JPS62123658A - Zinc-alkaline battery - Google Patents

Zinc-alkaline battery

Info

Publication number
JPS62123658A
JPS62123658A JP60262495A JP26249585A JPS62123658A JP S62123658 A JPS62123658 A JP S62123658A JP 60262495 A JP60262495 A JP 60262495A JP 26249585 A JP26249585 A JP 26249585A JP S62123658 A JPS62123658 A JP S62123658A
Authority
JP
Japan
Prior art keywords
weight
aluminum
zinc
negative electrode
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60262495A
Other languages
Japanese (ja)
Other versions
JPH0622122B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60262495A priority Critical patent/JPH0622122B2/en
Publication of JPS62123658A publication Critical patent/JPS62123658A/en
Publication of JPH0622122B2 publication Critical patent/JPH0622122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To aim at improvement in battery performance as checking a generation rate of hydrogen gas especially in high temperature storage for a long time, by using a specific zinc alloy as a negative electrode active material. CONSTITUTION:In this battery, as a negative electrode active material, it uses such a zinc alloy that contains a total amount of 0.005-0.5wt% of more than one kind to be selected from lead, indium, thallium, cadmium, tin, bismuth, gallium and silver, and aluminum of 0.005-0.5wt% and copper of 0.001-0.3wt%. And, this zinc alloy is used as it is or after being gelatinized. When a rate of aluminum content is less than 0.005wt%, an improved effect for discharge capacity is little, and when it exceeds the range of 0.5wt%, a generating quantity of hydrogen gas grows larger, thus it is undesirable. When the rate of copper content is less than 0.001wt%, a preventive effect for intercrystalline corrosion is little, but when exceeding the range of 0.3wt%, it exerts an adverse effect on the discharge capacity. Likewise, it is desirable that the rate of aluminum content is in the range of 0.005-0.2wt%, and when it exceeds the range of 0.2wt%, the content effect is not seen so much.

Description

【発明の詳細な説明】 [発明の分野] 本発明は亜鉛アルカリ電池に関し、詳1ノくけ鉛、イン
ジウム、タリウム、カドミウム、スズ、ビスマス、ガリ
ウム、銀より選ばれる1種以上とアルミニウムおよび銅
を特定の範囲で含有した亜鉛合金を汞化もしくは汞化す
ることなく負極活物質として用いた亜鉛アルカリ電池に
関する。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a zinc-alkaline battery, in particular one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, and silver, and aluminum and copper. The present invention relates to a zinc-alkaline battery using a zinc alloy containing a specific range as a negative electrode active material without being converted into a liquid or without forming into a liquid.

[発明の背景] 亜鉛を負極活物質として用いたアルカリ電池においては
、水酸化カリウム水溶液等の強アルカリ性電解液を用い
るため、電池を密閉しなければならない。この電池の密
閉は電池の小型化を図る際には特に重要であるが、同時
に電池保存中の亜鉛の腐食により発生する水素ガスを閉
じ込めることになる。従って長期保存中に電池内部のガ
ス圧が高まり、密閉が完全なほど爆発等の危険が伴なう
[Background of the Invention] In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀添加による亜鉛の水素過電圧を高めた汞化亜鉛
粉末を負極活物質として用いることが専ら行なわれてい
る。このため、市販されているアルカリ電池の負極活物
質は3.0〜10重量%重量%水銀が含まれているため
、打金的ニーズとして、より低水銀のもの、あるいは無
水銀の電池の開発が強く要望されるようになり、種々の
研究がなされている。例えば亜鉛中に鉛、ガリウム、イ
ンジウムなどを添加した合金粉末を用いて耐食性を向上
させ、かつ合金粉末の表向平滑化作用による耐食Hの一
段の111と汞化率を低減化することによる放電性能の
劣化を防止づ−るために、亜鉛より卑な金属であるアル
ミニウム等を添加づることが提案されている。
As a countermeasure, research has been conducted to prevent the corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is used exclusively. For this reason, since the negative electrode active materials of commercially available alkaline batteries contain 3.0 to 10% by weight of mercury, there is a need for the development of lower mercury or mercury-free batteries. There has been a strong demand for this, and various studies have been conducted. For example, the corrosion resistance is improved by using an alloy powder in which lead, gallium, indium, etc. are added to zinc, and the surface smoothing effect of the alloy powder increases the corrosion resistance to 111 and reduces the corrosion rate. In order to prevent performance deterioration, it has been proposed to add aluminum, which is a metal less noble than zinc.

しかしながら、畦鉛にアルミニウムを添加した場合には
、低汞化率にお(Jるhり市竹能並びに耐食性においで
ある稈亀有効であるが、電池の60℃、3〜4ケ月程度
の長期高調保存において、電池内の水素ガス発生が急激
に増加りる欠点を有し−でいる。これは亜鉛にアルミニ
ウムを添加した場合一般に発生する粒間腐食現象に起因
すると考えられる。このようにアルミニウムを添加した
場合の上記欠点を克服した低水化率亜鉛合金を負極活物
質として用いた電池の確立が今後の重要な課題とされて
いる。
However, when aluminum is added to the ridge lead, it is effective in reducing the rate of deterioration (in terms of corrosion resistance and corrosion resistance). During long-term high-temperature storage, hydrogen gas generation within the battery rapidly increases.This is thought to be due to the intergranular corrosion phenomenon that generally occurs when aluminum is added to zinc. An important future challenge is to establish a battery using a low hydration rate zinc alloy as a negative electrode active material, which overcomes the above-mentioned drawbacks when aluminum is added.

[発明の目的] 本発明はかかる現状に鑑み、耐食性、放電性能を劣化さ
せることなく、汞化率を低減化させた負極活物質を用い
た亜鉛アルカリ電池を提供することを目的とする。
[Object of the Invention] In view of the current situation, an object of the present invention is to provide a zinc-alkaline battery using a negative electrode active material that has a reduced rate of corrosion without deteriorating corrosion resistance or discharge performance.

[発明の経緯1 本発明者らは、この目的に沿って鋭意研究の結果、1l
lj鉛を主成分とする負極活物質において、鉛、インジ
ウム、タリウム、カドミウム、スス゛、ビスマス、カリ
ウム、銀より選ばれる1種以上とアルミニウムと銅を特
定量添加すれば、長期高調保存における水素ガス発生量
の急激な増加を防止できると共に、アルミニウムの/i
&電性能の向上効果も陪害されないことを見出し、本発
明を完成した。
[Background of the invention 1 As a result of intensive research in line with this purpose, the inventors have discovered
If one or more selected from lead, indium, thallium, cadmium, soot, bismuth, potassium, and silver, as well as specific amounts of aluminum and copper are added to a negative electrode active material whose main component is lead, hydrogen gas can be maintained during long-term high-temperature storage. In addition to preventing a sudden increase in the amount generated,
& The present invention was completed by discovering that the effect of improving electrical performance was not adversely affected.

[発明の構成] 1なわら本発明は、鉛、インジウム、タリウム、カドミ
ウム、スズ、ビスマス、ガリウム、銀より選ばれる1種
以上を0.005〜0.5重量%、アルミニウムを0.
005〜0.5重量%、銅を0.001〜0.3重量%
含有する亜鉛合金を負極活物質として用いたことを特徴
とする亜鉛アルカリ電池にある。
[Structure of the Invention] 1. The present invention includes 0.005 to 0.5% by weight of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, and silver, and 0.00% by weight of aluminum.
005-0.5% by weight, copper 0.001-0.3% by weight
There is provided a zinc-alkaline battery characterized in that the zinc alloy containing the present invention is used as a negative electrode active material.

本発明において、鉛、インジウム、タリウム、カドミウ
ム、スズ、ヒ゛スマス、ガリウム、銀より選ばれる1種
以上とアルミニウムと銅を特定量感加した亜鉛合金は、
そのまま負極活物質どして用いるか、亜鉛合金を汞化し
た後に負極活物質として用いる。汞化する場合の水銀含
有率は、従来の負極活物質の水銀含有率よりも少ない量
、すなわち3.0重量%未満であるが、より汞化率を低
くし、低公害性を考慮するど1.;)Φ品%以下である
。J、た、1.0重量%前後またはそれ以下の少量であ
ってもガス発生を抑制することが可能である。特に、排
気機構を備えた空気電池や水素吸収機構を備えた亜鉛ア
ルカリ電池等においては、水素ガスの発生許容量は比較
的大きいので、このような電池に本発明を適用する場合
は、1.0重量%以下の低汞化率または無汞化の亜鉛合
金を負極活物質どして使用することが可能である。
In the present invention, the zinc alloy sensitized with one or more selected from lead, indium, thallium, cadmium, tin, ausmuth, gallium, and silver and specific amounts of aluminum and copper is
It can be used as a negative electrode active material as it is, or it can be used as a negative electrode active material after a zinc alloy is made into a starch. The mercury content when it is converted into water is lower than the mercury content of conventional negative electrode active materials, that is, less than 3.0% by weight. 1. ;) Φ product% or less. It is possible to suppress gas generation even with a small amount of about 1.0% by weight or less. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. It is possible to use a zinc alloy with a low or non-grading rate of 0% by weight or less as the negative electrode active material.

この負極活物質に用いられる亜鉛合金の鉛、インジウム
、タリウム、カドミウム、スズ、ビスマス、ガリウム、
銀にり選ばれる1種以上の合h1量の含有率は0.00
5〜0.5重量%、アルミニウムの含有率は0.005
〜0.5重量%、銅の含有率はo、ooi〜0.3重量
%ど少量で添加効果が発揮される。酊)、インジウム、
タリウム、カドミウム、スズ、ビスマス、ガリウム、銀
より選ばれる1種以上の合泪吊の含有率が0.005重
量%未満では耐食性向上に効果がなく、0.5重量%を
越えると放電性能が低下する。また、アルミニウムの含
有率が0.005重量%未満では放電性能の向上効果が
少なく、0.5重量%を越えると水素ガス発生量が大き
くなり好ましくない。銅の含有率が0.001重量%未
満では粒間腐食の防止効果が少なく、0.3重量%を越
えると放電性能に悪影響を及ぼす。
The zinc alloys used in this negative electrode active material include lead, indium, thallium, cadmium, tin, bismuth, gallium,
The content of one or more selected silver pastes is 0.00
5-0.5% by weight, aluminum content is 0.005
The effect of addition is exhibited in small amounts such as ~0.5% by weight and copper content of ~0.3% by weight. intoxication), indium,
If the content of one or more types of thallium selected from thallium, cadmium, tin, bismuth, gallium, and silver is less than 0.005% by weight, it will not be effective in improving corrosion resistance, and if it exceeds 0.5% by weight, the discharge performance will deteriorate. descend. Furthermore, if the aluminum content is less than 0.005% by weight, the effect of improving discharge performance will be small, and if it exceeds 0.5% by weight, the amount of hydrogen gas generated will increase, which is not preferable. If the copper content is less than 0.001% by weight, the effect of preventing intergranular corrosion will be small, and if it exceeds 0.3% by weight, it will adversely affect the discharge performance.

なお、アルミニウムの含有率はo、 oos〜0.2重
量%の範囲が特に好ましく、0.2重量%を越えた場合
にはそれほどの含有効果は見られない。
Note that the content of aluminum is particularly preferably in the range of o, oos to 0.2% by weight, and if it exceeds 0.2% by weight, no significant effect of the inclusion will be seen.

これら各添加元素の作用効果は充分に解明されていない
が、推定するに亜鉛合金中に含まれている鉛、インジウ
ム、タリウム、カドミウム、スズ、ビスマス、ガリウム
、銀は水素過電圧を高める作用あるいはアルカリ電解液
中で水銀との相乗効果により亜鉛の腐食を抑制する作用
を有すると考えられる。一方、アルミニウムには低汞化
においても放電性能を劣化させない作用を有し、銅はア
ルミニウムの存在下で粒間腐食を防止する作用を有する
Although the effects of each of these additive elements have not been fully elucidated, it is presumed that the lead, indium, thallium, cadmium, tin, bismuth, gallium, and silver contained in zinc alloys have the effect of increasing the hydrogen overvoltage or the alkali It is thought that it has the effect of inhibiting zinc corrosion due to a synergistic effect with mercury in the electrolyte. On the other hand, aluminum has the effect of not deteriorating the discharge performance even at low temperatures, and copper has the effect of preventing intergranular corrosion in the presence of aluminum.

なお、亜鉛にアルミニウムが存在Jる場合の^渇長期保
存下にお()る水*万ス発牛組の急i1な増加の原因に
ついて本発明者は粒間腐食によるものと推定しているが
、そのアルミニウムにJ、る粒間腐食問題は金属合金分
野では周知のことである。
In addition, the inventor presumes that the cause of the sudden increase in the amount of water produced during long-term storage when aluminum is present in zinc is due to intergranular corrosion. However, the problem of intergranular corrosion in aluminum is well known in the metal alloy field.

また、粒間腐食の防止に対して銅が添加効果を有する理
由は明白でないが、恐らく金属組織学的なものと推定さ
れる。
Furthermore, although the reason why copper has an additive effect on preventing intergranular corrosion is not clear, it is probably due to metallographic reasons.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることな(、耐食性のよい亜鉛合金が得られた
ものである。
In the present invention, due to the synergistic effect of these respective effects, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を1:成分と覆るアルカリ水溶液を
用い、負極活物質に1−記し/、:df(鉛合金または
汞化した亜鉛合金、正極活物質に二酸化マンガン、酸化
銀、酸素等を用いることによりjqられる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as a 1: component as an electrolyte, and has a negative electrode active material of 1-, :df (lead alloy or oxidized zinc alloy, This can be achieved by using manganese dioxide, silver oxide, oxygen, etc. as the positive electrode active material.

[実施例のd1明] 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
[d1 Light of Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜7および比較10二二[ 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとく鉛、インジウム、アルミ
ニウムをそれぞれ0.05重石%、0.02重間%、0
.05重量%添加して亜鉛合金を作成し、これを高几ア
ルゴンガス(噴出圧5 kg / at )を使って5
0〜150メツシユの粒度範囲に篩別し、粉体化した。
Examples 1 to 7 and Comparison 1022 [Zinc ingot with a purity of 99.997% or more is melted at about 500°C, and as shown in Table 1, 0.05% lead, indium, and aluminum are each added to it. 0.02 weight%, 0
.. 05% by weight was added to create a zinc alloy, and this was heated using high-temperature argon gas (ejection pressure 5 kg/at).
It was sieved to a particle size range of 0 to 150 mesh and powdered.

次に水酸化カリウム10%のアルカリ性溶液中に、上記
粉末を投入し、25℃で10分間予備撹拌を行ない、汞
化率が1.0重量%になるように水銀を細孔より徐々に
滴下しながら25℃で60分間撹拌した。次いで水洗を
行ない45℃で一昼夜乾燥を行なって亜鉛合金粉末(比
較例1)を得た。・また、第1表に示すごとく、下記の
組成でそれぞれ、 1):鉛0.05重量%、インジウム0.02重量%、
アルミニウム0.05重量%、銅0.0005重量=7
− %(比較例2) 2):鉛0.05重量%、インジウb 0902小絹%
、アルミニウム0.05 市1%、銅0.001@損%
(実施例1) 3〉:鉛0.05重量%、インジウム0.02重量%、
アルミニウム0.05重量%、銅0.01重量%(実施
例2) 4):鉛0.05重量%、インジウム0.02重量%、
アルミニウム0.05重量%、銅0.3重量%(実施例
3) 5):鉛0.05重間%、インジウム0.02重量%、
アルミニウム0.05重量%、銅0.5重間%(比較例
3) 6):鉛0.05Φ石%、インジウム0.02重品%、
アルミニウム0.05巾U%、銅1.0重−%(比較例
4) 7):インジウム0.1重量%、アルミニウム0.2重
石%(比較例5) 8):インジウム0.1重量%、アルミニウム0.2重
量%、銅0.1重量%(実施例4)9) : 1) 0
.1tliM%、イ>シウム0.02 !i1%、ガリ
ウム0.1重量%、アルミニウム0.05重量%(比較
例6) 10):鉛0.1重量%、インジウム0.02重重閤、
ガリウム0.1重量%、アルミニウム0.05重量%、
銅0.05 im%(実施例5) 11):鉛o、i重量%、インジウム0.02重量%、
タリウム0.02重量%、カドミウム0.02重−%、
ガリウム0.01重量%、銀0,05重量%、アルミニ
ウム0.05重量%(比較例7) 12):鉛0,1市fi1%、イ>シ’yム0,02 
i[1i5t%、タリウム0.02重量%、カドミウム
0.02重量%、ガリウム0.01重量%、銀0.05
重量%、アルミニウム0.05重量%、銅0.05重量
%(実施例6)13):鉛0.02重量%、インジウム
0.02重量%、タリウム0.02重石%、カドミウム
0.02重間%、スズ0.01重量%、ビスマス0.0
1重量%、ガリウ740.01重量%、銀0.02重崩
%重量ルミニウム0.05重重重(比較例8) 14):鉛0.02重量%、インジウム0.02重量%
、タリウム0.02小吊%、カドミウム0.02小量%
、スズ0.01重間%、ビスマス0.01車編%、ガリ
ウム0.(11重量%、銀0.02重串%、アルミニウ
ム0.05重量%、銅0,05重娼%(実施例7)から
なる亜鉛合金をそれぞれ作成し、これを前記と同様な方
法で粉体化し、汞化処理を行なって水銀含有率が1.0
重量%の亜鉛合金粉末(実施例1〜7および比較例2〜
8)を得た。
Next, the above powder was put into an alkaline solution of 10% potassium hydroxide, prestirred for 10 minutes at 25°C, and mercury was gradually added dropwise through the pores so that the aqueous conversion rate was 1.0% by weight. The mixture was stirred at 25° C. for 60 minutes. Next, it was washed with water and dried at 45° C. for a day and night to obtain a zinc alloy powder (Comparative Example 1). - Also, as shown in Table 1, each of the following compositions: 1): 0.05% by weight of lead, 0.02% by weight of indium,
Aluminum 0.05% by weight, copper 0.0005% by weight = 7
-% (Comparative Example 2) 2): Lead 0.05% by weight, Injiu B 0902 small silk%
, Aluminum 0.05 City 1%, Copper 0.001@Loss%
(Example 1) 3>: 0.05% by weight of lead, 0.02% by weight of indium,
0.05% by weight of aluminum, 0.01% by weight of copper (Example 2) 4): 0.05% by weight of lead, 0.02% by weight of indium,
0.05% by weight of aluminum, 0.3% by weight of copper (Example 3) 5): 0.05% by weight of lead, 0.02% by weight of indium,
0.05% aluminum, 0.5% copper (comparative example 3) 6): 0.05% lead, 0.02% indium,
Aluminum 0.05 width U%, copper 1.0 weight% (Comparative Example 4) 7): Indium 0.1 weight%, aluminum 0.2 weight% (Comparative Example 5) 8): Indium 0.1 weight% , aluminum 0.2% by weight, copper 0.1% by weight (Example 4) 9): 1) 0
.. 1tliM%, I>Sium 0.02! i1%, gallium 0.1% by weight, aluminum 0.05% by weight (Comparative Example 6) 10): Lead 0.1% by weight, indium 0.02% by weight,
Gallium 0.1% by weight, aluminum 0.05% by weight,
Copper 0.05 im% (Example 5) 11): Lead o, i wt%, indium 0.02 wt%,
Thallium 0.02% by weight, cadmium 0.02% by weight,
Gallium 0.01% by weight, Silver 0.05% by weight, Aluminum 0.05% by weight (Comparative Example 7) 12): Lead 0.1 City fi 1%, I>Sim 0.02
i[1i5t%, thallium 0.02% by weight, cadmium 0.02% by weight, gallium 0.01% by weight, silver 0.05
Weight %, aluminum 0.05 weight %, copper 0.05 weight % (Example 6) 13): lead 0.02 weight %, indium 0.02 weight %, thallium 0.02 weight %, cadmium 0.02 weight % %, tin 0.01% by weight, bismuth 0.0
1% by weight, 740.01% by weight of Galium, 0.02% by weight of silver, 0.05% by weight of aluminum (Comparative Example 8) 14): 0.02% by weight of lead, 0.02% by weight of indium
, 0.02% thallium, 0.02% cadmium
, 0.01% tin, 0.01% bismuth, 0.0% gallium. (11% by weight, 0.02% by weight of silver, 0.05% by weight of aluminum, and 0.05% by weight of copper (Example 7), and powdered in the same manner as above. mercury content is 1.0 after
% by weight of zinc alloy powder (Examples 1-7 and Comparative Examples 2-
8) was obtained.

このようにして得られたり1鉛合金粉末を使−】で水素
ガス発生試験を行ない、その結果を第1表に示す。なお
、ガス発生試験は、電解液として濃度40重量%の水酸
化カリウム水溶液に酸化亜鉛を飽和させたものを5x1
用い、亜鉛合金粉末をHI 0JIIいて60℃で30
日問および60日間のガス発生fm(xl/a )を測
定した。
A hydrogen gas generation test was conducted using the lead alloy powder thus obtained and the results are shown in Table 1. In addition, in the gas generation test, a potassium hydroxide aqueous solution with a concentration of 40% by weight was saturated with zinc oxide as an electrolyte.
Zinc alloy powder was heated to HI 0JII at 60℃ for 30 minutes.
Gas production fm (xl/a ) was measured daily and for 60 days.

また、これらの亜鉛合金粉末を負極活物質どして第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、負極3、セパレーター4、封口体5、負極底板6、
負極集電体7、キャップ8、熱収縮性樹脂チューブ9、
絶縁リング10゜11、外装缶12で構成されている。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 includes a positive electrode can 1, a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6,
negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9,
It consists of an insulating ring 10°11 and an outer can 12.

このアルカリマンガン電池を用いて放電負荷4Ω、20
℃の放電条F+により終止電圧0,9Vまでの放電持続
時間を測定し、比較例1の測定値を100とした指数で
示した。結束を第1表に示す。
Using this alkaline manganese battery, the discharge load is 4Ω, 20Ω.
The discharge duration up to the final voltage of 0.9 V was measured using a discharge strip F+ at ℃, and expressed as an index with the measured value of Comparative Example 1 as 100. The binding is shown in Table 1.

(:fl;il ’ii tiど−1ど′、3651b
ノ第1表に示されるごとく、亜鉛に鉛、インジウム、タ
リウム、カドミウム、スズ、ヒ゛スマス、力′リウム、
銀より選ばれる1紳以I−どアルミニウム\に加えて銅
を特定範囲の間添加して汞化さi!l、:汞化亜鉛合金
粉末を負極活物質に用いた実施例1〜7は、銅を無添加
、もしくは上記範囲から外れで銅を添加した汞化亜鉛合
金粉末を負極活物質に用いた比較例1〜8に比べて、特
に長期高温保存にお【プる水素ガス発生が抑制され、ま
た放電性能においては、上記範囲においては銅の添加に
起因する悪影響は見られず、高い放電性能を示している
(:fl;il 'ii ti-1-do', 3651b
As shown in Table 1, zinc contains lead, indium, thallium, cadmium, tin, hesmuth, thallium,
In addition to the aluminum selected from silver, copper is added within a specific range to form a chemical compound. l.: Examples 1 to 7 in which zinc chloride alloy powder was used as the negative electrode active material were compared with examples 1 to 7 in which copper was not added or zinc chloride alloy powder to which copper was added outside the above range was used as the negative electrode active material. Compared to Examples 1 to 8, the generation of hydrogen gas during long-term high-temperature storage was suppressed, and in terms of discharge performance, no adverse effects due to the addition of copper were observed within the above range, and high discharge performance was achieved. It shows.

[発明の効果] 以上説明のごとく、鉛、インジウム、タリウム、カドミ
ウム、スズ、ビスマス、ガリウム、銀より選ばれる1種
以上とアルミニウムと銅を特定範囲で含有した亜鉛合金
をそのまま、もしくは汞化して負極活物質として用いた
本ブで明の亜鉛アルカリ電池は、特に長期高温保存に、
1月」る水素ガス発生率を抑制しつつ、電池性能を向1
−さlることが可能であり、また水銀が低含有率もしく
は含有しl−。
[Effects of the invention] As explained above, a zinc alloy containing one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, and silver, and aluminum and copper within a specific range is used as it is or after being made into a The zinc-alkaline battery used as the negative electrode active material is particularly suitable for long-term high-temperature storage.
Improving battery performance while suppressing hydrogen gas generation rate
- It is possible to reduce the amount of mercury and contain low or low mercury content.

いことから、ネ1会的ニーズにも沿ったものである。As such, it is in line with the needs of the community.

従って、本発明の亜鉛アルカリ電池は広範な用途に使用
可能である。
Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1:正極缶、  2:正極、  3:負極、4:セパレ
ーター、5:封口体、6:負極底板、7:負極集電体、
8:キャップ、 9:熱収縮性樹脂チューブ、 io、1i:絶縁リング、12:外装缶。
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: negative electrode, 4: separator, 5: sealing body, 6: negative electrode bottom plate, 7: negative electrode current collector,
8: Cap, 9: Heat-shrinkable resin tube, io, 1i: Insulating ring, 12: Exterior can.

Claims (1)

【特許請求の範囲】 1、鉛、インジウム、タリウム、カドミウム、スズ、ビ
スマス、ガリウム、銀より選ばれる1種以上の合計量を
0.005〜0.5重量%、アルミニウムを0.005
〜0.5重量%、銅を0.001〜0.3重量%含有す
る亜鉛合金を負極活物質として用いたことを特徴とする
亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. The total amount of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, and silver is 0.005 to 0.5% by weight, and aluminum is 0.005% by weight.
A zinc-alkaline battery characterized in that a zinc alloy containing -0.5% by weight and 0.001-0.3% by weight of copper is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP60262495A 1985-11-25 1985-11-25 Zinc alkaline battery Expired - Lifetime JPH0622122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262495A JPH0622122B2 (en) 1985-11-25 1985-11-25 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262495A JPH0622122B2 (en) 1985-11-25 1985-11-25 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS62123658A true JPS62123658A (en) 1987-06-04
JPH0622122B2 JPH0622122B2 (en) 1994-03-23

Family

ID=17376588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262495A Expired - Lifetime JPH0622122B2 (en) 1985-11-25 1985-11-25 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622122B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
US7875390B2 (en) * 2005-11-22 2011-01-25 Panasonic Corporation Alkaline battery and method for producing the same
KR20210058905A (en) 2018-10-22 2021-05-24 닛폰세이테츠 가부시키가이샤 Casting method of cast steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
US7875390B2 (en) * 2005-11-22 2011-01-25 Panasonic Corporation Alkaline battery and method for producing the same
KR20210058905A (en) 2018-10-22 2021-05-24 닛폰세이테츠 가부시키가이샤 Casting method of cast steel

Also Published As

Publication number Publication date
JPH0622122B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPS62123658A (en) Zinc-alkaline battery
JPH0421310B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPS6177257A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPS6240161A (en) Zinc alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0375983B2 (en)
JPS6240157A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS61290652A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPS61290655A (en) Zinc alkaline battery
JPH0375984B2 (en)
JPS6240158A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPS6240163A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS61290653A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS61290651A (en) Zinc alkaline battery