KR20010060118A - A recycling method of waste-anode in Ni-MH cell - Google Patents

A recycling method of waste-anode in Ni-MH cell Download PDF

Info

Publication number
KR20010060118A
KR20010060118A KR1019990068239A KR19990068239A KR20010060118A KR 20010060118 A KR20010060118 A KR 20010060118A KR 1019990068239 A KR1019990068239 A KR 1019990068239A KR 19990068239 A KR19990068239 A KR 19990068239A KR 20010060118 A KR20010060118 A KR 20010060118A
Authority
KR
South Korea
Prior art keywords
weight
parts
negative electrode
waste
zirconium
Prior art date
Application number
KR1019990068239A
Other languages
Korean (ko)
Inventor
김치명
Original Assignee
이계안
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계안, 현대자동차주식회사 filed Critical 이계안
Priority to KR1019990068239A priority Critical patent/KR20010060118A/en
Publication of KR20010060118A publication Critical patent/KR20010060118A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A process for recycling waste cathode material of Ni-MH battery is provided to reuse the waste material as cathode active material through a specific recycling process by adding vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese to the waste material. CONSTITUTION: In the recycling process of waste materials generated in the manufacturing process of cathode of Ni-MH battery, an alloy element comprising vanadium 20-25wt.%, titanium 10-20wt.%, zirconium 30-45.%, nickel 10wt.% or less, chromium 5-8wt.%, cobalt 5-15wt.%, manganese 5-15wt.% is added to 100 parts by weight of waste chips generated during punching process of cathode of Ni-MH battery.

Description

Ni-MH 전지의 음극 폐자재 재생방법{A recycling method of waste-anode in Ni-MH cell}A recycling method of waste-anode in Ni-Mh cell

본 발명은 Ni-MH 전지의 음극 폐자재 재생 방법에 관한 것으로서, 더욱 상세하게는 전기 자동차용 Ni-MH 전지의 음극제조 공정시 발생하는 타발칩, 합금 분말 및 불량 극판 등의 폐자재에 바나듐, 티타늄, 지르코늄, 니켈, 크롬, 코발트 및 망간을 함유시켜 재활용 공정을 거쳐 음극 활물질로 재생함으로써, 음극 제작시 원가절감 및 폐자재에 의한 환경 오염을 막을 수 있는 Ni-MH 전지의 음극 폐자재 재생 방법에 관한 것이다.The present invention relates to a method for reproducing negative electrode waste material of a Ni-MH battery, and more particularly, to wadium, such as punching chips, alloy powders, and defective electrode plates, which are generated during a negative electrode manufacturing process of an Ni-MH battery for an electric vehicle. Recycling the negative electrode waste material of Ni-MH battery which contains titanium, zirconium, nickel, chromium, cobalt and manganese and recycles it to the negative electrode active material after recycling process to prevent cost reduction and environmental pollution by waste materials It is about.

기존 전기 자동차용 Ni-MH 전지의 음극 제조시 발생하는 타발칩, 합금 분말 및 불량 그판 등의 폐자재는 대부분 폐기 처리하였으며, 이를 재활용하는 기술은전무한 상태이다.Most of waste materials such as punching chip, alloy powder, and defective plate generated during the production of the negative electrode of the conventional Ni-MH battery for electric vehicles have been disposed of, and there is no technology to recycle them.

음전극 제조시 발생하는 폐차제(스크랩)은 전기 자동차 1대(1PACK)당 약 30kg으로 (약 50만원이상) 이를 폐기 처분시 처리비용 및 원료의 손실이 매우 심각하다. 또한, 상기 폐자재의 폐기 처리로 인하여 환경 오염의 원인이 되고 있다.The scrapping agent (scrap) generated during the production of the negative electrode is about 30 kg per 1 pack (about 500,000 won or more). In addition, due to the waste treatment of the waste material is a cause of environmental pollution.

인메트코(INMETCO, 미국), 스남(SNAM, 프랑스), 나이프(NIFE, 스웨덴) 등의 선진국에서는 복잡한 습식 방법을 통하여 코발트, 니켈 등의 유기 금속만을 회수하는 방식을 채택하고 있다.Developed countries such as INMETCO (US), SNAM (France) and Knife (NIFE, Sweden) have adopted a method of recovering only organic metals such as cobalt and nickel through a complicated wet method.

그러나, 이러한 선진국의 재활용 장치의 경우 대부분 유기금속만을 회수하여 다른 용도로 사용하거나 대규모의 설비 투자를 요구하고 있다.However, most of the recycling apparatuses of the developed countries recover organic metals and use them for other purposes or require large-scale facility investment.

따라서, 본 발명에서는 Ni-MH 전지의 음극 제조시 발생되는 타발칩, 합금 분말 및 불량 극판 등의 폐자재의 처리 비용 및 환경 오염을 막기 위하여, 본 발명에서는 상기 폐자재에 바나듐, 티타늄, 지르코늄, 니켈, 크롬, 코발트 및 망간을 함유시켜 재활용 공정을 거쳐 음극 활물질로 재생함으로써, 원가절감 및 폐자재에 의한 환경 오염을 막을 수 있는 Ni-MH 전지의 음극 폐자재 재생 방법을 제공하는데 그 목적이 있다.Therefore, in the present invention, in order to prevent the processing cost and environmental pollution of waste materials such as punching chip, alloy powder and defective electrode plate generated during the production of the negative electrode of the Ni-MH battery, the waste materials include vanadium, titanium, zirconium, It is an object of the present invention to provide a method for reproducing negative electrode waste materials of Ni-MH batteries, which can contain nickel, chromium, cobalt, and manganese, and recycle them into a negative electrode active material after recycling, thereby preventing cost reduction and environmental pollution by waste materials. .

도 1은 본 발명에 따른 Ni-MH 전지의 음극 폐자재 재생방법을 도식화 한 것이다.1 is a diagram illustrating a method for reclaiming negative electrode waste materials of a Ni-MH battery according to the present invention.

본 발명은 Ni-MH 전지의 음극 제조공정 시 발생되는 타발칩, 합금 분말 및 불량극판의 폐자재를 재생함에 있어서, 상기 폐자재를 수거하여 바나듐, 티타늄, 지르코늄, 크롬, 코발트 및 방간의 합금 원소를 첨가시켜 음극 활물질을 재생하는 Ni-MH 전지의 음극 폐자재 재생 방법을 그 특징으로 하고 있다.The present invention collects the waste materials in the recycling of scrap chips, alloy powders and bad electrode plates produced during the negative electrode manufacturing process of Ni-MH batteries, and the alloying elements of vanadium, titanium, zirconium, chromium, cobalt, and bangbang. The negative electrode waste material regeneration method of the Ni-MH battery which adds and regenerates a negative electrode active material is characterized by the above-mentioned.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 음극 제조 공정시 발생하는 폐자재를 재생함으로써, 원가 절감 및 환경 오염을 막을 수 있는 Ni-MH 전지의 음극 폐자재 재생 방법을 그 특징으로 하고 있다.The present invention is characterized by a method for reproducing negative electrode waste materials of a Ni-MH battery, which can reduce costs and prevent environmental pollution by regenerating waste materials generated during a negative electrode manufacturing process.

본 발명은 Ni-MH 전지의 음극 타발시 발생되는 폐자재를 수거하여 재활용 공정을 통하여 음극 활물질로 재생되며, 그 공정은 첨부도면 도 1의 공정을 통하여 재생된다.The present invention collects the waste material generated when the negative electrode of the Ni-MH battery is recycled to the negative electrode active material through a recycling process, the process is recycled through the process of Figure 1 attached.

음극 타발시 발생되는 폐자재는 Ni-호일, 탭 및 음극판으로 분리한 다음 니켈과 탭은 그대로 재용해하여 재생한다.Waste materials generated when the negative electrode is punched out are separated into Ni-foils, tabs, and negative electrode plates, and nickel and tabs are re-dissolved and regenerated as they are.

음극판은 극판의 성형시 발생하는 타발칩, 합금 분말 및 불량 극판으로 분리한다.The negative electrode plate is separated into a punching chip, alloy powder, and a defective electrode plate generated during forming of the electrode plate.

음극판 폐자재의 재생과정을 위하여 먼저, 도가니를 감압한 다음 아르곤 가스로 퍼징 후 예열을 한다.In order to regenerate the negative electrode waste material, the crucible is depressurized, then purged with argon gas and preheated.

상기 음극 폐자재 및 합금 분말이 용해되어 거의 녹을 때까지 가한 후, 추가적으로 망간 및 티타늄을 함유시킨다.The negative electrode waste material and the alloy powder are added until they are dissolved and almost dissolved, and then additionally contain manganese and titanium.

상기 합금의 추가가 완료되면 다시 용해를 한 다음, 추가적으로 바나듐, 지르코늄, 니켈, 크롬 및 코발트를 첨가한다. 이때, 용융액의 표면이 화이트 오렌지색으로 변할 때까지 온도를 유지한다.When the addition of the alloy is complete, dissolve again, then additionally add vanadium, zirconium, nickel, chromium and cobalt. At this time, the temperature is maintained until the surface of the melt turns white orange.

그리고, 용융액의 색이 밝은 오렌지색으로 변할때까지 온도를 낮춘 다음, 이어서, 용융액 표면에 슬러그 층이 형성될 때까지 이 온도 유지한다..The temperature is lowered until the color of the melt turns bright orange and then maintained at this temperature until a slug layer is formed on the surface of the melt.

슬러그가 쏟아지지 않도록 출탕 시작 후 일정한 속도로 멈추지 말고 완료시까지 지속적으로 출탕한다.Do not stop at a constant speed after tapping so that the slug does not spill, but tap continuously until completion.

합금 표면 온도가 50℃ 미만이 되도록 6 ∼ 8시간 냉각시켜 음극 활물질을 제조한다.It is cooled for 6 to 8 hours so that an alloy surface temperature may be less than 50 degreeC, and a negative electrode active material is manufactured.

음극 활물질의 제조시 타발 폐자재와 더불어 첨가되는 합금의 조성 및 함량은 타발칩 100 중량부에 대하여 바나듐 20 ∼ 25 중량부, 티타늄 10 ∼ 20 중량부, 지르코늄 30 ∼ 45 중량부, 니켈 10 중량부 미만, 크롬 5 ∼ 8 중량부, 코발트 5 ∼ 15 중량부 및 망간 5 ∼ 15 중량부가 함유된다.In the preparation of the negative electrode active material, the composition and content of the alloy added together with the punching waste material are 20 to 25 parts by weight of vanadium, 10 to 20 parts by weight of titanium, 30 to 45 parts by weight of zirconium, and 10 parts by weight of nickel based on 100 parts by weight of the punching chip. Less than 5 to 8 parts by weight of chromium, 5 to 15 parts by weight of cobalt and 5 to 15 parts by weight of manganese.

그리고, 합금 분말의 경우 합금 분말 100 중량부에 대하여 바나듐 10 ∼ 20 중량부, 티타늄 5 ∼ 20 중량부, 지르코늄 20 ∼ 30 중량부, 니켈 20 ∼ 35 중량부, 크롬 1 ∼ 10 중량부, 코발트 1 ∼ 10 중량부 및 망간 1 ∼ 10 중량부가 함유된다.In the case of the alloy powder, 10 to 20 parts by weight of vanadium, 5 to 20 parts by weight of titanium, 20 to 30 parts by weight of zirconium, 20 to 35 parts by weight of nickel, 1 to 10 parts by weight of chromium, and cobalt 1 based on 100 parts by weight of alloy powder. -10 weight part and 1-10 weight part of manganese are contained.

또한, 불량 극판의 경우, 1 회 용해 후 ICP 분석을 통하여 첨가량을 조절하여, 합금 분말 100 중량부에 대하여 바나듐, 티타늄, 지르코늄, 니켈, 크롬, 코발트 및 망간이 함유된다.In addition, in the case of a defective electrode plate, the amount of vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese is contained with respect to 100 parts by weight of the alloy powder by adjusting the addition amount through ICP analysis after one time dissolution.

본 발명의 전기 자동차용 Ni-MH 전지의 음극 폐자재를 재생하여 제조된 음극활물질은 PCT 및 ICP 등의 분석 장비를 이용하여 활물질로서의 평가를 하게된다.The negative electrode active material prepared by regenerating the negative electrode waste material of the Ni-MH battery for an electric vehicle of the present invention is evaluated as an active material using analytical equipment such as PCT and ICP.

이와 같은 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Although this invention is demonstrated in detail based on an Example, this invention is not limited by an Example.

실시예 1 ∼ 2 및 비교예Examples 1-2 and Comparative Examples

Ni-MH 전지의 음극 폐자재를 재생하기 위하여 첨부도면 도 1의 공정의 순서로 음극활물질을 유도로 및 아크로를 이용하여 용해시켜 제조하였다. 비교예로서 기존 MF62 합금을 이용하였다.In order to regenerate the negative electrode waste material of the Ni-MH battery was prepared by dissolving the negative electrode active material using an induction furnace and an arc in the order of the process of FIG. As a comparative example, an existing MF62 alloy was used.

1. 원료 준비1. Raw material preparation

폐자재 8,768g과 합금을 다음과 같은 중량을 준비하였다.8,768 g of waste material and an alloy were prepared as follows.

바나듐: 1,298g 지르코늄: 3,452gVanadium: 1,298g Zirconium: 3,452g

티타늄: 1,510g 크롬: 547gTitanium: 1510 g Chrome: 547 g

망간: 924g 코발트: 867gManganese: 924 g Cobalt: 867 g

2. 원료 장입2. Loading raw materials

폐자재 타발 칩을 도가니 바닥에 장입하고, 상기 폐자재 위에 지르코늄 -- g과 크롬 547g을 먼저 장입한 후, 여기에 지르코늄 3,452g과 코발트 867g을 적당히 혼합하였다. 입자 크기가 작은 바나듐을 먼저 넣고, 입자 크기가 큰 바나듐은 맨 윗쪽에 장입하였다. 추가 챔버에는 티타늄 및 망간을 넣었다.The waste material punching chip was charged to the bottom of the crucible, and zirconium-g and 547 g of chromium were first loaded on the waste material, and then 3,452 g of zirconium and 867 g of cobalt were mixed appropriately. Vanadium with a small particle size was added first, and vanadium with a large particle size was charged at the top. Additional chambers contained titanium and manganese.

3. 분위기 조절 및 예열3. Atmosphere control and preheat

진공도가 100 mtorr에 도달하면 그때의 시간을 기록하고 예열 준비를 하였다. 러프(rough)밸브를 닫고 아르곤 가스로 -10 in/Hg까지 퍼지한 다음, 러프 밸브를 열어 100 mtorr까지 감압하였다.When the vacuum reached 100 mtorr, the time was recorded and ready for preheating. The rough valve was closed and purged to -10 in / Hg with argon gas, and then the rough valve was opened to reduce the pressure to 100 mtorr.

4. 용해(metlting)4. melting

로터리 다이얼을 돌려 전력 게이지 기준으로 전력을 9kw에서 5분, 15KW에서 10분 및 20KW에서 10분 동안 유지하고, 각 전력에서의 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록하였다.The rotary dial was turned to maintain power on a power gauge basis for 5 minutes at 9 kw, 10 minutes at 15 KW, and 10 minutes at 20 KW, recording the time, coolant, temperature, pressure, chamber pressure, etc. at each power.

전력을 0KW로 내리고 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록한 다음, 진공 펌프의 러프 밸브를 잠그고 아르곤 가스로 -12 in/Hg까지 채웠다.The power was lowered to 0 KW and the time, coolant, temperature, pressure, chamber pressure, etc. were recorded, then the rough valve of the vacuum pump was closed and filled with -12 in / Hg with argon gas.

러프 밸브를 닫은 상태에서 전력을 다시 20KW까지 올리고, 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록한 다음 용해될 때까지 10 ∼ 15분 동안 유지하였다.With the rough valve closed, the power was raised to 20 KW again, and the time, cooling water, temperature, pressure, chamber pressure, etc. were recorded and held for 10-15 minutes until dissolved.

5. 합금 분말 추가5. Alloy powder added

추가 챔버를 -30 in/Hg까지 진공 시킨 후 아르곤 가스로 -10 in/Hg까지 퍼지하였다. 상기 과정을 3번 반복하였다.The additional chamber was evacuated to -30 in / Hg and then purged to -10 in / Hg with argon gas. The process was repeated three times.

용해가 시작되어 원료가 거의 녹았을 경우 전력을 0KW로 내리고, 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록한 다음, 용해로와 추가 챔버 사이의 척 밸브를 완전히 열었다.When melting started and the raw material was almost melted, the power was lowered to 0 kW, the time, cooling water, temperature, pressure, chamber pressure, etc. recorded, and the chuck valve between the furnace and the additional chamber fully opened.

망간 및 티타늄의 순서로 추가 라인이 막히지 않도록 천천히 컵에 쏟은 다음, 도가니 로에 첨가하였다.Manganese and titanium were then slowly poured into the cup so that the additional lines were not blocked, and then added to the crucible furnace.

6. 최종 용융6. final melting

1차 원료 추가가 완료되면 전력을 20KW까지 올려 용해를 시작하고, 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록하고 5분 동안 유지하였다.When the addition of the primary raw material was completed, the power was raised to 20 KW to start dissolution. The time, cooling water, temperature, pressure, chamber pressure, etc. were recorded and maintained for 5 minutes.

2차 원료 추가를 위하여 추가 컵(addition cup)에 원료를 장입하고 추가 챔버를 퍼지하였다.The raw material was charged to an additional cup for secondary raw material addition and the additional chamber was purged.

1차 추가한 원료가 완전히 녹은 후에 2차 및 3차 원료를 추가하여 추가 과정을 마치고 최종 원료 추가가 끝나면 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록하였다.After the primary raw material was completely dissolved, the secondary and tertiary raw materials were added to complete the additional process, and when the final raw material was added, the time, cooling water, temperature, pressure, and chamber pressure were recorded.

전력 20KW, 25KW 및 30KW에서 각각 5분 동안 유지한 다음, 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록하고, 다시 전력을 37KW까지 올렸다.It was kept for 5 minutes at 20KW, 25KW and 30KW respectively, and then the time, coolant, temperature, pressure, chamber pressure, etc. were recorded, and the power was raised to 37KW.

용융액 표면이 화이트 오렌지색으로 변할 때까지 전력을 유지하였다.Power was maintained until the melt surface turned white orange.

전력을 20KW까지 내리고 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록한 다음, 용융액 표면이 브라운 오렌지색으로 변할 때까지 약 5분 동안 유지하였다.The power was lowered to 20 KW and the time, coolant, temperature, pressure, chamber pressure, etc. were recorded and held for about 5 minutes until the melt surface turned brown orange.

전력을 9KW까지 내리고 시간, 냉각수, 온도, 압력, 챔버 압력 등을 기록한 다음, 용융액 표면에 슬러그 층이 생성될 때까지 약 2분 동안 유지하였다.The power was lowered to 9KW and the time, coolant, temperature, pressure, chamber pressure, etc. were recorded and held for about 2 minutes until a slug layer formed on the melt surface.

전력을 0KW로 내리고 적색 OFF/RESET 스위치를 누른 다음, 냉각수 온도, 압력, 챔버 압력 등을 기록하였다.The power was lowered to 0 KW, the red OFF / RESET switch was pressed, and the coolant temperature, pressure and chamber pressure were recorded.

7. 출탕7. tapping

슬러그가 쏟아지지 않도록 도가니를 서서히 기울이면서 출탕을 하고 종료후 시간을 기록한 다음, 로를 바로 세워 커버를 덮고 아르곤 가스로 0 in/Hg까지 챔버를 퍼지하였다.Slowly tilting the crucible so as not to spill the slug, taping the time and recording the time after completion, the furnace was upright, covered the cover and purged the chamber to 0 in / Hg with argon gas.

8. 냉각 및 음극 합금 제조8. Cooling and Cathodic Alloy Manufacturing

모든 투시창을 닫고 합금 표면온도가 50℃ 이하가 되도록 6시간 이상 냉각하하여, 음극 활물질을 제조하였다.All viewing windows were closed and cooled for 6 hours or more so that the alloy surface temperature was 50 ° C. or lower to prepare a negative electrode active material.

시험예Test Example

음극 폐자재로 제조된 음극 활물질의 충·방전 특성 및 ICP 분석을 실시하였으며, 그 결과를 다음 표 1에 나타내었다.Charge and discharge characteristics and ICP analysis of the negative electrode active material prepared from the negative electrode waste material was carried out, the results are shown in Table 1 below.

구분division 실시예1Example 1 실시예2Example 2 비교예Comparative example 조성(중량부)Composition (part by weight) 바나듐vanadium 14.914.9 15.315.3 15.0415.04 지르코늄zirconium 27.527.5 27.827.8 26.9526.95 니켈nickel 27.527.5 27.127.1 27.9527.95 크롬chrome 3.23.2 44 4.274.27 코발트cobalt 6.66.6 6.86.8 6.776.77 망간manganese 6.76.7 7.67.6 7.227.22 티타늄titanium 12.112.1 12.412.4 11.7911.79 불순물impurities 나머지Remainder 나머지Remainder 나머지Remainder 방전 용량(mAh/g)Discharge Capacity (mAh / g) 334.5334.5 333.3333.3 329.9329.9

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 Ni-MH 전지의 음극제조 공정시 발생하는 타발칩, 합금 분말 및 불량 극판 등의 폐자재를 재활용 공정을 거쳐 재생된 음극 활물질은 음극으로서의 충·방전 특성이 우수하여 음극 제작시 원가절감에 효과적이고, 폐자재에 의한 환경 오염을 막을 수 있다.As described in detail above, the negative electrode active material regenerated through recycling of waste materials such as punching chip, alloy powder, and defective electrode plate generated during the negative electrode manufacturing process of the Ni-MH battery according to the present invention has a charge / discharge characteristic as a negative electrode. It is excellent in cost reduction at the time of cathode production, and can prevent environmental pollution by waste materials.

Claims (3)

Ni-MH 전지의 음극 제조공정 시 발생되는 타발칩, 합금 분말 및 불량극판의 폐자재를 재생함에 있어서, 상기 폐자재를 수거하여 바나듐, 티타늄, 지르코늄, 크롬, 코발트 및 방간의 합금 원소를 첨가시켜 음극 활물질을 재생하는 Ni-MH 전지의 음극 폐자재 재생 방법.In regenerating waste materials of punching chips, alloy powders and bad electrode plates generated during the negative electrode manufacturing process of Ni-MH batteries, the waste materials are collected and alloying elements of vanadium, titanium, zirconium, chromium, cobalt and bang are added. A negative electrode waste material regeneration method of a Ni-MH battery for regenerating a negative electrode active material. 제 1 항에 있어서, 상기 합금 원소의 첨가는 타발칩 100 중량부에 대하여 바나듐 20 ∼ 25 중량부, 티타늄 10 ∼ 20 중량부, 지르코늄 30 ∼ 45 중량부, 니켈 10 중량부 미만, 크롬 5 ∼ 8 중량부, 코발트 5 ∼ 15 중량부 및 망간 5 ∼ 15 중량부가 함유되는 것임을 특징으로 하는 전기 자동차용 Ni-MH 전지의 음극 폐자재 재생 방법.The method of claim 1, wherein the addition of the alloying element is based on 100 parts by weight of vanadium 20 to 25 parts by weight, titanium 10 to 20 parts by weight, zirconium 30 to 45 parts by weight, less than 10 parts by weight of nickel, chromium 5 to 8 A part by weight, 5 to 15 parts by weight of cobalt and 5 to 15 parts by weight of manganese are contained. 제 1 항에 있어서, 상기 합금 원소의 첨가는 합금 분말의 경우 단위 g당 바나듐 10 ∼ 20 중량부, 티타늄 5 ∼ 20 중량부, 지르코늄 20 ∼ 30 중량부, 니켈 20 ∼ 35 중량부, 크롬 1 ∼ 10 중량부, 코발트 1 ∼ 10 중량부 및 망간 1 ∼ 10 중량부가 함유되는 것임을 특징으로 하는 전기 자동차용 Ni-MH 전지의 음극 폐자재 재생 방법.The method of claim 1, wherein the addition of the alloying element in the case of alloy powder 10 to 20 parts by weight of vanadium, 5 to 20 parts by weight of titanium, 20 to 30 parts by weight of zirconium, 20 to 35 parts by weight of nickel, chromium 1 to 10 parts by weight, 1 to 10 parts by weight of cobalt and 1 to 10 parts by weight of manganese are contained.
KR1019990068239A 1999-12-31 1999-12-31 A recycling method of waste-anode in Ni-MH cell KR20010060118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990068239A KR20010060118A (en) 1999-12-31 1999-12-31 A recycling method of waste-anode in Ni-MH cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990068239A KR20010060118A (en) 1999-12-31 1999-12-31 A recycling method of waste-anode in Ni-MH cell

Publications (1)

Publication Number Publication Date
KR20010060118A true KR20010060118A (en) 2001-07-06

Family

ID=19635325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990068239A KR20010060118A (en) 1999-12-31 1999-12-31 A recycling method of waste-anode in Ni-MH cell

Country Status (1)

Country Link
KR (1) KR20010060118A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115752A (en) * 1994-10-13 1996-05-07 Mitsui Mining & Smelting Co Ltd Method for recovering effective component from nickel-hydrogen storage alloy secondary battery
JPH10284050A (en) * 1997-04-09 1998-10-23 Asahi Chem Ind Co Ltd Electrode used for nonaqueous secondary battery and manufacture thereof
JPH1154158A (en) * 1997-07-31 1999-02-26 Yuasa Corp Recycling method for nickel electrode of alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115752A (en) * 1994-10-13 1996-05-07 Mitsui Mining & Smelting Co Ltd Method for recovering effective component from nickel-hydrogen storage alloy secondary battery
JPH10284050A (en) * 1997-04-09 1998-10-23 Asahi Chem Ind Co Ltd Electrode used for nonaqueous secondary battery and manufacture thereof
JPH1154158A (en) * 1997-07-31 1999-02-26 Yuasa Corp Recycling method for nickel electrode of alkaline storage battery

Similar Documents

Publication Publication Date Title
EP3956485B1 (en) Process for the preparation of precursor compounds for lithium battery cathodes
CN110719963B (en) Treatment method of lithium ion battery waste
CN106159367A (en) The recovery method of lithium metal battery negative plate
KR20070046990A (en) A valuable material recovery method of a scrapped lithium ion battery
Dobó et al. A review on recycling of spent lithium-ion batteries
US11646460B2 (en) Method for recycling positive plate of lithium-ion battery
KR102452645B1 (en) A Recycling Method for Lithium Ion Battery using Dry Process
KR20210145454A (en) Reuse method of active material of positive electrode scrap
KR20010060118A (en) A recycling method of waste-anode in Ni-MH cell
KR102452641B1 (en) A Recycling Method for Lithium Ion Battery using Wet Process
KR102565372B1 (en) System for Recovering Valuable Metals from Wasted Batteries
US20230099073A1 (en) Method of selectively removing aluminum from waste electrode and a method of removing metal components from the waste electrode using the method
KR20230039299A (en) Method for rcycling cathode active material and rycycled cathode active material
KR102367354B1 (en) Method for purifying waste lithium phosphate and method for manufacturing lithium iron phosphate comprising the same
KR100534889B1 (en) Nagative pole recycling method for Ni-MH battery
US20240097228A1 (en) Direct recycling and recovery method of cathode materials from spent lithium ion batteries
JPH06340930A (en) Method for recovering valuable metal from nickel-hydrogen secondary battery
JP7006739B1 (en) Alloy powder and its manufacturing method, and recovery method of valuable metal
KR102554465B1 (en) Valuable metal recovery alloy, valuable metal recovery composition, and method of recovering valuable metal
CN112680592B (en) Pretreatment method for Ni/Co recovery
KR20030024430A (en) High-temperature Treatment to recover Valuable Metals from Spent Lithium Ion Batteries
WO2024048248A1 (en) Method for recovering valuable metals
WO2023286387A1 (en) Production method for valuable metals
JP3614987B2 (en) Method for reducing oxygen in hydrogen storage alloys
Zheng et al. A Review of Cathode and Electrolyte Recovery from Spent Lithium-Ion Batteries: Recent technologies, processes and policies

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application