500℃以上、好
ましくは1000℃以上の温度で一定時間以上熱処理す
る。
Calcium is added in an amount equal to or more than the equivalent required to reduce the rare earth oxide. Next, the molded body is heat-treated at a temperature of 500 ° C. or higher, preferably 1000 ° C. or higher in a non-oxidizing atmosphere, usually an argon gas atmosphere, for a certain period of time or longer.

【0035】次に、過剰のカルシウムや生成した酸化カ
ルシウムを除去するために、熱処理後の成形体を水また
は塩化アンモニウム等の脱カルシウムに効果のある塩を
含む水溶液の中に投入し、濾過、脱水、乾燥を行う。こ
のようにして回収された粉末はニッケル−水素吸蔵合金
二次電池の負極活物質である水素吸蔵合金粉末に必要な
特性とほぼ同等な特性を有することができるので、直接
に電極材料に用いることもできるし、水素吸蔵合金の原
料として再利用することもできる。
Next, in order to remove excess calcium and generated calcium oxide, the molded body after the heat treatment is put into water or an aqueous solution containing a salt effective for decalcification such as ammonium chloride and filtered, Dehydrate and dry. Since the powder thus recovered can have properties almost the same as those required for the hydrogen storage alloy powder which is the negative electrode active material of the nickel-hydrogen storage alloy secondary battery, it should be directly used for the electrode material. It can also be reused as a raw material for a hydrogen storage alloy.

【0036】なお、還元剤として高価なカルシウムを用
いるのはあくまでレアアースを含む負極活物質に対して
であり、前記した正極活物質の水酸化ニッケルの還元に
はより安価な炭素質材料やアルミニウム等を用いる常法
でよい。正極と負極を分離せず混合して処理する場合に
は、従ってこの点を考慮して高価なカルシウムが正極活
物質の還元に使用されない工夫が必要となる。
It should be noted that expensive calcium is used as the reducing agent only for the negative electrode active material containing rare earth, and for the reduction of nickel hydroxide of the positive electrode active material described above, a cheaper carbonaceous material, aluminum or the like is used. The conventional method using In the case where the positive electrode and the negative electrode are mixed and treated without being separated, therefore, it is necessary to take this point into consideration so that expensive calcium is not used for the reduction of the positive electrode active material.

【0037】これらの簡便な処理を容易にするためには
電池の構成材料を極力予め分けて取り出すことが好まし
い。
In order to facilitate these simple processes, it is preferable to separate the constituent materials of the battery in advance as much as possible.

【0038】本発明では、水素吸蔵合金を使用した電池
の解体によって得られる電極基板において、基板の種
類、水素吸蔵合金の組成にはいかなる限定を受けるもの
ではない。また、電池解体によって得られる電極基板の
他、電極基板製造時に発生する廃電極基板においても同
様の効果がある。
In the present invention, in the electrode substrate obtained by disassembling the battery using the hydrogen storage alloy, the type of substrate and the composition of the hydrogen storage alloy are not limited in any way. In addition to the electrode substrate obtained by disassembling the battery, the same effect can be obtained in the waste electrode substrate generated during the electrode substrate manufacturing.

【0039】[0039]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0040】実施例1 電池の分解により得られた電極添加物として酸化亜鉛1
wt%を含む負極板10kgをpH13の水酸化ナトリ
ウム溶液30リットルに48時間浸漬後、ニッケルボー
ル10kg、水30リットルの入ったボーミルに入れ9
0分解砕した。
Example 1 Zinc oxide 1 as an electrode additive obtained by disassembling a battery
10 kg of the negative electrode plate containing wt% was immersed in 30 liters of a sodium hydroxide solution having a pH of 13 for 48 hours, and then placed in a bow mill containing 10 kg of nickel balls and 30 liters of water.
It was crushed to zero.

【0041】得られたスラリーを1mmのフルイにより
電極基板と活物質に分離後、濾過、乾燥した。
The obtained slurry was separated into an electrode substrate and an active material with a 1 mm screen, filtered and dried.

【0042】分離されたものはニッケル分97%の電極
基板と活物質であり、採取率は95%であり、亜鉛成分
は0.1wt%以下であった。
The separated products were the electrode substrate and the active material having a nickel content of 97%, the collection rate was 95%, and the zinc component was 0.1 wt% or less.

【0043】ニッケル基板と活物質とを別々に真空溶解
炉にてアルゴンガス雰囲気にて融解、鋳造し、金属化し
たところ、それぞれ90%、75%の採収率で金属にて
回収された。
When the nickel substrate and the active material were separately melted and cast in a vacuum melting furnace in an argon gas atmosphere and metallized, they were recovered as metal with a yield of 90% and 75%, respectively.

【0044】さらに、上記活物質と活物質融解時に金属
として回収されなかった非融解物質とにそれぞれカルシ
ウム(回収活物質と非融解物質とに含まれる酸化物と等
量の2倍量)を混合し、プレスにて成型後、アルゴンガ
ス雰囲気下、1000℃、6時間熱処理を行った。
Furthermore, calcium (twice the amount equivalent to the oxides contained in the recovered active material and the non-melting material) is mixed into the above-mentioned active material and the non-melting material which is not recovered as a metal when the active material is melted. Then, after molding by a press, heat treatment was performed at 1000 ° C. for 6 hours in an argon gas atmosphere.

【0045】冷却後、塩化アンモニウム溶液にて洗浄
し、濾過、乾燥したところ、それぞれ5atmの水素圧
にてH/Mが0.8以上と水素吸蔵特性として満足でき
る良好な水素吸蔵合金粉末が得られた。
After cooling, washing with an ammonium chloride solution, filtration and drying, a hydrogen storage alloy powder having a H / M of 0.8 or more and satisfactory hydrogen storage characteristics was obtained at a hydrogen pressure of 5 atm. Was given.

【0046】実施例2 電池分解によって得られた正極板5kgと負極板5kg
とを混合してpH13の水酸化ナトリウム溶液30リッ
トルに24時間浸漬後、水酸化ナトリウム溶液と共にニ
ッケルボール10kgの入ったボールミルに入れ90分
解砕した。
Example 2 5 kg of positive electrode plate and 5 kg of negative electrode plate obtained by disassembling the battery
After being mixed with 30 liters of a sodium hydroxide solution having a pH of 13 for 24 hours, they were put together with the sodium hydroxide solution in a ball mill containing 10 kg of nickel balls and decomposed into 90 pieces.

【0047】得られたスラリーをフルイ(1mm)によ
り電極基板と活物質に分離後、濾過、乾燥してところニ
ッケル分97%の電極基板と活物質が95%の採収率で
得られた。また、亜鉛成分は0.1%以下であった。
The obtained slurry was separated by a sieve (1 mm) into an electrode substrate and an active material, filtered, and dried to obtain an electrode substrate containing 97% nickel and the active material in a yield of 95%. The zinc content was 0.1% or less.

【0048】ニッケル基板と活物質とをそれぞれ真空溶
解にてアルゴンガス雰囲気にて融解したところ、それぞ
れ90%、65%の採収率で金属として回収された。
When the nickel substrate and the active material were melted under vacuum in an argon gas atmosphere, they were recovered as metals with a yield of 90% and 65%, respectively.

【0049】[0049]

【発明の効果】以上説明したように、本発明によって、
ニッケル−水素吸蔵合金二次廃電池から、活物質の構成
成分である稀少金属等の有効成分が簡便なプロセスで回
収することができる。
As described above, according to the present invention,
From the nickel-hydrogen storage alloy secondary waste battery, effective components such as rare metals, which are constituent components of the active material, can be recovered by a simple process.

【0050】従って、本発明は民生用の小型ニッケル−
水素吸蔵合金二次電池の処理に適するばかりでなく、特
に電気自動車電池等の大型電池の有効成分回収方法とし
て最適である。
Therefore, the present invention is a small nickel nickel alloy for consumer use.
Not only is it suitable for the treatment of hydrogen storage alloy secondary batteries, but it is also most suitable as a method for recovering effective components of large-sized batteries such as electric vehicle batteries.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 下記〜の工程: ニッケル−水素吸蔵合金二次廃電池を分解して電極
を取り出して端子部を除去した後、該電極を正極と負極
とを別々にあるいは混合して酸またはアルカリ溶液に浸
漬する工程、 該浸漬後の電極を機械的手段によって解砕する工
程、 該解砕物を活物質粉末と電極基板とに分離する工
程、 分離された該活物質と該電極基板を洗浄および乾燥
する工程、からなることを特徴とするニッケル−水素吸
蔵合金二次電池からの有効成分回収方法。
1. The following steps: After disassembling a nickel-hydrogen storage alloy secondary waste battery to take out an electrode and removing a terminal portion, the electrode is mixed with an acid or a positive electrode and a negative electrode separately or A step of immersing in an alkaline solution, a step of crushing the electrode after the immersion by mechanical means, a step of separating the crushed material into an active material powder and an electrode substrate, washing the separated active material and the electrode substrate And a step of drying, the method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery.
【請求項2】 前記〜の工程の後に、 乾燥された該活物質粉末と該電極基板を別々にある
いは混合した後に1000℃以上で非酸化性雰囲気下で
融解し、鋳造する工程、を行なう請求項1に記載の有効
成分回収方法。
2. After the steps (1) to (3), the dried active material powder and the electrode substrate are separately or mixed and then melted at 1000 ° C. or higher in a non-oxidizing atmosphere and cast. Item 1. The method for recovering an active ingredient according to item 1.
【請求項3】 前記機械的手段が混合粉砕機能を備えた
装置により行なう請求項1または2に記載の有効成分回
収方法。
3. The method for recovering an active ingredient according to claim 1, wherein the mechanical means is a device having a mixing and pulverizing function.
【請求項4】 前記混合粉砕機能を備えた装置の上部か
ら吸引排気する請求項3に記載の有効成分回収方法。
4. The method for recovering an active ingredient according to claim 3, wherein suction and exhaust are performed from an upper portion of the apparatus having the mixing and pulverizing function.
【請求項5】 前記解砕を溶液共存下の湿式で行なう請
求項1または2に記載の有効成分回収方法。
5. The method for recovering an active ingredient according to claim 1, wherein the crushing is carried out by a wet method in the presence of a solution.
【請求項6】 前記融解手段が真空溶解炉で行なう請求
項2に記載の有効成分回収方法。
6. The method for recovering an active ingredient according to claim 2, wherein the melting means is performed in a vacuum melting furnace.
【請求項7】 前記分離され乾燥された活物質粉末また
は融解により発生する非融解物質を還元剤と混合して、
不活性雰囲気下で500℃以上で熱処理して金属状態で
回収する請求項1または2に記載の有効成分回収方法。
7. The separated and dried active material powder or the non-melted material generated by melting is mixed with a reducing agent,
The method for recovering an active ingredient according to claim 1 or 2, wherein heat treatment is performed at 500 ° C or higher in an inert atmosphere to recover the metal state.
【請求項8】 前記還元剤がカルシウムである請求項7
に記載の有効成分回収方法。
8. The reducing agent is calcium.
The method for recovering the active ingredient according to.
【請求項9】 前記被熱処理物を、酸化カルシウムと反
応して水溶性物質を生成する塩を含有する水溶液中に投
入した後、濾過、脱水、乾燥を施す請求項8に記載の有
効成分回収方法。
9. The recovery of the active ingredient according to claim 8, wherein the heat-treated product is put into an aqueous solution containing a salt which reacts with calcium oxide to produce a water-soluble substance, and then filtered, dehydrated and dried. Method.
JP27313994A 1994-10-13 1994-10-13 Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery Expired - Fee Related JP3485208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27313994A JP3485208B2 (en) 1994-10-13 1994-10-13 Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27313994A JP3485208B2 (en) 1994-10-13 1994-10-13 Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery

Publications (2)

Publication Number Publication Date
JPH08115752A true JPH08115752A (en) 1996-05-07
JP3485208B2 JP3485208B2 (en) 2004-01-13

Family

ID=17523667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27313994A Expired - Fee Related JP3485208B2 (en) 1994-10-13 1994-10-13 Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery

Country Status (1)

Country Link
JP (1) JP3485208B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077622A (en) * 1997-09-25 2000-06-20 Toyota Jidosha Kabushiki Kaisha Recycling method of nickel-hydrogen secondary battery
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
KR20010060118A (en) * 1999-12-31 2001-07-06 이계안 A recycling method of waste-anode in Ni-MH cell
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2012036422A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel containing acid solution
WO2013076812A1 (en) * 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing nickel-containing acidic solution
US8974754B2 (en) 2010-08-03 2015-03-10 Sumitomo Metal Mining Co. Ltd. Method for producing nickel-containing acid solution
JP2016186889A (en) * 2015-03-27 2016-10-27 Fdk株式会社 Recycle method for negative electrode for nickel hydrogen secondary battery
JP2021504929A (en) * 2017-11-28 2021-02-15 ナイラー インターナショナル アーベー Crushing of recovered negative electrode material
WO2022119262A1 (en) * 2020-12-02 2022-06-09 에스케이이노베이션 주식회사 Method for recovering lithium precursor from waste lithium secondary battery positive electrode material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077622A (en) * 1997-09-25 2000-06-20 Toyota Jidosha Kabushiki Kaisha Recycling method of nickel-hydrogen secondary battery
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7030618B2 (en) 1998-08-10 2006-04-18 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7075305B2 (en) 1998-08-10 2006-07-11 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7180298B2 (en) 1998-08-10 2007-02-20 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7235326B2 (en) 1998-08-10 2007-06-26 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
KR20010060118A (en) * 1999-12-31 2001-07-06 이계안 A recycling method of waste-anode in Ni-MH cell
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2010034021A (en) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd Method of recycling oxide-containing battery material from waste battery material
JP2012036422A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel containing acid solution
US8974754B2 (en) 2010-08-03 2015-03-10 Sumitomo Metal Mining Co. Ltd. Method for producing nickel-containing acid solution
WO2013076812A1 (en) * 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing nickel-containing acidic solution
CN103221557A (en) * 2011-11-22 2013-07-24 住友金属矿山株式会社 Method for producing nickel-ontaining acidic solution
JP2016186889A (en) * 2015-03-27 2016-10-27 Fdk株式会社 Recycle method for negative electrode for nickel hydrogen secondary battery
JP2021504929A (en) * 2017-11-28 2021-02-15 ナイラー インターナショナル アーベー Crushing of recovered negative electrode material
WO2022119262A1 (en) * 2020-12-02 2022-06-09 에스케이이노베이션 주식회사 Method for recovering lithium precursor from waste lithium secondary battery positive electrode material

Also Published As

Publication number Publication date
JP3485208B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
WO2020013294A1 (en) Method for recovering valuable metals from waste lithium ion batteries
Yang et al. Recovery and regeneration of LiFePO 4 from spent lithium-ion batteries via a novel pretreatment process
CN100595970C (en) Method for selectively removing copper from waste lithium ion battery
CN111430832B (en) Full resource recovery method for waste ternary lithium ion battery without discharge pretreatment
JP3485208B2 (en) Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery
KR20210152565A (en) Method of Preparation of Precursor Compounds for Lithium Battery Cathodes
JP7400589B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
Dobó et al. A review on recycling of spent lithium-ion batteries
JP2010126779A (en) Method for recovering nickel concentrate from used nickel hydride battery
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
JP7271833B2 (en) Lithium recovery method
JP2023511183A (en) Method for reusing active material using positive electrode scrap
JP3716908B2 (en) Recovery method of rare earth elements from sludge containing rare earth elements
EP3006580B1 (en) Method for producing nickel-containing acidic solution
US8974754B2 (en) Method for producing nickel-containing acid solution
JP4418129B2 (en) Collection method of valuable metals
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
JP5541512B2 (en) Method for producing nickel-containing acidic solution
KR102367354B1 (en) Method for purifying waste lithium phosphate and method for manufacturing lithium iron phosphate comprising the same
KR100325681B1 (en) Transition metal recovering method from positive active materials of lithium ion cell
CN114006067A (en) Method and system for recycling anode and cathode mixed powder of waste ternary lithium ion battery
JP3526983B2 (en) Method for recovering active components from nickel-hydrogen storage alloy secondary batteries
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
JP3614987B2 (en) Method for reducing oxygen in hydrogen storage alloys
WO2024048247A1 (en) Method for recovering valuable metals

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees