JPS6177258A - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPS6177258A JPS6177258A JP59196740A JP19674084A JPS6177258A JP S6177258 A JPS6177258 A JP S6177258A JP 59196740 A JP59196740 A JP 59196740A JP 19674084 A JP19674084 A JP 19674084A JP S6177258 A JPS6177258 A JP S6177258A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- weight
- active material
- indium
- cadmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の分野)
本発明は亜鉛アルカリ電池に関し、詳しくはインジウム
とカドミウムと銀、ガリウム、テルルり選ばれる1種以
上を特定範囲で含有した亜鉛合金をそのまま、もしくは
汞化して電池用負極活物質どして用いた亜鉛アルカリ電
池に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc-alkaline battery, and more specifically, a zinc alloy containing indium, cadmium, and one or more selected from silver, gallium, and tellurium within a specific range can be used as is or as a battery. This invention relates to a zinc-alkaline battery that is used as a negative electrode active material for batteries.
(発明の背景)
亜鉛を負極活物質として用いたアルカリ電池等においで
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。(Background of the Invention) In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.
その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜10
重量%重量%釜量の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになったきた。As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of alkaline batteries commercially available today is 5 to 10
They contain mercury in an amount of % by weight, and as a social need, there have been strong expectations for the development of lower mercury or mercury-free batteries.
そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは本発明者等による亜鉛に鉛とインジウムを添
加した亜鉛合金粉末(特開昭58−181266月公報
)や亜鉛にインジウムとカドミウムを添加した亜鉛合金
粉末(特開昭59−943zt月公報)等がある。しか
し、これらの亜鉛合金粉末はある程度のガス発生抑制効
果を奏するが、まだ十分とは言えない。例えば亜鉛に鉛
とインジウムを添加した曲鉛合金粉末についてはこれを
水銀含有率1重量%程度の低汞化とした場合、ガス発生
試験の初期においては非常にガス発生が抑制されている
が、長期間どなると次第にガス発生速度(me/(J
−daV )が増大する傾向が見られlこ 。Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, zinc alloy powder made by adding lead to zinc, zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Patent Application Laid-Open No. 1812-66), or zinc alloy powder made by adding indium and cadmium to zinc. There are powders (Japanese Unexamined Patent Publication No. 59-943ZT), etc. However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient. For example, when a bent lead alloy powder made by adding lead and indium to zinc is reduced to a mercury content of about 1% by weight, gas generation is extremely suppressed in the early stages of a gas generation test; Over a long period of time, the gas generation rate (me/(J)
-daV) tended to increase.
このJ:うに、負極活物質である亜鉛合金粉末を低汞化
としつつ、水素ガス発生量を低減し、しがも電池性能で
ある放電性能を高い水準に維持する電池は未だ得られて
いない。J: Uni, a battery that reduces the hydrogen gas generation amount while maintaining a high level of discharge performance, which is the battery performance, while making the zinc alloy powder, which is the negative electrode active material, low in temperature has not yet been obtained. .
(発明の目的)
本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しがも放電↑([能
を高い水準に維持する負極活物質を用いた亜鉛アルカリ
電池を提供することを目的とする。(Objective of the Invention) In view of the current situation, the present invention has been devised to significantly reduce the content of mercury, suppress hydrogen gas generation, and use a negative electrode active material that maintains discharge capacity at a high level. The purpose is to provide zinc alkaline batteries.
(発明の経19 )
本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、インジウムとカドミウムと
銀、ガリウム、テルル
1種以上とを特定範囲の量添加することにより、これら
添加元素の相乗的な効果によって、従来の低汞化した亜
鉛合金粉末よりも更に水素ガス発生量を低下させ、しか
も放電性能に優れた亜鉛アルカリ電池が得られることを
見出し本発明に到達した。(Summary of the Invention 19) As a result of intensive research in line with this purpose, the present inventors have found that in a negative electrode active material made of zinc, indium, cadmium, and one or more of silver, gallium, and tellurium are added in specific range amounts. They found that the synergistic effect of these additive elements makes it possible to obtain a zinc-alkaline battery that further reduces the amount of hydrogen gas generated than conventional low-strength zinc alloy powders and has excellent discharge performance. Reached.
(発明の構成)
すなわち本発明は、インジウムを0.01〜0.5重最
%、カドミウムを0.01〜0.5重猪%、銀、ガリウ
ム、テルルより選ばれる1種以上を合計0、01〜0.
5重量%含有する亜鉛合金を負極活物質として用いたこ
とを特徴とする亜鉛アルカリ電池にある。(Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of indium, 0.01 to 0.5% by weight of cadmium, and a total of 0% of one or more selected from silver, gallium, and tellurium. , 01-0.
A zinc-alkaline battery is characterized in that a zinc alloy containing 5% by weight is used as a negative electrode active material.
− 〇 一
本発明において、インジウムとカドミウムと銀、ガリウ
ム、テルルより選ばれる1種以上とを特定量添加した亜
鉛合金は、そのまま負極活物質として用いるか、亜鉛合
金を汞化した後に負極活物質として用いる。汞化する場
合の水銀含有率は、従来の負極活物質の水銀含有率より
も少ない量、すなわち5.0重量%未満であるが、より
汞化率を低くし、低公害性を考慮すると3.0重量%以
下である。また、1.0重(至)%前後またはそれ以下
の少量であってもガス発生を抑制することが可能である
。- 〇 In the present invention, a zinc alloy to which specific amounts of indium, cadmium, and one or more selected from silver, gallium, and tellurium are added can be used as a negative electrode active material as it is, or can be used as a negative electrode active material after the zinc alloy is made into a liquid. used as The mercury content when it is converted into water is lower than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight. .0% by weight or less. Further, even if the amount is as small as around 1.0% by weight or less, gas generation can be suppressed.
特に、排気機構を備えた空気電池や水素吸収機構を備え
た亜鉛アルカリ電池等においては、水素ガスの発生許容
量は比較的大きいので、このような電池に本発明を適用
する場合は、1.0重量%以下の低汞化率または無汞化
の亜鉛合金が負極活物質として好ましく用いられる。In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. Zinc alloys with a low or non-grading rate of 0% by weight or less are preferably used as the negative electrode active material.
この負極活物質に用いられる亜鉛合金のインジウムとカ
ドミウムと銀、ガリウム、テルルより選ばれる1種以上
の含有率はそれぞれ、0.01〜065重量%と少量で
添加効果が発揮される。インジウムとカドミウムと銀、
ガリウム、テルルより選ばれる1種以上の含有率が0.
01重量%未満では本発明の効果が得られず、0.5重
量%を越えると不純物を含有した亜鉛のように、自己放
電が進み、ガス発生抑制および放電性能にとって良好な
結果が得られない。 □
このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。The content of one or more selected from indium, cadmium, silver, gallium, and tellurium in the zinc alloy used in this negative electrode active material is as small as 0.01 to 065% by weight, which exhibits the effect of addition. indium, cadmium and silver,
The content of one or more types selected from gallium and tellurium is 0.
If it is less than 0.01% by weight, the effect of the present invention cannot be obtained, and if it exceeds 0.5% by weight, self-discharge will proceed like zinc containing impurities, and good results for suppressing gas generation and discharge performance will not be obtained. . □ As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution mainly composed of caustic potash, caustic soda, etc. as the electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as the negative electrode active material, and manganese dioxide as the positive electrode active material. , silver oxide, oxygen, etc.
(実施例の説明)
以下、実施例および比較例に基づいて本発明を具体的に
説明する。(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.
実施例1〜11
純度99,997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウムとカドミウム
と銀の含有率がそれぞれ0.05重量%となるように添
加して亜鉛合金を作成し、これを高圧アルゴンガス(噴
出圧5Kg / crJ )を使って粉体化した。次に
水酸化カリウム10%のアルカリ性溶液中にて上記粉末
に1.0重量%になるように水銀を添加して、汞化処理
を行ない亜鉛合金粉末(実施例1)を19だ。Examples 1 to 11 A zinc ingot with a purity of 99,997% or more was melted at about 500°C, and the contents of indium, cadmium, and silver were each 0.05% by weight as shown in Table 1. was added to create a zinc alloy, which was pulverized using high-pressure argon gas (ejection pressure 5Kg/crJ). Next, mercury was added to the above powder to give a concentration of 1.0% by weight in an alkaline solution containing 10% potassium hydroxide, and the zinc alloy powder (Example 1) was converted into a zinc alloy powder (Example 1).
また、第1表に示すごとく、下記の組成でそれぞれ、
(1):インジウム0.05重量%、カドミウム0.0
5重最%、ガリウム0.05重用量、(2):インジウ
ム0.05型部%、カドミウム0.05重量%、テルル
0,05重間%、(3):インジウム0.01重量%、
カドミウム0.01重量%、銀0.01重烙%、
(4):インジウム0.5重量%、カドミウム0.5重
量%、銀0.5重指重量
(5):インジウム0.01重量%、カドミウム0.0
1ffiffi%、)f IJ ラム0.01重量%、
(6):インジウム0.5重量%、カドミウム0.5重
間%、ガリウム0.5重量%、(7):インジウムo、
oi am%、カドミウム0.01重量%、テルル0.
01重量%、(8):インジウム0.5重量%、カドミ
ウム0.5車間%、テルル0.5重量%、
(9):インジウム0.05重量%、カドミウム0.0
5重tit %、tR0,05’Ia m %、カIJ
ラム0.05重量%、
(10) :インジウム0.5重量%、カドミウム0.
5重量%、銀0.1重量%、ガリウム0.2重惜%、テ
ルル0.2重量%、
からなる亜鉛合金をそれぞれ作成し、これを前記と同様
な方法で粉体化し、汞化処理を行なって水銀含有率が1
.0重量%の亜鉛合金粉末(実施例2〜11)を得た。In addition, as shown in Table 1, the following compositions were used: (1): 0.05% by weight of indium, 0.0% by weight of cadmium.
5 weight percent, gallium 0.05 weight percent, (2): indium 0.05 weight percent, cadmium 0.05 weight percent, tellurium 0.05 weight percent, (3): indium 0.01 weight percent,
Cadmium 0.01% by weight, silver 0.01% by weight, (4): indium 0.5% by weight, cadmium 0.5% by weight, silver 0.5% by weight (5): indium 0.01% by weight , cadmium 0.0
1ffiffi%, ) f IJ ram 0.01% by weight,
(6): indium 0.5% by weight, cadmium 0.5% by weight, gallium 0.5% by weight, (7): indium o,
oi am%, cadmium 0.01% by weight, tellurium 0.
01% by weight, (8): Indium 0.5% by weight, Cadmium 0.5% by weight, Tellurium 0.5% by weight, (9): Indium 0.05% by weight, Cadmium 0.0
5fold tit%, tR0,05'Iam%, KaIJ
Ram 0.05% by weight, (10): Indium 0.5% by weight, Cadmium 0.
A zinc alloy consisting of 5% by weight, 0.1% by weight of silver, 0.2% by weight of gallium, and 0.2% by weight of tellurium was prepared, and this was pulverized in the same manner as described above, and subjected to a filtration treatment. to reduce the mercury content to 1
.. 0% by weight zinc alloy powder (Examples 2 to 11) was obtained.
このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5−を用い
、亜鉛合金粉末を10gを用いて45℃で50日間のガ
ス発生fik <mft/a )を測定した。A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In addition, the gas generation test was conducted using 5- as an electrolyte, which was a potassium hydroxide aqueous solution with a concentration of 40% by weight saturated with zinc oxide, and using 10g of zinc alloy powder at 45℃ for 50 days. <mft/a) was measured.
また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメヂル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0,9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例2の測定値を
100とした指数で示した。結果を第1表に示す。Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in Fig. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a holding plate 7. There is. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
The values are expressed as an index with the measured value of Comparative Example 2, which will be described later, using a conventional negative electrode active material set as 100. The results are shown in Table 1.
止皿1」二二屯
実施例1と同様の方法で亜鉛に鉛を0.05重(6)%
添加した汞化亜鉛合金粉末(比較例1)と亜鉛に鉛を0
.05重量%、インジウムを0.05重量%添加した汞
化亜鉛合金粉末(比較例2)を得た。Stop plate 1” 22 tons 0.05% by weight (6)% of lead is added to zinc in the same manner as in Example 1.
Added zinc alloy powder (comparative example 1) and zinc with 0 lead
.. 0.05% by weight and a zinc chloride alloy powder (Comparative Example 2) to which 0.05% by weight of indium was added was obtained.
また、亜鉛にインジウムを0.05 !ff1%、カド
ミウムを0.05重■%添加した汞化亜鉛合金粉末(比
較例3)を得た。Also, add 0.05 indium to zinc! A zinc chloride alloy powder (Comparative Example 3) containing 1% ff and 0.05% by weight of cadmium was obtained.
これを実施例1と同様の方法で水素ガス発生試験と電池
性能試験を行ない、その結果を第1表に示した。This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.
第1表に示されるごとく、亜鉛にインジウムとカドミウ
ムと銀、ガリウム、テルルより選ばれる1種以上を特定
量添加して汞化させた汞化亜鉛合金粉末を負極活物質に
用いた実施例1〜11は、亜鉛に鉛を添加した汞化亜鉛
合金粉末を負極活物質に用いた比較例1や亜鉛に鉛とイ
ンジウムを添加した汞化亜鉛合金粉末を負極活物質に用
いた比較例2または亜鉛にインジウムとカドミウムを添
加した汞化亜鉛合金粉末を負極活物質に用いた比較例3
に比べて、水素ガス発生抑制効果が大きく、放電性能も
優れていることがわかる。As shown in Table 1, Example 1 in which a zinc oxide alloy powder obtained by adding a specific amount of indium, cadmium, and one or more selected from silver, gallium, and tellurium to zinc to form a oxide was used as a negative electrode active material. - 11 are Comparative Example 1 in which a zinc chloride alloy powder in which lead was added to zinc was used as the negative electrode active material, Comparative Example 2 in which a zinc chloride alloy powder in which lead and indium were added to zinc was used as the negative electrode active material, or Comparative example 3 in which a zinc oxide alloy powder containing indium and cadmium added to zinc was used as a negative electrode active material
It can be seen that the effect of suppressing hydrogen gas generation is greater and the discharge performance is also superior.
(発明の効果)
以上説明のごとく、インジウムとカドミウムと銀、ガリ
ウム、テルルより選ばれる1種以上を特定範囲で含有し
た亜鉛合金をそのまま、もしくは汞化して負極活物質と
して用いた本発明の亜鉛アルカリ電池は、水素ガス発生
率を抑制しつつ、電池性能を向上させることが可能であ
り、また水銀が低含有率もしくは含有しないことから、
社会的ニーズにも沿ったものである。従って、本発明の
亜鉛アルカリ電池は広範な用途に使用可能である。(Effects of the Invention) As explained above, the zinc alloy of the present invention, which contains indium, cadmium, and one or more selected from silver, gallium, and tellurium within a specific range, is used as a negative electrode active material either as it is or after being made into a liquid. Alkaline batteries can improve battery performance while suppressing the hydrogen gas generation rate, and because they contain low or no mercury,
It is also in line with social needs. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.
第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。
1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate.
Claims (1)
を0.01〜0.5重量%、銀、ガリウム、テルルより
選ばれる1種以上を合計0.01〜0.5重量%含有す
る亜鉛合金を負極活物質として用いたことを特徴とする
亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。[Claims] 1. 0.01 to 0.5% by weight of indium, 0.01 to 0.5% by weight of cadmium, and a total of 0.01 to 0.0% of one or more selected from silver, gallium, and tellurium. A zinc-alkaline battery characterized in that a zinc alloy containing .5% by weight is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59196740A JPS6177258A (en) | 1984-09-21 | 1984-09-21 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59196740A JPS6177258A (en) | 1984-09-21 | 1984-09-21 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6177258A true JPS6177258A (en) | 1986-04-19 |
JPH0418672B2 JPH0418672B2 (en) | 1992-03-27 |
Family
ID=16362810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59196740A Granted JPS6177258A (en) | 1984-09-21 | 1984-09-21 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6177258A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
JPS58218762A (en) * | 1982-06-11 | 1983-12-20 | Toshiba Battery Co Ltd | Alkaline battery |
JPS5994371A (en) * | 1982-11-22 | 1984-05-31 | Mitsui Mining & Smelting Co Ltd | Alkaline battery and its manufacturing method |
JPS59139558A (en) * | 1982-11-30 | 1984-08-10 | Toshiba Battery Co Ltd | Alkaline battery |
-
1984
- 1984-09-21 JP JP59196740A patent/JPS6177258A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
JPS58218762A (en) * | 1982-06-11 | 1983-12-20 | Toshiba Battery Co Ltd | Alkaline battery |
JPS5994371A (en) * | 1982-11-22 | 1984-05-31 | Mitsui Mining & Smelting Co Ltd | Alkaline battery and its manufacturing method |
JPS59139558A (en) * | 1982-11-30 | 1984-08-10 | Toshiba Battery Co Ltd | Alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0418672B2 (en) | 1992-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6177259A (en) | Zinc alkaline battery | |
JPS6240162A (en) | Zinc alkaline battery | |
JPS61153950A (en) | Zinc alkaline storage battery | |
JPS6177257A (en) | Zinc alkaline battery | |
JPH0375985B2 (en) | ||
JPS6177258A (en) | Zinc alkaline battery | |
JPS62123658A (en) | Zinc-alkaline battery | |
JPS61193362A (en) | Zinc alkaline battery | |
JPS6240161A (en) | Zinc alkaline battery | |
JPS61153951A (en) | Zinc alkaline storage battery | |
JPS61290651A (en) | Zinc alkaline battery | |
JPS61153952A (en) | Zinc alkaline storage battery | |
JPS6240160A (en) | Zinc alkaline battery | |
JPS6177260A (en) | Zinc alkaline battery | |
JPS61290655A (en) | Zinc alkaline battery | |
JPH0418673B2 (en) | ||
JPS62123657A (en) | Zinc-alkaline battery | |
JPH0375983B2 (en) | ||
JPS6240159A (en) | Zinc alkaline battery | |
JPS6177256A (en) | Zinc alkaline battery | |
JPS61290652A (en) | Zinc alkaline battery | |
JPS6240157A (en) | Zinc alkaline battery | |
JPS6177262A (en) | Zinc alkaline battery | |
JPS61290654A (en) | Zinc alkaline battery | |
JPS61290653A (en) | Zinc alkaline battery |