JPS62176052A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS62176052A
JPS62176052A JP61015766A JP1576686A JPS62176052A JP S62176052 A JPS62176052 A JP S62176052A JP 61015766 A JP61015766 A JP 61015766A JP 1576686 A JP1576686 A JP 1576686A JP S62176052 A JPS62176052 A JP S62176052A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
active material
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015766A
Other languages
Japanese (ja)
Other versions
JPH0622123B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61015766A priority Critical patent/JPH0622123B2/en
Publication of JPS62176052A publication Critical patent/JPS62176052A/en
Publication of JPH0622123B2 publication Critical patent/JPH0622123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the evolution of hydrogen gas and to improve discharge performance by using a zinc alloy containing a specified amount of Co and Ga, and a specified total amount of at least one selected from In, Pb, and Cd as a negative active material. CONSTITUTION:0.005-0.5wt% each of Co and Ga, and 0.005-0.5wt% at least one selected from In, Pb, and Cd are added to melted pure zinc to obtain a zinc alloy. The zinc alloy is powdered by using Ar gas. A specified amount of Hg is added to the Zinc alloy powder in a KOH solution to obtain amalgamated zinc alloy powder. This powder is used to form an alkaline manganese battery comprising a positive can 1, a positive electrode 2, a negative electrode 3, a separator 4, a sealing member 5, and a negative current collector 7 and others. The zinc alkaline battery having the negative active material whose discharge performance is high and hydrogen gas evolution is retarded is spit of reduced mercury content can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、亜鉛アルカリ電池に関し、詳しくはコバルト
とガリウムと、更にインジウム、鉛、カドミウムより選
ばれる1種以上を特定範囲で含有した亜鉛合金をそのま
ま、もしくは汞化して負極活物質として用いた亜鉛アル
カリ電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a zinc-alkaline battery, and more specifically, a zinc alloy containing cobalt, gallium, and one or more selected from indium, lead, and cadmium within a specific range. This invention relates to a zinc-alkaline battery that uses Zinc as a negative electrode active material either as it is or after it has been converted into a hydrogen acetate.

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を京閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、京間が完全なほど爆発苫の危険が伴な
う。
[Prior Art] In alkaline batteries using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be closed. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more the battery is completely drained, the greater the risk of an explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は3〜10
重量%程度の多聞の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってぎた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active materials of alkaline batteries commercially available today are 3 to 10
They contain a large amount of mercury, on the order of % by weight, and as a social need, there have been strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは亜鉛に鉛とインジウムを添加した亜鉛合金粉
末(特開昭58−181266号公報)等がある。
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there are zinc alloy powders in which lead is added to zinc, or zinc alloy powders in which lead and indium are added to zinc (Japanese Unexamined Patent Publication No. 181266/1983).

[発明が解決しようとする問題点] しかしながら、上記提案の亜鉛合金粉末はある程度のガ
ス発生抑制効果を奏するが、水銀含有逍を3%未満に低
減することについては、未だ満足できるレベルに達して
いない。
[Problems to be solved by the invention] However, although the zinc alloy powder proposed above has a certain degree of gas generation suppressing effect, it has not yet reached a satisfactory level in reducing the mercury content to less than 3%. do not have.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ1qられて
いない。
As described above, a battery that reduces hydrogen gas generation while maintaining a high level of discharge performance, which is battery performance, while using a zinc alloy powder as a negative electrode active material, has not yet been developed.

本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
In view of the current situation, an object of the present invention is to provide a zinc-alkaline battery using a negative electrode active material that significantly reduces the content of mercury, suppresses hydrogen gas generation, and maintains discharge performance at a high level. do.

[問題点を解決するための手段] 本発明者らは、この目的に沿って鋭意研究の結果、亜鉛
を主成分とする負極活物質において、コバルトとガリウ
ムと、更にインジウム、鉛、カドミウムより選ばれる 
1種以上を特定範囲の暦添加することにより、これら添
加元素の相乗的な効果によって、従来の低汞化した亜鉛
合金粉末よりも更に水系ガス発生量を低下させ、しかも
放電性能に層れた亜鉛アルカリ電池が得られることを見
出し本発明に到達した。
[Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors have found that a negative electrode active material whose main component is zinc, selected from cobalt and gallium, as well as indium, lead, and cadmium. be able to
By adding one or more elements in a specific range, the synergistic effect of these additive elements reduces the amount of water-based gas generated even more than the conventional low-strength zinc alloy powder, and further improves the discharge performance. The inventors have discovered that a zinc-alkaline battery can be obtained and have arrived at the present invention.

すなわら本発明は、コバルトをo、oos〜0.5重量
%、ガリウムをo、oos〜0.5重囲%、インジウム
、鉛、カドミウムより選ばれる1種以上の合計量を0.
005〜0.5重W%含有する亜鉛合金を負極活物質と
して用いたことを特徴とする亜鉛アルカリ電池にある。
That is, in the present invention, the total amount of cobalt is o, oos ~ 0.5% by weight, gallium is o, oos ~ 0.5% by weight, and the total amount of one or more selected from indium, lead, and cadmium is 0.5% by weight.
The present invention provides a zinc alkaline battery characterized in that a zinc alloy containing 0.005 to 0.5% by weight is used as a negative electrode active material.

この負極活物質に用いられる亜鉛合金のコバルトの含有
率は0.005〜0.5重量%、ガリウムの含有率は0
.005〜0.5重Φ%、インジウム、鉛、カドミウム
より選ばれる1種以上の含有率はo、oos〜0.5重
量%と少ωで添加効果が発揮される。それぞれの添加元
素の含有率がそれぞれ下限未満では本発明の効果が得ら
れず、上限を越えると、元素添加の逆効果から自己放電
が進み、ガス発生抑制および放電性能にとって良好な結
果が得られない。
The cobalt content of the zinc alloy used in this negative electrode active material is 0.005 to 0.5% by weight, and the gallium content is 0.
.. The content of one or more selected from indium, lead, and cadmium is as low as o, oos to 0.5% by weight, and the effect of addition is exhibited. If the content of each added element is less than the lower limit, the effect of the present invention cannot be obtained, and if it exceeds the upper limit, self-discharge progresses due to the opposite effect of element addition, and good results are obtained for suppressing gas generation and discharge performance. do not have.

上記亜鉛合金は、そのまま負極活物質として用いるか、
亜鉛合金を汞化した後に負極活物質として用いる。汞化
する場合の水銀含有率は、従来の負渉活物質の水銀含有
率よりも少ない母、すなわち3.0重M%未満でも耐食
性が大きい。また、より汞化率を低くし水銀含有率を低
くして、低公害性を考慮した 1.5重酊%以下として
も十分耐食性が確保できる。更に、1.0重量%萌後ま
たはそれ以下の少洛であってもガス発生を抑制すること
が可能である。特に、排気機構を備えた空気電池や水素
吸収礪構を備えた亜鉛アルカリ電池等においては、水素
ガスの発生許容量は比較的大きいので、このような電池
に本発明を適用する場合は、1.0重M%以下の低水化
率または無汞化の亜鉛合金を負極活物質として使用する
ことも可能である。
The above zinc alloy can be used as a negative electrode active material, or
Zinc alloy is used as a negative electrode active material after being converted into a metal. Even if the mercury content in the case of corrosion is lower than the mercury content of conventional negative active materials, that is, less than 3.0% by weight, the corrosion resistance is high. Further, by lowering the mercury content by lowering the mercury content, sufficient corrosion resistance can be ensured even if the mercury content is 1.5% or less, taking into consideration low pollution. Furthermore, it is possible to suppress gas generation even if the content is 1.0% by weight or less. In particular, in air batteries equipped with an exhaust mechanism or zinc-alkaline batteries equipped with a hydrogen absorption structure, the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. It is also possible to use a zinc alloy with a low hydration rate of .0% by weight or less or no hydration as the negative electrode active material.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られるー。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

[作 用] これら各元素の作用効果は十分に解明されていないが、
推定するに、亜鉛合金中に含まれているコバルトはそれ
自体耐食性のある金属であることは知られているが、亜
鉛と溶体化した場合にも局部腐食反応の抑制に役立って
いると考えられる。
[Function] Although the effects of each of these elements are not fully elucidated,
It is presumed that cobalt contained in zinc alloys is known to be a corrosion-resistant metal in itself, but it is also thought to help suppress local corrosion reactions when it is solutionized with zinc. .

また、ガリウム、インジウム、鉛、カドミウムは水素過
電圧を高める作用、あるいはアルカリ電解液中での亜鉛
の腐食を抑制する作用を有すると考えられる。
Further, gallium, indium, lead, and cadmium are thought to have the effect of increasing hydrogen overvoltage or suppressing corrosion of zinc in an alkaline electrolyte.

本発明は、これら各作用の相乗効果により、耐食性、放
電性能ともに層れた亜鉛合金が1qられたものである。
In the present invention, a zinc alloy layer with corrosion resistance and discharge performance is improved due to the synergistic effect of each of these functions.

[実施例の説明] 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
[Description of Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実711 i列1〜18および比較例1〜9純度99.
り97%以上の亜鉛地金を約500°Cで溶融し、これ
に第1表に示すごとくコバルト、ガリウム、インジウム
の含有率がそれぞれ0.05重量%となるように添加し
て亜鉛合金を作成し、これを高圧アルゴンガス(噴出圧
5Kg / cti )を使って粉体化した。次に水酸
化カリウム10%のアルカリ性溶液中にて上記粉末に 
1.0重量%になるように水銀を添加して、汞化処理を
行ない汞化亜鉛合金粉末(実施例1)を1!?た。
Fruit 711 i rows 1 to 18 and comparative examples 1 to 9 purity 99.
A zinc alloy containing 97% or more of zinc is melted at approximately 500°C, and cobalt, gallium, and indium are added to the melt at a content of 0.05% by weight each as shown in Table 1 to form a zinc alloy. This was then pulverized using high-pressure argon gas (ejection pressure 5 kg/cti). Next, add the above powder to an alkaline solution of 10% potassium hydroxide.
Adding mercury to a concentration of 1.0% by weight, and carrying out a hydration treatment, the oxidation zinc alloy powder (Example 1) was reduced to 1.0% by weight. ? Ta.

また、第1表に示ずような組成でそれぞれ亜鉛合金を作
成し、これを前記と同様な方法で粉体化し、汞化処理を
行なって水銀含有率が 1.0重ω%の亜鉛合金粉末(
実茄例2〜18Jよび比較例1〜9)を得た。
In addition, zinc alloys were prepared with the compositions shown in Table 1, which were pulverized in the same manner as described above, and subjected to a filtration treatment to produce zinc alloys with a mercury content of 1.0w%. Powder (
Eggplant examples 2 to 18J and comparative examples 1 to 9) were obtained.

このようにしてiqられた汞化亜鉛合金粉末を使って水
素ガス発生試験を行ない、その結果を第1表に示す。
A hydrogen gas generation test was conducted using the zinc chloride alloy powder thus prepared, and the results are shown in Table 1.

なお、ガス発生試験は、電解液として濃度40重量%の
水酸化カリウム水溶液に酸化亜鉛を飽和さぜたものを5
ml用い、亜鉛合金粉末を10 (l用いて45℃で5
0日間のガス発生FA <i/’(] )を測定した。
In addition, in the gas generation test, an aqueous solution of potassium hydroxide with a concentration of 40% by weight and a saturated solution of zinc oxide were used as the electrolyte.
Using 10 ml of zinc alloy powder (using 5 ml at 45°C)
Gas generation FA <i/'(]) for 0 days was measured.

また、これらの亜fi1合金粉末を負極活物質どして第
1図に示すアルカリマンガン電池を用いて重油性能を計
画した。第1図のアルカリマンガン電池は、正極缶1、
正極2、負極3、セパレーター4、封口体5、負極底板
6、負極集電体7、キャップ8、熱収縮性樹脂チューブ
9、絶縁リング10゜11、外装缶12で構成されてい
る。このアルカリマンガン電池を用いて放電負荷4Ω、
20℃の放電条件により終止電圧0.9Vまでの放電持
続時間を測定し、従来の負極活物質を用いた後)ホする
比較例10の測定値を100とした指数で示した。結果
を第1表に示す。
In addition, heavy oil performance was planned using the alkaline manganese battery shown in FIG. 1 using these subfi1 alloy powders as a negative electrode active material. The alkaline manganese battery shown in Figure 1 consists of a positive electrode can 1,
It is composed of a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7, a cap 8, a heat-shrinkable resin tube 9, an insulating ring 10° 11, and an outer can 12. Using this alkaline manganese battery, the discharge load is 4Ω,
The discharge duration up to the final voltage of 0.9 V was measured under the discharge condition of 20° C., and expressed as an index with the measured value of Comparative Example 10 (after using a conventional negative electrode active material) as 100. The results are shown in Table 1.

比較例10 実施例1と同様の方法で亜鉛に水銀を5.01四%添加
した従来より用いられている汞化亜鉛合金粉末(比較例
10)を(qた。これを実施例1と同様の方法で水素ガ
ス発生試験と電池性能試験を行ない、その結果を第1表
に示した。
Comparative Example 10 A conventionally used zinc chloride alloy powder (Comparative Example 10) in which 5.014% of mercury was added to zinc was prepared in the same manner as in Example 1. A hydrogen gas generation test and a battery performance test were conducted using the method described above, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛にコバルトとガリウムと
、更にインジウム、鉛、カドミウムより選ばれる1種以
上を特定品添加して汞化させた汞化亜鉛合金粉末を負極
活物質に用いた実施例1〜18は、比較例1〜つや、更
には亜鉛に水銀のみを添加した従来より用いられている
汞化亜鉛合金粉末を0極活物質に用いた比較例10に比
べて、水素ガス発生抑制効果が大きく、放電性能も優れ
ていることがわかる。
As shown in Table 1, zinc oxide alloy powder, which is made by adding cobalt, gallium, and one or more selected from indium, lead, and cadmium to zinc and turning it into oxide, was used as the negative electrode active material. Examples 1 to 18 show that hydrogen gas generation is higher than Comparative Example 1 to Comparative Example 10, in which a conventionally used zinc chloride alloy powder in which only mercury is added to zinc is used as the zero electrode active material. It can be seen that the suppression effect is large and the discharge performance is also excellent.

[発明の効果] 以上説明のごとく、コバルトとガリウムと、更にインジ
ウム、鉛、カドミウムより選ばれる1種以上を特定範囲
で含有した亜鉛合金をそのまま、もしくは汞化して負極
活物質として用いた本発明の亜鉛アルカリ電池は、水素
ガス発生率を抑制しつつ、電池性能を向上させることが
可能であり、また水銀が低含有率もしくは含有しないこ
とから、社会的ニーズにも治ったものである。従って、
本発明の亜鉛アルカリ電池は広範な用途に使用可能 ゛
である。
[Effects of the Invention] As explained above, the present invention uses a zinc alloy containing cobalt, gallium, and one or more selected from indium, lead, and cadmium in a specific range as a negative electrode active material, either as it is or after being made into a liquid. Zinc-alkaline batteries can improve battery performance while suppressing the hydrogen gas generation rate, and also meet social needs because they contain low or no mercury. Therefore,
The zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1:正極缶、  2:正(潟、  3:負(i14:セ
パレーター、5:封口体、6:負極底板、7:負極集電
体、8;キャップ、 9:熱収縮性樹脂チューブ、 10.11:絶縁リング、12:外装缶。
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive (lagoon), 3: negative (i14: separator, 5: sealing body, 6: negative electrode bottom plate, 7: negative electrode current collector, 8: cap, 9: heat-shrinkable resin tube, 10. 11: Insulation ring, 12: Exterior can.

Claims (1)

【特許請求の範囲】 1、コバルトを0.005〜0.5重量%、ガリウムを
0.005〜0.5重量%、インジウム、鉛、カドミウ
ムより選ばれる1種以上の合計量を0.005〜0.5
重量%含有する亜鉛合金を負極活物質として用いたこと
を特徴とする亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.005 to 0.5% by weight of cobalt, 0.005 to 0.5% by weight of gallium, and a total amount of one or more selected from indium, lead, and cadmium of 0.005% by weight. ~0.5
A zinc-alkaline battery characterized by using a zinc alloy containing % by weight as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP61015766A 1986-01-29 1986-01-29 Zinc alkaline battery Expired - Lifetime JPH0622123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015766A JPH0622123B2 (en) 1986-01-29 1986-01-29 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015766A JPH0622123B2 (en) 1986-01-29 1986-01-29 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS62176052A true JPS62176052A (en) 1987-08-01
JPH0622123B2 JPH0622123B2 (en) 1994-03-23

Family

ID=11897917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015766A Expired - Lifetime JPH0622123B2 (en) 1986-01-29 1986-01-29 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622123B2 (en)

Also Published As

Publication number Publication date
JPH0622123B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPS6240162A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPH0371738B2 (en)
JPH0418671B2 (en)
JPS62176052A (en) Zinc alkaline battery
JPS62176053A (en) Zinc alkaline battery
JPH0418674B2 (en)
JPS6240161A (en) Zinc alkaline battery
JPH0371739B2 (en)
JPS62176051A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS62176050A (en) Zinc alkaline battery
JPS62176049A (en) Zinc alkaline battery
JPH0375982B2 (en)
JPS61290652A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61290650A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0418673B2 (en)
JPS6240158A (en) Zinc alkaline battery
JPS61290653A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPH0418672B2 (en)