JPH02304866A - Manufacture of negative active material for alkaline battery - Google Patents

Manufacture of negative active material for alkaline battery

Info

Publication number
JPH02304866A
JPH02304866A JP1124282A JP12428289A JPH02304866A JP H02304866 A JPH02304866 A JP H02304866A JP 1124282 A JP1124282 A JP 1124282A JP 12428289 A JP12428289 A JP 12428289A JP H02304866 A JPH02304866 A JP H02304866A
Authority
JP
Japan
Prior art keywords
mercury
lead
indium
zinc
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124282A
Other languages
Japanese (ja)
Inventor
Toyohide Uemura
植村 豊秀
Tomiko Yamaguchi
富子 山口
Mitsugi Matsumoto
貢 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1124282A priority Critical patent/JPH02304866A/en
Publication of JPH02304866A publication Critical patent/JPH02304866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease hydrogen gas evolution and to enhance discharge performance by amalgamating a zinc-lead-bismuth alloy in an inert gas atmosphere with mercury-indium amalgam in a dry process so that each component is contained at a specified ratio. CONSTITUTION:Zinc-lead-bismuth alloy powder is amalgamated in an inert gas atmosphere with mercury-indium amalgam or mercury-indium-lead amalgam in a dry process and amalgamated zinc alloy powder containing 0.01-2.0wt.% lead, 0.05-1.0wt.% bismuth, 0.01-0.1wt.% indium, and 0.01-1.0wt.% mercury is obtained. Even if the content of mercury is as low as 0.01-1.0wt.%, hydrogen gas evolution in an alkaline battery is remarkably decreased compared with a negative active material having the same composition prepared in a different process, and furthermore discharge performance is increased.

Description

【発明の詳細な説明】 [P業主の利用分野〕 本発明はアルカリ電池用負極活物質の製造法に関し、詳
しくは亜鉛−鉛−ビスマス合金粉末を不活性ガス雰囲気
中で水銀−インジウムアマルガムもしくは水銀−インジ
ウムー鉛アマルガムで乾式汞化することにより、水素ガ
ス発生が抑制されて耐食性が向上し、しかも放電性能に
優れたアルカリ電池用負極活物質の製造法に関する。
[Detailed description of the invention] [Field of application for P business owners] The present invention relates to a method for producing a negative electrode active material for alkaline batteries, and more specifically, the present invention relates to a method for producing a negative electrode active material for alkaline batteries. - A method for producing a negative electrode active material for alkaline batteries that suppresses hydrogen gas generation, improves corrosion resistance, and has excellent discharge performance by dry amalgamating with indium-lead amalgam.

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
[Prior Art] In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛合金粉末を負
極活物質として用いることが専ら行なわれている。この
ため、今日市販されているアルカリ電池の負極活物質は
1.5重量%程度の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. is carried out exclusively. For this reason, the negative electrode active materials of alkaline batteries on the market today contain about 1.5% by weight of mercury, and as a social need, there is a strong expectation for the development of lower mercury or mercury-free batteries. It has started to be done.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した汞化亜鉛合金粉末に関する提案が種
々なされている。例えば、鉛、インジウム、ビスマス等
の元素を亜鉛溶湯中に添加、またはアトマイズ合金粉末
の表面に同時に添加して得られた負極活物質として用い
られる汞化亜鉛合金粉末が特開昭59−94371号公
報、特開昭80−238401号公報、特開昭81−1
31385号公報に開示されている。このような従来の
汞化亜鉛合金粉末からなる負極活物質は、いずれもある
程度の水素ガス発生抑制効果や放電性能の向上効果を有
するものであった。
Therefore, in order to reduce the mercury content in batteries, various proposals have been made regarding zinc chloride alloy powders in which various metals are added to zinc. For example, JP-A No. 59-94371 discloses a zinc chloride alloy powder used as a negative electrode active material obtained by adding elements such as lead, indium, and bismuth to molten zinc or simultaneously to the surface of an atomized alloy powder. Publication, JP-A-80-238401, JP-A-81-1
It is disclosed in Japanese Patent No. 31385. All of these conventional negative electrode active materials made of zinc chloride alloy powder have a certain degree of hydrogen gas generation suppressing effect and improving discharge performance.

[発明が解決しようとする課功] しかしながら、上記提案のような従来の負極活物質にあ
っては、いずれも低汞化、特に水銀含有量を1.0重量
%以下に低減して、水素ガス発生量の低減および電池特
性である放電性能の向上の両者をバランス良く高い水準
で達成し得るには至っていなかった。
[Challenges to be solved by the invention] However, in conventional negative electrode active materials such as those proposed above, it is necessary to reduce the hydrogen content by reducing the mercury content to 1.0% by weight or less. It has not yet been possible to achieve a high level of balance between reducing the amount of gas generated and improving the discharge performance, which is a characteristic of the battery.

本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制して耐食性を向上させ、
しかも放電性能も向上させるアルカリ電池用負極活物質
の製造法を提供することを目的とする。
In view of the current situation, the present invention improves corrosion resistance by suppressing hydrogen gas generation while significantly reducing the mercury content.
Moreover, it is an object of the present invention to provide a method for producing a negative electrode active material for alkaline batteries that also improves discharge performance.

[課題を解決するための手段] 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛−
鉛−ビスマス合金粉末を、不活性ガス雰囲気中で一定量
の水銀−インジウムアマルガムもしくは水銀−インジウ
ムー鉛アマルガムで乾式汞化することによって得られる
汞化亜鉛合金粉末をアルカリ電池用負極活物質として用
いることにより、水銀含有量が0.QI −1,f)重
量%の低汞化率においても、水素ガス発生量を低下させ
、しかもアルカリ電池の放電性能にも優れることを見出
し、本発明に到達した。
[Means for solving the problem] As a result of intensive research in line with this purpose, the present inventors found that zinc-
Use of zinc bismuth alloy powder obtained by dry-oxidizing lead-bismuth alloy powder with a certain amount of mercury-indium amalgam or mercury-indium-lead amalgam in an inert gas atmosphere as a negative electrode active material for alkaline batteries. As a result, the mercury content is 0. The inventors have discovered that even at a low stress reduction rate of QI -1,f) weight %, the amount of hydrogen gas generated can be reduced and the discharge performance of alkaline batteries is also excellent, and the present invention has been achieved.

すなわち、本発明のアルカリ電池用負極活物質の製造法
は、亜鉛−鉛−ビスマス合金粉末を、不活性ガス雰囲気
中で水銀−インジウムアマルガムもしくは水銀−インジ
ウムー鉛アマルガムで乾式汞化させ、鉛を0.01〜2
.0重量%、ビスマスを0.05〜1.0重量%、イン
ジウムを0.01〜0.1重量%、水銀を0.01〜1
.0重量%含有する汞化亜鉛合金粉末からなる負極活物
質の製造法であって、前記水銀−インジウムー鉛アマル
ガムを用いる場合には鉛の0.005〜0.03重量%
が前記アマルガム中の鉛によって含有され、残部が前記
合金粉末中の鉛によって含有されることを特徴とするも
のである。
That is, in the method for producing a negative electrode active material for alkaline batteries of the present invention, zinc-lead-bismuth alloy powder is dry-oxidized with mercury-indium amalgam or mercury-indium-lead amalgam in an inert gas atmosphere to eliminate lead. .01~2
.. 0% by weight, 0.05-1.0% by weight of bismuth, 0.01-0.1% by weight of indium, 0.01-1% by weight of mercury.
.. A method for producing a negative electrode active material made of a zinc oxide alloy powder containing 0% by weight of lead, in the case of using the mercury-indium-lead amalgam, 0.005 to 0.03% by weight of lead.
is contained by lead in the amalgam, and the remainder is contained by lead in the alloy powder.

以下、本発明の製造法を更に詳細に説明する。The manufacturing method of the present invention will be explained in more detail below.

本発明の製造法においては、先ず、所定量の鉛、ビスマ
スを含有する亜鉛−鉛−ビスマス合金粉末(アトマイズ
合金粉末)を得る。その方法としては、例えば亜鉛溶湯
中に鉛、ビスマスを所定量添加し、撹拌して合金化させ
た後、圧縮空気によりアトマイズし、粉体化させ、さら
に篩い分けを行なって整粒する方法が採用される。
In the manufacturing method of the present invention, first, a zinc-lead-bismuth alloy powder (atomized alloy powder) containing predetermined amounts of lead and bismuth is obtained. For example, one method is to add a predetermined amount of lead and bismuth to molten zinc, stir it to form an alloy, atomize it with compressed air, turn it into powder, and then sieve it to size it. Adopted.

次に、得られた亜鉛−鉛−ビスマス合金粉末を、不活性
ガス雰囲気中で水銀−インジウムアマルガムもしくは水
銀−インジウムー鉛アマルガムにて乾式汞化を行なう。
Next, the obtained zinc-lead-bismuth alloy powder is dry-oxidized with mercury-indium amalgam or mercury-indium-lead amalgam in an inert gas atmosphere.

ここでいう乾式汞化とは、亜鉛−鉛−ビスマス合金粉末
と水銀−インジウムアマルガムもしくは水銀−インジウ
ムー鉛アマルガムとをリボンブレンダー等の混合機に投
入して、不活性ガス雰囲気下で5〜20分程度混合、撹
拌しながら汞化処理を行ない、汞化亜鉛合金粉末を得る
ものである。ここで用いられる水銀−インジウムアマル
ガムもしくは水銀−インジウムー鉛アマルガムは、例え
ば10%塩酸中で水銀、インジウムまたはこれに加えて
鉛とを混合してアマルガム化させて得られる。
The dry oxidation referred to here means that zinc-lead-bismuth alloy powder and mercury-indium amalgam or mercury-indium-lead amalgam are put into a mixer such as a ribbon blender and left in an inert gas atmosphere for 5 to 20 minutes. The oxidation treatment is carried out with moderate mixing and stirring to obtain the oxidation zinc alloy powder. The mercury-indium amalgam or mercury-indium-lead amalgam used here is obtained, for example, by mixing mercury, indium, or lead in addition to these in 10% hydrochloric acid and amalgamating the mixture.

また、不活性ガス雰囲気としては、窒素ガス雰囲気、ア
ルゴンガス雰囲気等が例示されるが、窒素ガス雰囲気が
一般的である。
Further, examples of the inert gas atmosphere include a nitrogen gas atmosphere, an argon gas atmosphere, and the like, but a nitrogen gas atmosphere is generally used.

本発明では、このように不活性ガス雰囲気中で乾式汞化
するものであるが、同一組成のアマルガムを湿式汞化、
すなわち上記合金粉末とアマルガムとを例えば10%水
酸化カリウム水溶液中に投入し、混合撹拌して汞化処理
する場合と比較して、得られた汞化亜鉛合金粉末をアル
カリ電池用負極活物質に用いた場合に、水素ガス発生が
抑−制され、放電性能が向上する。また、大気中等の雰
囲気で乾式汞化した場合と比較しても、水素ガス発生が
抑制され、しかも放電性能が向上する。
In the present invention, dry amalgamation is performed in an inert gas atmosphere as described above, but wet amalgamation of amalgam of the same composition is performed.
That is, compared to the case where the above-mentioned alloy powder and amalgam are put into, for example, a 10% potassium hydroxide aqueous solution, mixed and stirred, and subjected to a filtration treatment, the obtained zinc hydride alloy powder can be used as a negative electrode active material for alkaline batteries. When used, hydrogen gas generation is suppressed and discharge performance is improved. Further, even when compared with dry hydrogenation in an atmosphere such as the air, hydrogen gas generation is suppressed and discharge performance is improved.

本発明の製造法で得られる汞化亜鉛合金粉末からなる負
極活物質は、鉛を0.01〜2,0重量%、ビスマスを
005〜1.0重量%、インジウムを0.01〜0.1
重量%、水銀を0.01〜1,0重量%含有するもので
ある。鉛、ビスマス、インジウムの各含有量が上記の下
限未満のときは、負極活物質をアルカリ電池に配置した
ときの水素ガス発生抑制および放電性能の向上に対する
含有効果が小さく、また上限を超えて添加しても、それ
以上の含有効果が生じない。
The negative electrode active material made of the zinc chloride alloy powder obtained by the production method of the present invention contains 0.01 to 2.0% by weight of lead, 0.05 to 1.0% by weight of bismuth, and 0.01 to 0.0% of indium. 1
It contains 0.01 to 1.0% by weight of mercury. When the content of each of lead, bismuth, and indium is less than the above lower limit, the effect of the inclusion on suppressing hydrogen gas generation and improving discharge performance when the negative electrode active material is placed in an alkaline battery is small, and when added above the upper limit. Even if it is contained, no further effect will be produced.

また、乾式汞化に用いられるアマルガムとして水銀−イ
ンジウムー鉛アマルガムを用いる場合には、鉛の含有量
中の0.005〜0.03重量%が前記アマルガム中の
鉛によって含有され、残部が前記合金粉末中の鉛によっ
て含有されることが必要である。この含有割合が0.0
05重量%未満では鉛の含有効果は特に見られず、また
常温では0.03重重二相当量しか鉛のアマルガム化は
生じない。
In addition, when a mercury-indium-lead amalgam is used as the amalgam used in dry oxidation, 0.005 to 0.03% by weight of the lead content is contained by the lead in the amalgam, and the remainder is the alloy. It is necessary to contain lead in the powder. This content ratio is 0.0
If the lead content is less than 0.05% by weight, no particular effect is observed, and at room temperature, lead amalgamation occurs only at an amount equivalent to 0.03 lead.

本発明の製造法で得られる負極活物質は、水銀の含有量
が0.01〜1.0重量%と極めて低含有率であっても
、他の製造法で得られる同一組成の負極活物質と比較し
て、アルカリ電池に用いた場合に顕著に水素ガス発生が
抑制され、しかも放電性能が向上したアルカリ電池が得
られる。
Even if the negative electrode active material obtained by the production method of the present invention has an extremely low mercury content of 0.01 to 1.0% by weight, the negative electrode active material obtained by the production method of the present invention has the same composition as the negative electrode active material obtained by other production methods. When used in an alkaline battery, hydrogen gas generation is significantly suppressed, and an alkaline battery with improved discharge performance can be obtained.

〔作用コ 本発明の作用効果は充分に解明されていないが、推定す
るに以下のことが考えられる。
[Operations] Although the effects of the present invention have not been fully elucidated, the following may be considered.

(1)鉛、インジウムは共に亜鉛表面にあって充分に水
素過電圧が高く、従来の水銀の添加効果を代替すること
が可能である。すなわち、水銀含有量を低減させても、
これらの元素を添加することによって耐食性のカバーが
可能である。
(1) Both lead and indium are on the zinc surface and have a sufficiently high hydrogen overvoltage, making it possible to replace the conventional effect of adding mercury. In other words, even if the mercury content is reduced,
Corrosion resistance can be covered by adding these elements.

(2)鉛は水銀とアマルガム化し難いので、鉛層は亜鉛
合金粉末内部への水銀の拡散を抑制するバリヤーとなる
。また、インジウムは水銀とアマルガム化し易いので、
インジウムは水銀とアマルガム化することによって亜鉛
合金粉末内部への水銀の拡散を抑制する。こうした作用
によって亜鉛合金粉末表面の水銀濃度が高く維持される
ので、少量の水銀含有量であっても水銀による耐食性お
よび電池特性の向上効果が充分に発揮される。
(2) Since lead is difficult to amalgamate with mercury, the lead layer acts as a barrier to suppress the diffusion of mercury into the zinc alloy powder. Also, since indium is easily amalgamated with mercury,
Indium suppresses the diffusion of mercury into the zinc alloy powder by amalgamating with mercury. Because of these actions, the mercury concentration on the surface of the zinc alloy powder is maintained at a high level, so that even a small amount of mercury can sufficiently exhibit the effects of mercury on improving corrosion resistance and battery characteristics.

本発明は、これら各作用の相乗効果により、耐食性、放
電性能が共に優れたアルカリ電池の負極活物質が得られ
る。
The present invention provides a negative electrode active material for alkaline batteries that is excellent in both corrosion resistance and discharge performance due to the synergistic effect of these respective actions.

[実施例] 以下、実施例および比較例に基づいて本発明を具体的に
説明する。なお、第1表の各元素の含有割合は、最終的
に得られる汞化亜鉛合金粉末中の含有割合である。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples. The content ratio of each element in Table 1 is the content ratio in the finally obtained zinc oxide alloy powder.

実施例1〜12および比較例1〜6 純度99.997%以上の亜鉛地金を約500℃で溶融
して、所定量の鉛、ビスマスを添加して亜鉛−鉛層ビス
マス合金を作成した。次に、得られた亜鉛−鉛−ビスマ
ス合金を高圧アルゴンガス(噴出圧5Kg/ ci )
を使って粉体化し、さらに篩い分けによって粉体の粒度
を48〜150メツシユに整粒してアトマイズ合金粉末
を得た。
Examples 1 to 12 and Comparative Examples 1 to 6 Zinc ingots with a purity of 99.997% or higher were melted at about 500°C, and predetermined amounts of lead and bismuth were added to create zinc-lead layer bismuth alloys. Next, the obtained zinc-lead-bismuth alloy was heated with high-pressure argon gas (ejection pressure 5 kg/ci).
The powder was pulverized using a sieve, and the powder was sieved to a particle size of 48 to 150 mesh to obtain an atomized alloy powder.

一方、5%塩酸溶液中で水銀、インジウムまたはこれに
加えて鉛を所定量混合して水銀−インジウムアマルガム
もしくは、水銀−インジウムー鉛アマルガムを作成した
On the other hand, mercury, indium, or a predetermined amount of lead was mixed in a 5% hydrochloric acid solution to prepare a mercury-indium amalgam or a mercury-indium-lead amalgam.

このアマルガムと上記で得られたアトマイズ合金粉末と
をリボンブレングー中で窒素ガス雰囲気下で約5分間混
合撹拌して乾式汞化処理を行ない、第1表に示す組成の
汞化亜鉛合金粉末を得た。
This amalgam and the atomized alloy powder obtained above were mixed and stirred in a ribbon blender under a nitrogen gas atmosphere for about 5 minutes to carry out a dry atomization treatment, and a zinc atomized alloy powder having the composition shown in Table 1 was obtained. Obtained.

このようにして得られた各汞化亜鉛合金粉末を使って水
素ガス発生試験を行なった。それらの結果を第1表に示
す。
A hydrogen gas generation test was conducted using each of the zinc chloride alloy powders thus obtained. The results are shown in Table 1.

なお、水素ガス発生試験は、電解液として濃度40重量
%の水酸化カリウム水溶液に酸化亜鉛を飽和させたもの
を5fnl用い。汞化亜鉛合金粉末を10g用いて45
℃で25日間のガス発生速度(μQ/g・day )を
測定した。
In the hydrogen gas generation test, 5 fnl of an aqueous potassium hydroxide solution with a concentration of 40% by weight saturated with zinc oxide was used as the electrolytic solution. 45 using 10g of zinc alloy powder
The gas generation rate (μQ/g·day) was measured at ℃ for 25 days.

また、これらの汞化亜鉛合金粉末を負極活物質として第
1図に示すアルカリマンガン電池を用いて電池性能を評
価した。第1図のアルカリマンガン電池は、正極缶1、
正極2、負極3、セパレーター4、封口体5、負極底板
6、負極集電体7、キャップ8、熱収縮性樹脂チューブ
9、絶縁リング10,11 、外装缶12で構成されて
いる。このアルカリマンガン電池を用いて放電負荷4Ω
、20℃の放電条件により終止電圧0.9Vまでの放電
持続時間を測定し、後述する比較例9の測定値を100
とした指数で示した。その結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc chloride alloy powders as a negative electrode active material. The alkaline manganese battery shown in Figure 1 consists of a positive electrode can 1,
It is composed of a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7, a cap 8, a heat-shrinkable resin tube 9, insulating rings 10, 11, and an outer can 12. Discharge load 4Ω using this alkaline manganese battery
, the discharge duration up to the final voltage of 0.9V was measured under the discharge conditions of 20°C, and the measured value of Comparative Example 9, which will be described later, was 100
It is shown as an index. The results are shown in Table 1.

実施例13 実施例2において、乾式汞化の雰囲気を窒素ガスからア
ルゴンガスに代えて行なった以外は、実施例2と同様に
して汞化亜鉛合金粉末を得た。
Example 13 A zinc chloride alloy powder was obtained in the same manner as in Example 2, except that the atmosphere for dry oxidation was changed from nitrogen gas to argon gas.

このようにして得られた汞化亜鉛合金粉末を用いて実施
例2と同様に水素ガス発生試験および放電試験を行ない
、それらの結果を第1表に示す。
A hydrogen gas generation test and a discharge test were conducted in the same manner as in Example 2 using the zinc hydride alloy powder thus obtained, and the results are shown in Table 1.

比較例7 実施例2で得られたアトマイズ合金粉末を10%水酸化
カリウム水溶液中に投入し、これに第1表の組成となる
ように、水銀、水銀〜インジウムアマルガム、水銀−イ
ンジウムー鉛アマルガムをそれぞれ撹拌子滴下して汞化
処理を行ない、水洗した後に濾過、乾燥を行なって第1
表に示す組成の汞化亜鉛合金粉末を得た。
Comparative Example 7 The atomized alloy powder obtained in Example 2 was put into a 10% potassium hydroxide aqueous solution, and mercury, mercury-indium amalgam, and mercury-indium-lead amalgam were added to it so that the composition was as shown in Table 1. A stirrer is added dropwise to each layer to perform a filtration treatment, and after washing with water, filtration and drying are performed.
A zinc chloride alloy powder having the composition shown in the table was obtained.

このようにして得られた汞化亜鉛合金粉末を用いて実施
例2と同様に水素ガス発生試験および放電試験を行ない
、それらの結果を第1表に示す。
A hydrogen gas generation test and a discharge test were conducted in the same manner as in Example 2 using the zinc hydride alloy powder thus obtained, and the results are shown in Table 1.

比較例8 実施例2において、乾式汞化の雰囲気を窒素ガスから大
気に代えて行なった以外は、実施例2と同様にして汞化
亜鉛合金粉末を得た。
Comparative Example 8 A zinc chloride alloy powder was obtained in the same manner as in Example 2, except that the atmosphere for dry oxidation was changed from nitrogen gas to air.

このようにして得られた汞化亜鉛合金粉末を用いて実施
例2と同様に水素ガス発生試験および放電試験を行ない
、それらの結果を第1表に示す。
A hydrogen gas generation test and a discharge test were conducted in the same manner as in Example 2 using the zinc hydride alloy powder thus obtained, and the results are shown in Table 1.

比較例9 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これを高圧アルゴンガス(噴出圧5に9 / ct
j )を使って粉体化し、さらに篩い分けによって粉体
の粒度を48〜150メツシユに整粒してアトマイズ粉
末を得た。
Comparative Example 9 Zinc ingot with a purity of 99.997% or more is melted at about 500°C and heated with high pressure argon gas (ejection pressure 5 to 9/ct).
j) to obtain an atomized powder.

このアトマイズ粉末を10%水酸化カリウム水溶液中に
投入し、これに水銀含有量が10.0重量%となるよう
に、水銀を撹拌子滴下して汞化処理を行ない、水洗した
後に濾過、乾燥を行なって第1表に示す組成の汞化亜鉛
合金粉末を得た。
This atomized powder was put into a 10% potassium hydroxide aqueous solution, and mercury was added dropwise with a stirrer so that the mercury content was 10.0% by weight. After washing with water, filtration and drying were performed. This was carried out to obtain a zinc oxide alloy powder having the composition shown in Table 1.

このようにして得られた汞化亜鉛合金粉末を用いて実施
例1と同様に水素ガス発生試験および放電試験を行ない
、それらの結果を第1表に示す。
A hydrogen gas generation test and a discharge test were conducted in the same manner as in Example 1 using the zinc hydride alloy powder thus obtained, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛−鉛層ビスマス合金粉末
に、窒素ガス雰囲気中で水銀−インジウムアマルガムも
しくは水銀−インジウムー鉛アマルガムで乾式汞化処理
を行なって得られた一定組成を有する汞化亜鉛合金粉末
を用いた実施例1〜12は、従来より用いられている水
銀含有量が10,0重量%の汞化亜鉛合金粉末を用いた
比較例9と比較し、水銀含有量が大幅に低下しているに
も拘らず、水素ガス発生抑制効果が大きく、放電性能も
高い水準に維持される。特に、水銀−インジウムー鉛ア
マルガムで乾式汞化した実施例10〜12は、高い水素
ガス発生抑制効果および放電性能を示す。
As shown in Table 1, zinc chloride having a certain composition is obtained by subjecting a zinc-lead layered bismuth alloy powder to dry oxidation treatment with mercury-indium amalgam or mercury-indium-lead amalgam in a nitrogen gas atmosphere. In Examples 1 to 12 using alloy powder, the mercury content was significantly reduced compared to Comparative Example 9 using conventionally used zinc chloride alloy powder with a mercury content of 10.0% by weight. Despite this, the hydrogen gas generation suppressing effect is large and the discharge performance is maintained at a high level. In particular, Examples 10 to 12, which were dry amalgamated with mercury-indium-lead amalgam, exhibit high hydrogen gas generation suppressing effects and discharge performance.

実施例13は、実施例2と同一組成の汞化亜鉛合金粉末
をアルゴンガス中で乾式汞化して得たものであるが、窒
素ガス中で乾式汞化した実施例2とほぼ同様の特性を有
する。
Example 13 was obtained by dry-processing a zinc alloy powder with the same composition as Example 2 in argon gas, but it had almost the same characteristics as Example 2, which was dry-processing in nitrogen gas. have

これに対して、本発明の組成範囲から外れる汞化亜鉛合
金粉末を用いた比較例1〜6は水素ガス発生抑制効果、
放電性能のいずれにおいても実施例1〜13よりも劣る
On the other hand, Comparative Examples 1 to 6 using zinc chloride alloy powders outside the composition range of the present invention had a hydrogen gas generation suppressing effect,
It is inferior to Examples 1 to 13 in all discharge performances.

また、比較例7は、実施例2と同一組成の汞化亜鉛合金
粉末を湿式汞化して得たものであるが、水素ガス発生抑
制効果、放電性能のいずれにおいても実施例2よりも劣
る。
Comparative Example 7 was obtained by wet-processing a zinc alloy powder having the same composition as Example 2, but it was inferior to Example 2 in both the hydrogen gas generation suppressing effect and the discharge performance.

さらに、比較例8は、実施例2と同一組成の汞化亜鉛合
金粉末を大気中で乾式汞化して得たものであるが、この
場合にも水素ガス発生抑制効果、放電性能のいずれにお
いても実施例2よりも劣ったものである。
Furthermore, in Comparative Example 8, a zinc alloy powder having the same composition as that of Example 2 was dry-oxidized in the atmosphere, but in this case as well, neither the hydrogen gas generation suppressing effect nor the discharge performance was found. This is inferior to Example 2.

[発明の効果] 以上説明のごとく、亜鉛−鉛−ビスマス合金粉末を、不
活性ガス雰囲気中で水銀−インジウムアマルガムもしく
は水銀−インジウムー鉛アマルガムで乾式汞化させる本
発明の製造法によって得られ、一定組成を有する汞化亜
鉛合金粉末からなる負極活物質は、水銀の含有量が0.
01〜1.0重量%と極めて低木化率において、水素ガ
ス発生を抑制して耐食性を向上させ、しかも放電性能に
優れたものである。
[Effects of the Invention] As explained above, a zinc-lead-bismuth alloy powder is obtained by the production method of the present invention in which a mercury-indium amalgam or a mercury-indium-lead amalgam is dry-oxidized in an inert gas atmosphere. The negative electrode active material made of a zinc chloride alloy powder having a composition has a mercury content of 0.
At an extremely low wood reduction rate of 0.01 to 1.0% by weight, hydrogen gas generation is suppressed, corrosion resistance is improved, and discharge performance is excellent.

従って、本発明の製造法はアルカリ電池用負極活物質の
製造法として好適である。
Therefore, the production method of the present invention is suitable as a production method for negative electrode active materials for alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1・・・正極缶、    2・・・正極、3・・・負極
、      4・・・セパレーター、5・・・封口体
、    6・・・負極底板、7・・・負極集電体、 
 8・・・キャップ、9・・・熱収縮性樹脂チューブ、 10.11・・・絶縁リング、 12・・・外装缶。 特許出願人 三井金属鉱業株式会社 代  理  人  弁理士  伊  東  辰  雄代
  理  人  弁理士  伊  東  哲  也第1
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Positive electrode can, 2... Positive electrode, 3... Negative electrode, 4... Separator, 5... Sealing body, 6... Negative electrode bottom plate, 7... Negative electrode current collector,
8... Cap, 9... Heat-shrinkable resin tube, 10.11... Insulating ring, 12... Exterior can. Patent applicant: Mitsui Kinzoku Mining Co., Ltd. Attorney: Yuyo Ito, Attorney Patent attorney: Tetsuya Ito 1st
figure

Claims (1)

【特許請求の範囲】 1、亜鉛−鉛−ビスマス合金粉末を、不活性ガス雰囲気
中で水銀とインジウムとのアマルガムで乾式汞化させ、
鉛を0.01〜2.0重量%、ビスマスを0.05〜1
.0重量%、インジウムを0.01〜0.1重量%、水
銀を0.01〜1.0重量%含有することを特徴とする
汞化亜鉛合金粉末からなるアルカリ電池用負極活物質の
製造法。 2、亜鉛−鉛−ビスマス合金粉末を、不活性ガス雰囲気
中で水銀とインジウムおよび鉛とのアマルガムで乾式汞
化させ、鉛を0.01〜2.0重量%、ビスマスを0.
05〜1.0重量%、インジウムを0.01〜0.1重
量%、水銀を0.01〜1.0重量%含有する汞化亜鉛
合金粉末からなる負極活物質の製造法であって、前記鉛
中の0.005〜0.03重量%が前記アマルガム中の
鉛によって含有され、残部が前記合金粉末中の鉛によっ
て含有されることを特徴とするアルカリ電池用負極活物
質の製造法。
[Claims] 1. Zinc-lead-bismuth alloy powder is dry-oxidized with an amalgam of mercury and indium in an inert gas atmosphere,
0.01-2.0% by weight of lead, 0.05-1% of bismuth
.. A method for producing a negative electrode active material for an alkaline battery comprising a zinc chloride alloy powder containing 0% by weight, 0.01 to 0.1% by weight of indium, and 0.01 to 1.0% by weight of mercury. . 2. Zinc-lead-bismuth alloy powder is dry-oxidized with an amalgam of mercury, indium, and lead in an inert gas atmosphere, and 0.01 to 2.0% by weight of lead and 0.0% of bismuth are added.
1.0% by weight of indium, 0.01% to 0.1% by weight of indium, and 0.01% to 1.0% by weight of mercury. A method for producing a negative electrode active material for an alkaline battery, characterized in that 0.005 to 0.03% by weight of the lead is contained by lead in the amalgam, and the remainder is contained by lead in the alloy powder.
JP1124282A 1989-05-19 1989-05-19 Manufacture of negative active material for alkaline battery Pending JPH02304866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124282A JPH02304866A (en) 1989-05-19 1989-05-19 Manufacture of negative active material for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124282A JPH02304866A (en) 1989-05-19 1989-05-19 Manufacture of negative active material for alkaline battery

Publications (1)

Publication Number Publication Date
JPH02304866A true JPH02304866A (en) 1990-12-18

Family

ID=14881481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124282A Pending JPH02304866A (en) 1989-05-19 1989-05-19 Manufacture of negative active material for alkaline battery

Country Status (1)

Country Link
JP (1) JPH02304866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Similar Documents

Publication Publication Date Title
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0222984B2 (en)
US3617384A (en) Zinc alkaline secondary cell
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPH0317181B2 (en)
JPH0719604B2 (en) Alkaline battery manufacturing method
JPH0418671B2 (en)
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPH0377274A (en) Manufacture of negative electrode active material for alkaline battery
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH0317182B2 (en)
JPS62123653A (en) Zinc-alkaline battery
JPH02165564A (en) Manufacture of mercurated zinc alloy powder for alkaline cell
JPS58225565A (en) Alkaline battery
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JPH02306540A (en) Manufacture of negative electrode active substance for alkaline storage battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH0620687A (en) Alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH02170352A (en) Mercurized zinc alloy powder for alkaline cell and its manufacture
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder