JPH0822822A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0822822A
JPH0822822A JP15356894A JP15356894A JPH0822822A JP H0822822 A JPH0822822 A JP H0822822A JP 15356894 A JP15356894 A JP 15356894A JP 15356894 A JP15356894 A JP 15356894A JP H0822822 A JPH0822822 A JP H0822822A
Authority
JP
Japan
Prior art keywords
zinc alloy
alloy powder
lead
indium
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15356894A
Other languages
Japanese (ja)
Inventor
Teiji Okayama
定司 岡山
Kiyoto Yoda
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP15356894A priority Critical patent/JPH0822822A/en
Publication of JPH0822822A publication Critical patent/JPH0822822A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To provide a low-environmental-pollution, safe, and high-performance zinc alkaline battery using unhardening and lead-unadded zinc alloy powder. CONSTITUTION:Unhardening and lead-unadded zinc alloy powder, which contains indium by 0.01-0.1wt.%, bismuth by 0.001-0.01wt.%, gallium by 0.001-0.05wt.%, and at least one kind or more being selected from among the group consisting of magnesium, calcium, barium, and beryllium by 0.001-0.05wt.% in total, is used for negative pole active matter 5. Furthermore, as an anticorrosive for the zinc alloy powder, this has a gel-shaped negative electrode 4 where indium compound is added by 0.005-0.5wt.% in terms of indium to the zinc alloy powder. This accomplishes the lower environmental pollution of the unhardening and lead-unadded battery, and besides gas occurs less than the case where unhardening and zinc alloy powder with lead added is used, so this is safe and high-performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜鉛アルカリ電池に係わ
り、詳しくは無汞化且つ鉛無添加の亜鉛合金粉末を用い
た低公害且つ安全で高性能な亜鉛アルカリ電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery, and more particularly to a low-pollution, safe and high-performance zinc-alkaline battery using a lead-free zinc alloy powder.

【0002】[0002]

【従来の技術】従来、亜鉛アルカリ電池の負極活物質と
しては、亜鉛の腐食によるガス発生の抑制及び電気特性
の向上を目的として、汞化亜鉛合金粉末が用いられてき
たが、近年、使用済み電池による環境汚染が問題視され
るようになってきたことから低公害化が社会的な要望と
なり、亜鉛合金粉末を無汞化(無水銀)にするための亜
鉛合金組成や防食剤(インヒビター)等の研究が進めら
れ、ついに実用上問題の無い無水銀アルカリ電池用ゲル
状負極が開発されるに至った。
2. Description of the Related Art Conventionally, zinc negative alloy powder has been used as a negative electrode active material for zinc alkaline batteries for the purpose of suppressing gas generation due to corrosion of zinc and improving electrical characteristics. Since environmental pollution due to batteries has come to be regarded as a problem, there is a social demand for low pollution, and a zinc alloy composition and an anticorrosive agent (inhibitor) for making the zinc alloy powder non-silver (anhydrous). As a result, the gelled negative electrode for a mercury-free alkaline battery, which has no practical problems, was finally developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、無水銀
アルカリ電池で実用化されている無汞化亜鉛合金粉末中
には、水素ガス発生を抑制するために水銀と同様に有害
物質である鉛を数百ppm添加していることから、鉛無
添加の亜鉛合金粉末を用いた無水銀アルカリ電池への要
望が高まっている。
However, in the unalloyed zinc alloy powder which has been put to practical use in a mercury-free alkaline battery, lead, which is a harmful substance like mercury, is contained in order to suppress generation of hydrogen gas. Since 100 ppm is added, the demand for a mercury-free alkaline battery using lead-free zinc alloy powder is increasing.

【0004】ところで、現在までに鉛を添加していない
亜鉛アルカリ電池用亜鉛合金に関して特許公開されたも
のとしては、特開昭63−133450号公報,特開平
2−194103号公報等数多くあり、その中にはある
程度の耐食性を期待できるものもあるが、十分とは言え
ない。また、発生したガスを逃がす構造を有する電池に
は使用可能でとあるかもしれないが、円筒型アルカリマ
ンガン乾電池等、密閉構造を有する電池には亜鉛合金組
成を改善しただけでは、未放電時のガス発生は抑制でき
ても一部放電した後のガス発生までは抑制できず、実用
可能なゲル状負極とはなり得ない。このような状況か
ら、よりガス発生の少ない亜鉛合金組成の開発並びに密
閉構造を有するアルカリ電池にも適用可能なゲル状負極
の開発が急務となっていた。
By the way, there are many patent publications of zinc alloys for zinc-alkali batteries to which lead has not been added up to now, such as JP-A-63-133450 and JP-A-2-194103. Some of them can be expected to have some degree of corrosion resistance, but they are not sufficient. Further, although it may be possible to use it for a battery having a structure for releasing generated gas, it is possible to improve the zinc alloy composition for a battery having a sealed structure such as a cylindrical alkaline manganese dry battery by simply improving the zinc alloy composition. Even if the generation of gas can be suppressed, the generation of gas after partial discharge cannot be suppressed and the gelled negative electrode cannot be practically used. Under such circumstances, there has been an urgent need to develop a zinc alloy composition with less gas generation and a gelled negative electrode applicable to an alkaline battery having a sealed structure.

【0005】本発明は、上記状況に鑑みてなされたもの
で、その目的は無汞化かつ鉛無添加の亜鉛合金粉末を用
いた低公害且つ安全で高性能な亜鉛アルカリ電池を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a low-pollution, safe, and high-performance zinc-alkaline battery using a zinc alloy powder free of lead and containing no lead. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1の亜鉛アルカリ電池は、インジウ
ム0.01〜0.1重量%,ビスマス0.001〜0.
01重量%,ガリウム0.001〜0.05重量%及び
マグネシウム,カルシウム,バリウム,ベリリウムから
なる群より選ばれた少なくとも1種類以上を合計0.0
01〜0.05重量%含有する無汞化且つ鉛無添加の亜
鉛合金粉末を負極活物質とし、更に亜鉛合金粉末の防食
剤としてインジウム化合物を亜鉛合金粉末に対してイン
ジウム換算で0.005〜0.5重量%添加したゲル状
負極を有することを特徴とする。
In order to solve the above-mentioned problems, a zinc alkaline battery according to claim 1 of the present invention comprises 0.01 to 0.1% by weight of indium and 0.001 to 0.
0.01% by weight, 0.001 to 0.05% by weight of gallium, and at least one selected from the group consisting of magnesium, calcium, barium, and beryllium in total of 0.0
A zinc alloy powder containing 0.01 to 0.05% by weight and containing no lead and no lead is used as a negative electrode active material, and an indium compound is used as a corrosion inhibitor for the zinc alloy powder in an amount of 0.005 in terms of indium with respect to the zinc alloy powder. It is characterized by having a gelled negative electrode added with 0.5% by weight.

【0007】[0007]

【作用】本発明の亜鉛合金は、鉛の代替元素として、イ
ンジウム,ビスマス,ガリウム及びマグネシウム,カル
シウム,バリウム,ベリリウム等を添加することによ
り、無汞化・鉛添加亜鉛合金よりも未放電時の耐食性を
高めることができる。この場合の各添加元素の作用機構
の詳細は十分明らかになってはいないが、各元素を単独
で添加した場合には水素ガス発生を実用可能なレベルに
抑制できないことを確認していることから、複数元素添
加の相乗効果によって亜鉛合金表面の水素過電圧が高め
られたり、表面が平滑化されて表面積が減少することに
より、耐食性が向上するものと考えられる。なお、ここ
で鉛無添加と表現しているのは、現在の一般的な亜鉛精
練技術では、純亜鉛と言われるものでも鉛が30ppm
程度不純物として混入することは避けられず、30pp
m以下とするのは技術的には可能であるが、コスト的に
不利であると考えられるからである。
The zinc alloy of the present invention is added with indium, bismuth, gallium and magnesium, calcium, barium, beryllium, etc., as an alternative element of lead, so that the zinc alloy is more stable than that of the lead-free zinc alloy. Corrosion resistance can be increased. Although the details of the mechanism of action of each additive element in this case have not been fully clarified, it has been confirmed that hydrogen gas generation cannot be suppressed to a practical level when each element is added alone. It is considered that, due to the synergistic effect of the addition of a plurality of elements, the hydrogen overvoltage on the surface of the zinc alloy is increased, or the surface is smoothed and the surface area is reduced, so that the corrosion resistance is improved. It should be noted that the expression "lead-free" is used here because in the current general zinc refining technology, even what is called pure zinc contains 30 ppm of lead.
It is unavoidable that impurities are mixed in as impurities, and 30 pp
This is because it is technically possible, but it is considered to be disadvantageous in terms of cost.

【0008】また、本発明の亜鉛合金粉末は、鉛添加亜
鉛合金粉末よりもガス発生量が少なく、発生したガスを
逃がす構造を有する電池にはそのまま使用できるが、密
閉構造を有する円筒型アルカリマンガン電池等では、本
発明のような亜鉛合金組成の改善だけでは、漏液を引き
起こさない実用可能なレベルのガス発生の抑制はできな
い。そこで、防食剤(インヒビター)としてインジウム
化合物を添加することにより、密閉構造を有する電池で
も実用可能なゲル状負極を得ることができる。インジウ
ム化合物は、そのガス発生抑制機構の詳細は明らかでな
いが、特に電池を一部放電した場合のガス発生に多大な
効果がある。
Further, the zinc alloy powder of the present invention has a smaller gas generation amount than the lead-added zinc alloy powder and can be used as it is for a battery having a structure for releasing the generated gas. In batteries and the like, merely improving the zinc alloy composition as in the present invention cannot suppress the generation of gas at a practical level without causing liquid leakage. Therefore, by adding an indium compound as an anticorrosive agent (inhibitor), it is possible to obtain a gelled negative electrode that can be used even in a battery having a sealed structure. The details of the gas generation suppressing mechanism of the indium compound are not clear, but they have a great effect on gas generation particularly when the battery is partially discharged.

【0009】[0009]

【実施例】以下、本発明の実施例及び比較例について詳
細に説明する。 (実施例1)まず、ゲル化剤としてのポリアクリル酸
0.4重量部に、試薬特級相当以上の酸化インジウム
(In2 3 )を0.039重量部(In換算として亜
鉛合金粉末に対して0.05重量%)加え、ポットミル
で10分間均一に混合した後、これをIn:0.05重
量%,Bi:0.005重量%,Ga:0.01重量%
及びMg:0.01重量%を含む粒径100〜300μ
mの亜鉛合金粉末65重量部に加え、汎用混合機で5分
間撹拌し、均一に混合した。次いで、酸化亜鉛を3.5
重量%溶解した35重量%濃度の苛性カリ水溶液35重
量部に、前記亜鉛合金粉末の混合物を4分間かけて徐々
に添加するとともに、150mmHg以下の減圧状態で
撹拌・混合し、更に、10mmHg以下の減圧状態にし
て5分間撹拌して、均一なゲル状負極を製造した。
EXAMPLES Examples of the present invention and comparative examples will be described in detail below. (Example 1) First, 0.439 parts by weight of polyacrylic acid as a gelling agent was added with 0.039 parts by weight of indium oxide (In 2 O 3 ) of a reagent grade or higher (based on zinc alloy powder as In conversion). 0.05% by weight) and uniformly mixed in a pot mill for 10 minutes, after which In: 0.05% by weight, Bi: 0.005% by weight, Ga: 0.01% by weight
And Mg: particle size containing 0.01 wt% 100-300μ
m zinc alloy powder (65 parts by weight), and the mixture was stirred for 5 minutes with a general-purpose mixer and uniformly mixed. Then add zinc oxide to 3.5
The mixture of the zinc alloy powder was gradually added to 35 parts by weight of an aqueous solution of 35% by weight of caustic potash dissolved in 35% by weight, and the mixture was stirred and mixed under a reduced pressure of 150 mmHg or less, and further reduced in pressure of 10 mmHg or less. The mixture was left in the state and stirred for 5 minutes to produce a uniform gelled negative electrode.

【0010】得られたゲル状負極を用いて図1に示すJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。この図1において、1は正極端子を兼ねる有底円筒
形の金属缶であり、この金属缶1内には円筒状に加圧成
型した正極合剤2が充填されている。正極合剤2は、二
酸化マンガン粉末とカーボン粉末を混合し、これを金属
缶1内に収納し所定の圧力で中空円筒状に加圧成型した
ものである。また、正極合剤2の中空部には、アセター
ル化ポリビニルアルコール繊維の不織布からなる有底円
筒状のセパレータ3を介して前記方法で製造したゲル状
負極4が充填されている。ゲル状負極4内には真鍮製の
負極集電棒5が、その上端部をゲル状負極4より突出す
るように挿着されている。負極集電棒5の突出部外周面
及び金属缶1の上部内周面には二重環状のポリアミド樹
脂からなる絶縁ガスケット6が配設されている。また、
ガスケット6の二重環状部の間にはリング状の金属板7
が配設され、かつ金属板7には負極端子を兼ねる帽子形
の金属封口板8が集電棒5の頭部に当接するように配設
されている。そして、金属缶1の開口縁を内方に屈曲さ
せることによりガスケット6及び金属封口板8で金属缶
1内を密封口している。
Using the gelled negative electrode thus obtained, J shown in FIG.
An IS standard LR6 type (AA) alkaline battery was assembled. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can that also serves as a positive electrode terminal. The metal can 1 is filled with a positive electrode mixture 2 which is pressure-molded into a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and carbon powder, which is housed in the metal can 1 and pressure-molded into a hollow cylinder at a predetermined pressure. In addition, the hollow portion of the positive electrode mixture 2 is filled with the gelled negative electrode 4 manufactured by the above method via the bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber. In the gelled negative electrode 4, a brass negative electrode current collector rod 5 is inserted so that the upper end portion thereof protrudes from the gelled negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is disposed on the outer peripheral surface of the protruding portion of the negative electrode current collector rod 5 and the upper inner peripheral surface of the metal can 1. Also,
A ring-shaped metal plate 7 is provided between the double annular portions of the gasket 6.
In addition, a cap-shaped metal sealing plate 8 also serving as a negative electrode terminal is arranged on the metal plate 7 so as to abut on the head of the current collecting rod 5. The opening edge of the metal can 1 is bent inward to seal the inside of the metal can 1 with the gasket 6 and the metal sealing plate 8.

【0011】(実施例2〜11)亜鉛粉の合金組成が表
1の実施例2〜11に示す通りであること以外、実施例
1と同様にしてJIS規格LR6形(単3形)アルカリ
電池を組み立てた。
(Examples 2 to 11) A JIS standard LR6 type (AA) alkaline battery was used in the same manner as in Example 1 except that the alloy composition of the zinc powder was as shown in Examples 2 to 11 in Table 1. Assembled.

【0012】(実施例12〜13)酸化インジウムの添
加量が表1の実施例12,13に示す通りであること以
外、実施例1と同様にしてJIS規格LR6形(単3
形)アルカリ電池を組み立てた。
(Examples 12 to 13) A JIS standard LR6 type (AA) was prepared in the same manner as in Example 1 except that the amount of indium oxide added was as shown in Examples 12 and 13 of Table 1.
Shape) Assembled alkaline battery.

【0013】(比較例1〜12)亜鉛粉の合金組成が表
2の比較例1〜12に示す通りであること以外、実施例
1と同様にしてJIS規格LR6形(単3形)アルカリ
電池を組み立てた。
Comparative Examples 1 to 12 JIS standard LR6 type (AA) alkaline batteries were used in the same manner as in Example 1 except that the alloy composition of zinc powder was as shown in Comparative Examples 1 to 12 in Table 2. Assembled.

【0014】(比較例13,14)酸化インジウムの添
加量が表2の比較例13,14に示す通りであること以
外、実施例1と同様にしてJIS規格LR6形(単3
形)アルカリ電池を組み立てた。
(Comparative Examples 13 and 14) JIS standard LR6 type (AA) was prepared in the same manner as in Example 1 except that the amount of indium oxide added was as shown in Comparative Examples 13 and 14 of Table 2.
Shape) Assembled alkaline battery.

【0015】以上のようにして組み立てた各LR6電池
について、未放電及び一部放電(2Ω30分放電)後の
電池を60℃で40日間貯蔵した後、水中で分解して電
池内部のガスを捕集した結果(n=10個の平均値),
2Ω連続放電持続時間(0.9Vまで、n=6個の平均
値)を調べた。表1,表2にこれら電池の試験結果を示
す。
For each LR6 battery assembled as described above, the undischarged and partially discharged (2Ω 30 minutes discharge) batteries were stored at 60 ° C. for 40 days and then decomposed in water to capture gas inside the batteries. Collected results (n = 10 average values),
The 2Ω continuous discharge duration (up to 0.9V, n = 6 average values) was examined. Tables 1 and 2 show the test results of these batteries.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表1,表2より明らかなように、比較例
4,7及び10によると、インジウム,ビスマス,ガリ
ウムを単独で添加しても、未放電・一部放電ともに60
℃40日間貯蔵で漏液してしまい、ガス発生抑制に効果
がないことがわかるが、実施例1〜13のように複数元
素系になると相乗効果によって、比較例1の鉛を含有し
た亜鉛合金よりもガス発生が抑制される。
As is clear from Tables 1 and 2, according to Comparative Examples 4, 7 and 10, even if indium, bismuth and gallium were added alone, both undischarged and partially discharged were 60.
It can be seen that there is no effect in suppressing gas generation due to liquid leakage during storage at 40 ° C. for 40 days, but due to the synergistic effect when multiple elements are used as in Examples 1 to 13, the lead-containing zinc alloy of Comparative Example 1 is obtained. Gas generation is suppressed more than.

【0019】実施例1〜3及び比較例2,3によると、
亜鉛合金中の添加元素としてのインジウムは鉛無添加の
場合、非常にガス発生抑制に効果があり、インジウムを
添加しない(比較例2)と、ビスマス,ガリウム等を添
加しても実用可能なレベルにはならない。また、インジ
ウムを0.1重量%より多く添加しても(比較例3)、
際立った効果はなく、コストの面から考えるとインジウ
ムは0.1重量%以下がよい。
According to Examples 1 to 3 and Comparative Examples 2 and 3,
Indium as an additive element in a zinc alloy is very effective in suppressing gas generation when lead is not added, and when indium is not added (Comparative Example 2), even if bismuth, gallium, etc. are added, it is at a practical level. It doesn't. Moreover, even if indium is added in an amount of more than 0.1% by weight (Comparative Example 3),
There is no remarkable effect, and in terms of cost, indium is preferably 0.1% by weight or less.

【0020】亜鉛合金中の添加元素としてのビスマスは
表面を平滑化し、表面積を減少させることによりガス発
生を抑制すると考えられる。実施例1,4,5及び比較
例5,6によると、ビスマスはガス発生抑制効果は大き
いが、その反面、添加量が多くなると重負荷放電特性に
悪影響を及ぼすようであるので、ガス発生抑制と重負荷
放電特性のバランスを考えると、0.001〜0.01
重量%の範囲で添加することが望ましい。
It is considered that bismuth as an additional element in the zinc alloy smoothes the surface and reduces the surface area to suppress gas generation. According to Examples 1, 4, 5 and Comparative Examples 5, 6, bismuth has a large gas generation suppressing effect, but on the other hand, it seems that the heavy load discharge characteristics are adversely affected when the added amount is large, so that the gas generation suppression is suppressed. And the balance of heavy load discharge characteristics, 0.001 to 0.01
It is desirable to add in the range of weight%.

【0021】実施例1,6,7及び比較例8,9による
と、ガリウムを添加することによるガス発生抑制効果は
明らかであるが、0.01重量%より多く添加しても
(比較例9)際立った効果はなく、コストの面から考え
るとガリウムは0.01重量%以下がよい。
According to Examples 1, 6 and 7 and Comparative Examples 8 and 9, the effect of suppressing the gas generation by adding gallium is clear, but even if it is added in an amount of more than 0.01% by weight (Comparative Example 9 ) There is no remarkable effect, and gallium is preferably 0.01% by weight or less in terms of cost.

【0022】実施例1,8〜11及び比較例11,12
によると、マグネシウム等の元素を添加すると、インジ
ウム,ビスマス,ガリウムの3元素を添加した場合より
も一部放電後のガス発生がより少ない,より安全なアル
カリ電池が得られることが分る。但し、マグネシウム等
の添加量が多すぎると、かえってガス発生が多くなる傾
向があるので、合計0.05重量%以下であることが望
ましい。
Examples 1, 8 to 11 and Comparative Examples 11 and 12
According to the above, it can be seen that the addition of an element such as magnesium produces a safer alkaline battery with less gas generation after partial discharge than the case of adding the three elements of indium, bismuth, and gallium. However, if the addition amount of magnesium or the like is too large, the amount of gas generated tends to be rather increased. Therefore, the total amount is preferably 0.05% by weight or less.

【0023】実施例1,12,13及び比較例13,1
4によると、酸化インジウムの添加は、一部放電後のガ
ス発生を、密閉構造を有するアルカリ電池で実用可能な
レベルに抑制するために必要であることは明白である。
しかし、インジウム換算で0.5重量%より多く添加し
ても際立った効果はなく、コストの面から考えると、イ
ンジウム換算で0.5重量%以下の添加量でよい。な
お、本実施例には記載していないが、酸化インジウムの
代わりに水酸化インジウム,硝酸インジウム,塩化イン
ジウム,硫酸インジウム等のインジウム化合物を添加し
ても本実施例と同様に良好な結果が得られた。
Examples 1, 12, 13 and Comparative Examples 13, 1
4, it is clear that the addition of indium oxide is necessary to suppress the gas generation after partial discharge to a level practical for an alkaline battery having a sealed structure.
However, adding more than 0.5% by weight in terms of indium has no outstanding effect, and in terms of cost, the amount added may be 0.5% by weight or less in terms of indium. Although not described in this example, even if an indium compound such as indium hydroxide, indium nitrate, indium chloride, or indium sulfate is added instead of indium oxide, good results can be obtained as in this example. Was given.

【0024】[0024]

【発明の効果】以上説明したように、本発明の亜鉛合金
粉末の防食剤を使用したゲル状負極を有する亜鉛アルカ
リ電池は、無汞化且つ鉛無添加という電池のさらなる低
公害化を達成し、しかも無汞化・鉛添加亜鉛合金粉末を
使用した場合よりもガス発生が少なく安全で高性能であ
るという優れた効果を奏する。
As described above, the zinc-alkaline battery having the gelled negative electrode using the anticorrosive agent of the zinc alloy powder of the present invention achieves further pollution reduction of the battery that is lead-free and lead-free. Moreover, it has an excellent effect that it has less gas generation and is safe and high-performance, as compared with the case of using the leadless zinc alloy powder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のアルカリ電池の断面図。FIG. 1 is a cross-sectional view of an alkaline battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…金属缶、2…正極合剤、3…セパレータ、4…ゲル
状負極、5…負極集電棒、6…絶縁ガスケット、7…リ
ング状金属板、8…金属封口板。
DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Gel negative electrode, 5 ... Negative electrode collector rod, 6 ... Insulating gasket, 7 ... Ring-shaped metal plate, 8 ... Metal sealing plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 インジウム0.01〜0.1重量%,ビ
スマス0.001〜0.01重量%,ガリウム0.00
1〜0.05重量%及びマグネシウム,カルシウム,バ
リウム,ベリリウムからなる群より選ばれた少なくとも
1種類以上を合計0.001〜0.05重量%含有する
無汞化且つ鉛無添加の亜鉛合金粉末を負極活物質とし、
更に亜鉛合金粉末の防食剤としてインジウム化合物を亜
鉛合金粉末に対してインジウム換算で0.005〜0.
5重量%添加したゲル状負極を有することを特徴とする
亜鉛アルカリ電池。
1. Indium 0.01-0.1 wt%, bismuth 0.001-0.01 wt%, gallium 0.00
1 to 0.05 wt% and 0.001 to 0.05 wt% in total of at least one selected from the group consisting of magnesium, calcium, barium, and beryllium in total, lead-free and lead-free zinc alloy powder As the negative electrode active material,
Further, as an anticorrosive agent for the zinc alloy powder, an indium compound is added in an amount of 0.005 to 0.
A zinc alkaline battery comprising a gelled negative electrode added at 5% by weight.
JP15356894A 1994-07-05 1994-07-05 Zinc alkaline battery Pending JPH0822822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15356894A JPH0822822A (en) 1994-07-05 1994-07-05 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15356894A JPH0822822A (en) 1994-07-05 1994-07-05 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPH0822822A true JPH0822822A (en) 1996-01-23

Family

ID=15565347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15356894A Pending JPH0822822A (en) 1994-07-05 1994-07-05 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0822822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652676B1 (en) * 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652676B1 (en) * 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0955207A (en) Zinc-alkali battery
JPH0222984B2 (en)
JPH065284A (en) Zinc alkaline battery
JPH09270254A (en) Zinc alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH0822822A (en) Zinc alkaline battery
JPH0119622B2 (en)
JPH06338319A (en) Zinc-alkaline battery
JPH0822823A (en) Zinc alkaline battery
JPH06338314A (en) Zinc-alkaline battery
JPH06223828A (en) Zinc alkaline battery
JPH065285A (en) Zinc alkaline battery
JPH0562683A (en) Alkaline battery
JPH0955206A (en) Zinc-alkali battery
JPH06338318A (en) Zinc-alkaline battery
JPH0317181B2 (en)
JPH07105941A (en) Zinc alkaline battery
JPH08203520A (en) Zinc alkaline battery
JPH0620687A (en) Alkaline battery
JPH0955208A (en) Zinc-alkali battery
JPH09265978A (en) Zinc alkaline battery
JPH06338317A (en) Zinc-alkaline battery