JPS6177256A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS6177256A
JPS6177256A JP59196738A JP19673884A JPS6177256A JP S6177256 A JPS6177256 A JP S6177256A JP 59196738 A JP59196738 A JP 59196738A JP 19673884 A JP19673884 A JP 19673884A JP S6177256 A JPS6177256 A JP S6177256A
Authority
JP
Japan
Prior art keywords
zinc
active material
indium
negative electrode
zinc alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196738A
Other languages
Japanese (ja)
Inventor
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59196738A priority Critical patent/JPS6177256A/en
Publication of JPS6177256A publication Critical patent/JPS6177256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease mercury content, retard hydrogen gas evolution, but still keep high discharge performance by adding a specified amount of lead, indium, and silver to zinc used as a negative active material. CONSTITUTION:Zinc alloy containing 0.01-0.5wt% lead, 0.01-0.5wt% indium, and 0.01-0.5wt% silver is used as a negative active material as it is or after amalgamation. When amalgamation is made, mercury content after amalgamation is decreased to less than 5wt% which is lower than that of usual negative active material. In an air cell having a gas vent or a zinc alkaline battery having a hydrogen absorption means, zinc alloy having 1.0wt% or less mercury or no mercury can be used preferably as a negative active material, because allowable hydrogen gas evolution volume is relatively large.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくは鉛とインジ
ウムと銀を特定範囲で含有した亜鉛合金をそのまま、も
しくは汞化して電池用負極活物質として用いた亜鉛アル
カリ電池に関する。
[Detailed Description of the Invention] (Field of the Invention) The present invention relates to a zinc-alkaline battery, and more specifically, a zinc alloy containing lead, indium, and silver in a specific range is used as a negative electrode active material for a battery, either as it is or after being made into a liquid. Regarding zinc alkaline batteries.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。゛従って長期保存中に電池内部
のガス圧が高まり、密閉が完全なほど爆発等の危険が伴
なう。
(Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated by corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely sealed the battery is, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜10
重量%程度の多量の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of alkaline batteries commercially available today is 5 to 10
It contains a large amount of mercury, on the order of % by weight, and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは本発明者等による亜鉛に鉛とインジウムを添
加した亜鉛合金粉末(特開昭58−181266号公報
)等がある。しかし、これらの亜鉛合金粉末はある程度
のガス発生抑制効果を奏ザるが、まだ十分とは言えない
。例えば亜鉛に鉛とインジウムを添加した亜鉛合金粉末
についてはこれを水銀含有率1重量%程度の低汞化とし
た場合、ガス発生試験の初期においては非常にガス発生
が抑制されているが、長期間となると次第にガス発生速
度(me / (1・day )が増大する傾向が見ら
れた。
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient. For example, when zinc alloy powder is made by adding lead and indium to zinc and the mercury content is reduced to about 1% by weight, gas generation is extremely suppressed in the early stage of the gas generation test, but over a long period of time. There was a tendency for the gas generation rate (me/(1·day)) to gradually increase over time.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low resistance, reduces the amount of hydrogen gas generated, and maintains the discharge performance, which is the battery performance, at a high level.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、鉛とインジウムと銀とを特
定範囲の量添加することにより、これら添加元素の相乗
的な効果によって、従来の低汞化した亜鉛合金粉末より
も更に水素ガス発生量を低下させ、しかも放電性能に優
れた亜鉛アルカリ電池が得られることを見出し本発明に
到達した。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors found that by adding lead, indium, and silver in specific range amounts to a negative electrode active material made of zinc, the synergistic effects of these additive elements The present inventors have discovered that, due to these effects, it is possible to obtain a zinc-alkaline battery that further reduces the amount of hydrogen gas generated than conventional zinc alloy powders with reduced flux and has excellent discharge performance, and has arrived at the present invention.

(発明の構成) すなわち本発明は、鉛を0.01〜0.5重量%、イン
ジウムを0.01〜0.5重量%、銀を0.01〜0.
5重量%含有する亜鉛合金を負極活物質として用いたこ
とを特徴とする亜鉛アルカリ電池にある。
(Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of lead, 0.01 to 0.5% by weight of indium, and 0.01 to 0.0% of silver.
A zinc-alkaline battery is characterized in that a zinc alloy containing 5% by weight is used as a negative electrode active material.

本発明において、鉛とインジウムと銀を特定量添加した
亜鉛合金は、そのまま負極活物質として用いるか、亜鉛
合金を汞化した後に負極活物質として用いる。汞化する
場合の水銀含有率は、従来の負極活物質の水銀含有率よ
りも少ない吊、すなわち5.0重量%未満であるが、よ
り汞化率を低くし、低公害性を考慮すると3.0重量%
以下である。
In the present invention, a zinc alloy to which specific amounts of lead, indium, and silver are added is used as a negative electrode active material as it is, or is used as a negative electrode active material after the zinc alloy is converted into a liquid. The mercury content in the case of oxidation is lower than that of conventional negative electrode active materials, that is, less than 5.0% by weight, but if the mercury content is lower than that of conventional negative electrode active materials, and considering low pollution properties, .0% by weight
It is as follows.

また、1.0重量%前後またはそれ以下の少量であって
もガス発生を抑制することが可能である。特に、排気機
構を備えた空気電池や水素吸収機構を備えた亜鉛アルカ
リ電池等においては、水素ガスの発生許容量は比較的大
きいので、このような電池に本発明を適用する場合は、
1.0重量%以下の低汞化率または無汞化の亜鉛合金が
負極活物質として好ましく用いられる。
Further, even if the content is as small as around 1.0% by weight or less, it is possible to suppress gas generation. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries,
A zinc alloy with a low or non-grading rate of 1.0% by weight or less is preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金の鉛とインジウム
と銀の含有率はそれぞれ、0.01〜0.5重量%と少
量で添加効果が発揮される。鉛、インジウムおよび銀の
含有率が0.01重量%未満では本発明の効果が得られ
ず、0.5重量%を越えると不純物を含有した亜鉛のよ
うに、自己放電が進み、ガス発生抑制および放電性能に
とって良好な結果が得られない。ここに用いられる銀の
作用効果については明らかでないが、従来提案されてい
る亜鉛に鉛とインジウムを添加した亜鉛合金を負極活物
質に用いたものと比較してそのガス発生量は1/2以下
に抑制されることが判明した。
The content of lead, indium, and silver in the zinc alloy used in this negative electrode active material is as small as 0.01 to 0.5% by weight, respectively, and the effect of addition is exhibited. If the content of lead, indium, and silver is less than 0.01% by weight, the effect of the present invention cannot be obtained, and if it exceeds 0.5% by weight, self-discharge will progress like zinc containing impurities and gas generation will be suppressed. and good results for discharge performance cannot be obtained. Although the effects of silver used here are not clear, the amount of gas generated is less than half that of the conventionally proposed zinc alloy in which lead and indium are added to zinc as the negative electrode active material. was found to be suppressed.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

11九上二1 純度99,997%以上の亜鉛地金を約500’Cで溶
融し、これに第1表に示すごとく鉛とインジウムと銀の
含有率がそれぞれ0.05重量%となるように添加して
亜鉛合金を作成し、これを高圧アルゴンガス(噴出圧5
tC’j/c!>を使って粉体化した。次に水酸化カリ
ウム10%のアルカリ性溶液中にて上記粉末に1.0重
量%になるJ:うに水銀を添加して、汞化処理を行ない
亜鉛合金粉末(実施例1)を得た。
119, 21 Zinc ingot with a purity of 99,997% or more is melted at about 500'C, and the contents of lead, indium, and silver are each 0.05% by weight as shown in Table 1. to create a zinc alloy, which is then heated with high-pressure argon gas (ejection pressure 5
tC'j/c! > was used to make powder. Next, 1.0% by weight of J: mercury was added to the powder in an alkaline solution containing 10% potassium hydroxide, and the powder was subjected to a hydrochloric treatment to obtain a zinc alloy powder (Example 1).

また、鉛、インジウム、銀の比率を第1表に示すごとく
、それぞれ、 ■:鉛0.5重量%、インジウム0.5重問%、銀0.
5重世%、 ■:鉛0.01重量%、インジウム0.01車m%、銀
o、oi重量%、 の亜鉛合金を作成し、これを前記と同様な方法で粉体化
し、汞化処理を行なって水銀含有率が1.0重量%の亜
鉛合金粉末(実施例2〜3)を得た。
In addition, the ratios of lead, indium, and silver are shown in Table 1, respectively.
A zinc alloy of 5% by weight, ■: 0.01% by weight of lead, 0.01% by weight of indium, and 0.01% by weight of silver was prepared, and this was pulverized in the same manner as described above. The treatment yielded zinc alloy powders (Examples 2-3) with a mercury content of 1.0% by weight.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重足%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5meを用
い、亜鉛合金粉末を10 (1を用いて45℃で50日
間のガス発生M(mff/(]’)を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In addition, the gas generation test was performed using 5ME, an electrolyte prepared by saturated zinc oxide in a potassium hydroxide aqueous solution with a concentration of 40% by weight, and 10% zinc alloy powder (1) for 50 days at 45°C. The generation M (mff/(]') was measured.

また、これらの亜鉛合金粉末を負極活物質どして第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメヂル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で描成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0,9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例2の測定値を
100どした指数で示した。結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is made up of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a holding plate 7. ing. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
The measured values of Comparative Example 2, which will be described later, using a conventional negative electrode active material are expressed as an index multiplied by 100. The results are shown in Table 1.

比較例1〜2 実施例1と同様の方法で亜鉛に141を0.05重h1
%添加した汞化亜鉛合金粉末(比較例1〉と亜鉛に鉛を
0.05重量%、インジウムを0.05重量%添加した
汞化亜鉛合金粉末(比較例2)を得た。
Comparative Examples 1-2 0.05 weight h1 of 141 was added to zinc in the same manner as in Example 1.
% of lead and indium (Comparative Example 2) were obtained.

これを実施例1と同様の方法で水素ガス発生試験と電池
性能試験を行ない、その結果を第1表に示した。
This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛に鉛とインジウムと銀を
特定量添加して汞化させた汞化亜鉛合金粉末を負極活物
質に用いた実施例1〜3は、亜鉛に鉛を添加した汞化亜
鉛合金粉末を負極活物質に用いた比較例1や亜鉛に鉛と
インジウムを添加した汞化亜鉛合金粉末を負極活物質に
用いた比較例2に比べて、水素ガス発生抑制効果が大き
く、放電性能も優れていることがわかる。
As shown in Table 1, in Examples 1 to 3, the negative electrode active material was a zinc chloride alloy powder obtained by adding specific amounts of lead, indium, and silver to zinc. Compared to Comparative Example 1 in which a zinc chloride alloy powder was used as the negative electrode active material and Comparative Example 2 in which a zinc chloride alloy powder in which lead and indium were added to zinc was used as the negative electrode active material, the effect of suppressing hydrogen gas generation was greater. It can be seen that the discharge performance is also excellent.

(発明の効果) 以上説明のごとく、鉛とインジウムと銀を特定範囲で含
有した亜鉛合金をそのまま、もしくは汞化して負極活物
質として用いた本発明の亜鉛アルカリ電池は、水素ガス
発生率を抑制しつつ、電池性能を向上させることが可能
であり、また水銀が低含有率もしくは含有しないことか
ら、社会的ニーズにも沿ったものである。従って、本発
明の亜鉛アルカリ電池は広範な用途に使用可能である。
(Effects of the invention) As explained above, the zinc-alkaline battery of the present invention, which uses a zinc alloy containing lead, indium, and silver in a specific range as a negative electrode active material either as it is or after it has been converted into a liquid, suppresses the hydrogen gas generation rate. However, it is possible to improve battery performance, and it also meets social needs because it contains low or no mercury. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。 −1n − 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。 特許出願人 三井金属鉱業株式会社 特許出願人 松下電器産業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第 1 図
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. -1n - 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Patent applicant Matsushita Electric Industrial Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Tetsuya Ito Figure 1

Claims (1)

【特許請求の範囲】 1、鉛を0.01〜0.5重量%、インジウムを0.0
1〜0.5重量%、銀を0.01〜0.5重量%含有す
る亜鉛合金を負極活物質として用いたことを特徴とする
亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of lead, 0.0% of indium
A zinc-alkaline battery characterized in that a zinc alloy containing 1 to 0.5% by weight and 0.01 to 0.5% by weight of silver is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP59196738A 1984-09-21 1984-09-21 Zinc alkaline battery Pending JPS6177256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196738A JPS6177256A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196738A JPS6177256A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS6177256A true JPS6177256A (en) 1986-04-19

Family

ID=16362775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196738A Pending JPS6177256A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS6177256A (en)

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0421310B2 (en)
JPH0371738B2 (en)
JPS6177257A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPS6177256A (en) Zinc alkaline battery
JPS62123658A (en) Zinc-alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPS61290655A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61153952A (en) Zinc alkaline storage battery
JPS61290651A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS6240161A (en) Zinc alkaline battery
JPS61290653A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPS6177260A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPH0418673B2 (en)
JPS6240157A (en) Zinc alkaline battery
JPS61290657A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPH0375983B2 (en)
JPS61290650A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery