JPH06338319A - Zinc-alkaline battery - Google Patents

Zinc-alkaline battery

Info

Publication number
JPH06338319A
JPH06338319A JP5148280A JP14828093A JPH06338319A JP H06338319 A JPH06338319 A JP H06338319A JP 5148280 A JP5148280 A JP 5148280A JP 14828093 A JP14828093 A JP 14828093A JP H06338319 A JPH06338319 A JP H06338319A
Authority
JP
Japan
Prior art keywords
zinc
weight
negative electrode
added
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5148280A
Other languages
Japanese (ja)
Inventor
Teiji Okayama
定司 岡山
Kiyoto Yoda
清人 依田
Kojiro Miyasaka
幸次郎 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP5148280A priority Critical patent/JPH06338319A/en
Publication of JPH06338319A publication Critical patent/JPH06338319A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a low-polluting and safe zinc-alkaline battery having high performance by using an unamalgamated and lead-free zinc-alloy powder, to which lead is not added. CONSTITUTION:A gel-like negative electrode 4 using an unamalgamated and lead-free free zinc-alloy powder, which includes one kind or more of element at 0.001-0.05weight% selected from a group of In. at 0.01-0.1weight%, BiO. at 0.001-0.01weight%, AlO. at 0.001-0.01weight%, GaO. at 0.001-0.01weight%, Ca, Sr, and Ba and to which lead is not added, as the negative electrode active material is used. Indium compound and fluorine group surface active agent can be added to the gel-like negative electrode 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無汞化且つ鉛無添加の亜
鉛合金粉末を用いた低公害且つ安全で高性能な亜鉛アル
カリ電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery which is low in pollution, safe, and high in performance, which uses zinc alloy powder which is free of lead and does not contain lead.

【0002】[0002]

【従来の技術】従来、亜鉛アルカリ電池の負極活物質と
しては、亜鉛の腐食によるガス発生の抑制及び電気特性
の向上を目的として、汞化亜鉛合金粉末が用いられてい
たが、近年、使用済み電池による環境汚染が問題視され
るようになってきたことから、低公害化が社会的な要望
となり、亜鉛合金粉末を無汞化(無水銀)にするための
亜鉛合金組成、防食剤(インヒビター)等の研究が進め
られ、ついに実用上問題のない無水銀アルカリ電池用ゲ
ル状負極が開発されるに至った。
2. Description of the Related Art Conventionally, zinc negative alloy powder has been used as a negative electrode active material for a zinc alkaline battery for the purpose of suppressing gas generation due to corrosion of zinc and improving electrical characteristics. Since environmental pollution due to batteries has come to be regarded as a problem, it has become a social demand to reduce pollution, and a zinc alloy composition and an anticorrosive agent (inhibitor) are used to make zinc alloy powder unconstrained (silver-free). ) And the like, and finally, a gelled negative electrode for a mercury-free alkaline battery, which has no practical problems, was finally developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、無水銀
アルカリ電池で実用化されている無汞化亜鉛合金粉末中
には、水素ガス発生を抑制するために水銀と同様に有害
物質である鉛を数百ppm添加していることから、鉛無
添加の亜鉛合金粉末を用いた無水銀アルカリ電池への要
望が高まっている。ところで、現在までに鉛を添加して
いない亜鉛アルカリ電池用亜鉛合金に関して公開された
ものとしては、特開昭63−133450号公報、特開
平2−194103号公報等数多くあり、その中にはあ
る程度の耐食性を期待できるものもあるが、十分とは言
えない。
However, in the unalloyed zinc alloy powder which has been put to practical use in a mercury-free alkaline battery, lead, which is a harmful substance like mercury, is contained in order to suppress generation of hydrogen gas. Since 100 ppm is added, the demand for a mercury-free alkaline battery using lead-free zinc alloy powder is increasing. By the way, there are many publicly disclosed zinc alloys for lead-free zinc-alkaline batteries, such as JP-A-63-133450 and JP-A-2-194103, and some of them have been disclosed. Some of them can be expected to have corrosion resistance, but they are not sufficient.

【0004】また、発生したガスを逃がす構造を有する
電池には使用可能であるが、円筒型アルカリマンガン乾
電池等の密閉構造を有する電池には亜鉛合金組成を改善
しただけでは、未放電時のガス発生は抑制できても一部
放電した後のガス発生までは抑制できず、実用可能なゲ
ル状負極とはなり得ない。このような状況から、よりガ
ス発生の少ない亜鉛合金組成の開発並びに密閉構造を有
するアルカリ電池にも適用可能なゲル状負極の開発が急
務となっている。
Further, although it can be used for a battery having a structure for releasing generated gas, a battery having a sealed structure such as a cylindrical alkaline manganese dry battery can be produced by simply improving the zinc alloy composition. Even if the generation can be suppressed, the generation of gas after partial discharge cannot be suppressed and the gelled negative electrode cannot be practically used. Under such circumstances, there is an urgent need to develop a zinc alloy composition that generates less gas and a gelled negative electrode that can be applied to an alkaline battery having a sealed structure.

【0005】本発明は上記状況に鑑みてなされたもの
で、その目的は無汞化且つ鉛無添加の亜鉛合金粉末を用
いた低公害且つ安全で高性能な亜鉛アルカリ電池を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a low-pollution, safe, and high-performance zinc alkaline battery using a zinc alloy powder which is lead-free and lead-free. .

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明はインジウム0.01〜0.1重量%、ビス
マス0.001〜0.01重量%、アルミニウム0.0
01〜0.01重量%、ガリウム0.001〜0.01
重量%、及びカルシウム、ストロンチウム、バリウムか
らなる群より選ばれた少なくとも1種類以上を、0.0
01〜0.05重量%含有する無汞化且つ鉛無添加の亜
鉛合金粉末を負極活物質とし、さらに亜鉛合金粉末の防
食剤としてインジウム化合物を、亜鉛合金粉末に対して
インジウム換算で0.005〜0.5重量%、及び/ま
たはフッ素系界面活性剤を亜鉛合金粉末に対して0.0
005〜0.01重量%添加したゲル状負極を用いるこ
とにより、低公害且つ安全で高性能な亜鉛アルカリ電池
を実現したものである。
In order to solve the above-mentioned problems, the present invention provides 0.01 to 0.1% by weight of indium, 0.001 to 0.01% by weight of bismuth, 0.0 of aluminum.
01-0.01 wt%, gallium 0.001-0.01
%, And at least one selected from the group consisting of calcium, strontium, and barium, 0.0
0.1 to 0.05% by weight of zinc alloy powder containing no lead and no lead was used as a negative electrode active material, and an indium compound was used as a corrosion inhibitor for the zinc alloy powder in an amount of 0.005 in terms of indium with respect to the zinc alloy powder. ˜0.5% by weight, and / or fluorine-based surfactant is 0.0 with respect to the zinc alloy powder.
By using a gelled negative electrode added with 005 to 0.01% by weight, a low-pollution, safe and high-performance zinc alkaline battery is realized.

【0007】[0007]

【作用】本発明の亜鉛合金は、鉛の代替元素として、イ
ンジウム、ビスマス、アルミニウム、ガリウム及びカル
シウム、ストロンチウム、バリウム等を添加することに
より、無汞化・鉛添加亜鉛合金よりも未放電時の耐食性
を高めることができる。この場合の各添加元素の作用機
構の詳細は十分明らかになってはいないが、各元素を単
独で添加した場合には水素ガス発生を実用可能なレベル
に抑制できないことを確認していることから、複数元素
添加の相乗効果によって亜鉛合金表面の水素過電圧が高
められたり、表面が平滑化されて表面積が減少すること
により、耐食性が向上するものと考えられる。なお、こ
こで鉛無添加と表現しているのは、現在の一般的な亜鉛
精錬技術では、純亜鉛と言われるものでも、鉛が30p
pm程度不純物として混入することは避けられず、30
ppm以下とするのは技術的には可能であるが、コスト
的に不利であると考えられるからである。
The zinc alloy of the present invention is added with indium, bismuth, aluminum, gallium and calcium, strontium, barium, etc., as an alternative element of lead, so that the zinc alloy in the undischarged state is better than that of the unalloyed lead-added zinc alloy. Corrosion resistance can be increased. Although the details of the mechanism of action of each additive element in this case have not been fully clarified, it has been confirmed that hydrogen gas generation cannot be suppressed to a practical level when each element is added alone. It is considered that, due to the synergistic effect of the addition of a plurality of elements, the hydrogen overvoltage on the surface of the zinc alloy is increased, or the surface is smoothed and the surface area is reduced, so that the corrosion resistance is improved. It should be noted that what is expressed here as lead-free is that even if what is said to be pure zinc in the current general zinc refining technology, 30 p
It is unavoidable that impurities are mixed in as much as pm.
This is because it can be technically possible, but it is considered to be disadvantageous in terms of cost.

【0008】また、本発明の亜鉛合金粉末は、鉛添加亜
鉛合金粉末よりもガス発生量が少なく、発生したガスを
逃がす構造を有する電池にはそのまま使用できるが、密
閉構造を有する円筒型アルカリマンガン電池等では、本
発明のような亜鉛合金組成の改善だけでは、漏液を引き
起こさない実用可能なレベルのガス発生には抑制できな
い。
Further, the zinc alloy powder of the present invention has a smaller gas generation amount than the lead-added zinc alloy powder and can be used as it is for a battery having a structure for releasing the generated gas. In batteries and the like, merely improving the zinc alloy composition as in the present invention cannot suppress the generation of gas at a practicable level without causing liquid leakage.

【0009】そこで、防食剤(インヒビター)としてイ
ンジウム化合物及び/またはフッ素系界面活性剤を添加
することにより、密閉構造を有する電池でも実用可能な
ゲル状負極を得ることができる。このうち、インジウム
化合物は、そのガス発生抑制機構の詳細は明らかでない
が、電池を一部放電した場合のガス発生に多大な効果が
あり、一方、フッ素系界面活性剤は亜鉛合金粉末表面に
付着して自己放電を抑えて、未放電でのガス発生をより
抑制するとともに、不純物がゲル状負極に混入した際に
は、亜鉛粉と不純物の接触の機会を減らし、不純物によ
るガス発生の危険性をより下げることもできる。
Therefore, by adding an indium compound and / or a fluorine-based surfactant as an anticorrosive agent (inhibitor), a gelled negative electrode that can be used even in a battery having a sealed structure can be obtained. Of these, the indium compound has a great effect on gas generation when the battery is partially discharged, while the details of the gas generation suppression mechanism are not clear, while the fluorine-based surfactant adheres to the surface of the zinc alloy powder. The self-discharge is suppressed to further suppress the gas generation in the undischarged state, and when impurities are mixed in the gelled negative electrode, the chance of contact between zinc powder and impurities is reduced, and the risk of gas generation due to impurities. Can be lowered.

【0010】[0010]

【実施例】以下、本発明の実施例及び比較例について詳
細に説明する。 (実施例1)まず、ゲル化剤としてのポリアクリル酸
0.4重量部に、試薬特級相当以上の酸化インジウム
(In2 3 )を0.039重量部(In換算として亜
鉛合金粉末に対して0.05重量%)加え、ポットミル
で10分間均一に混合した後、これをIn:0.05重
量%、Bi:0.01重量%、Al:0.003重量
%、Ga:0.01重量%、及びBa:0.005重量
%を含む粒径100〜300μmの亜鉛合金粉末65重
量部に加え、汎用混合機で5分間攪拌し、均一に混合し
た。次いで酸化亜鉛を3.5重量%溶解した35重量%
濃度の苛性カリ水溶液35重量部に、フッ素系界面活性
剤0.000975重量部(亜鉛合金粉末に対して0.
0015重量%)を添加し、10分間混合攪拌して十分
に分散させた後、前記亜鉛合金粉末の混合物を4分間か
けて徐々に添加するとともに、150mmHg以下の減
圧状態で攪拌・混合し、更に、10mmHg以下の減圧
状態にして5分間攪拌して、均一なゲル状負極を製造し
た。
EXAMPLES Examples of the present invention and comparative examples will be described in detail below. (Example 1) First, 0.439 parts by weight of polyacrylic acid as a gelling agent was added with 0.039 parts by weight of indium oxide (In 2 O 3 ) of a reagent grade or higher (based on zinc alloy powder as In conversion). 0.05% by weight) and uniformly mixed in a pot mill for 10 minutes, and then mixed with In: 0.05% by weight, Bi: 0.01% by weight, Al: 0.003% by weight, Ga: 0.01 Wt% and Ba: 0.005 wt% and added to 65 parts by weight of a zinc alloy powder having a particle size of 100 to 300 μm, and stirred for 5 minutes with a general-purpose mixer to uniformly mix. 35% by weight of zinc oxide dissolved in 3.5% by weight
To 35 parts by weight of a caustic potash aqueous solution having a concentration of 0.0009975 parts by weight of a fluorine-based surfactant (0.1% with respect to zinc alloy powder).
0015% by weight) and mixed and stirred for 10 minutes to sufficiently disperse, then the mixture of the zinc alloy powder is gradually added over 4 minutes, and the mixture is stirred and mixed under a reduced pressure of 150 mmHg or less, and The pressure was reduced to 10 mmHg or less and stirred for 5 minutes to produce a uniform gelled negative electrode.

【0011】得られたゲル状負極を用いて図1に示すJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。この図1において、1は正極端子を兼ねる有底円筒
形の金属缶であり、この金属缶1内には円筒状に加圧成
型した正極合剤2が充填されている。正極合剤2は、二
酸化マンガン粉末とカーボン粉末を混合し、これを金属
缶1内に収納し所定の圧力で中空円筒状に加圧成形した
ものである。また、正極合剤2の中空部には、アセター
ル化ポリビニルアルコール繊維の不織布からなる有底円
筒状のセパレータ3を介して前記方法で製造したゲル状
負極4が充填されている。ゲル状負極4内には真鍮製の
負極集電棒5が、その上端部をゲル状負極4より突出す
るように挿着されている。負極集電棒5の突出部外周面
及び金属缶1の上部内周面には二重環状のポリアミド樹
脂からなる絶縁ガスケット6が配設されている。また、
ガスケット6の二重環状部の間にはリング状の金属板7
が配設され、かつ金属板7には負極端子を兼ねる帽子形
の金属封口板8が集電棒5の頭部に当接するように配設
されている。そして、金属缶1の開口縁を内方に屈曲さ
せることによりガスケット6及び金属封口板8で金属缶
1内を密封口している。
Using the gelled negative electrode thus obtained, the J shown in FIG.
An IS standard LR6 type (AA) alkaline battery was assembled. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can that also serves as a positive electrode terminal. The metal can 1 is filled with a positive electrode mixture 2 which is pressure-molded into a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and carbon powder, which is housed in the metal can 1 and pressed into a hollow cylinder at a predetermined pressure. In addition, the hollow portion of the positive electrode mixture 2 is filled with the gelled negative electrode 4 manufactured by the above method via the bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber. In the gelled negative electrode 4, a brass negative electrode current collector rod 5 is inserted so that the upper end portion thereof protrudes from the gelled negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is disposed on the outer peripheral surface of the protruding portion of the negative electrode current collector rod 5 and the upper inner peripheral surface of the metal can 1. Also,
A ring-shaped metal plate 7 is provided between the double annular portions of the gasket 6.
In addition, a cap-shaped metal sealing plate 8 also serving as a negative electrode terminal is arranged on the metal plate 7 so as to abut on the head of the current collecting rod 5. The opening edge of the metal can 1 is bent inward to seal the inside of the metal can 1 with the gasket 6 and the metal sealing plate 8.

【0012】(実施例2〜13)亜鉛粉の合金組成が表
1に示す通りであること以外、実施例1と同様にしてJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。
(Examples 2 to 13) J was carried out in the same manner as in Example 1 except that the alloy composition of the zinc powder was as shown in Table 1.
An IS standard LR6 type (AA) alkaline battery was assembled.

【0013】[0013]

【表1】 [Table 1]

【0014】(実施例14〜15)酸化インジウムの添
加量が表1に示す通りであること以外、実施例1と同様
にしてJIS規格LR6形(単3形)アルカリ電池を組
み立てた。
(Examples 14 to 15) JIS standard LR6 type (AA) alkaline batteries were assembled in the same manner as in Example 1 except that the added amount of indium oxide was as shown in Table 1.

【0015】(実施例16〜17)フッ素系界面活性剤
の添加量が表1に示す通りであること以外、実施例1と
同様にしてJIS規格LR6形(単3形)アルカリ電池
を組み立てた。
(Examples 16 to 17) A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 1 except that the amount of the fluorine-based surfactant added was as shown in Table 1. .

【0016】(比較例1〜15)亜鉛粉の合金組成が表
3に示す通りであること以外、実施例1と同様にしてJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。
(Comparative Examples 1 to 15) J was carried out in the same manner as in Example 1 except that the alloy composition of the zinc powder was as shown in Table 3.
An IS standard LR6 type (AA) alkaline battery was assembled.

【0017】[0017]

【表3】 [Table 3]

【0018】(比較例16〜20)酸化インジウム及び
フッ素系界面活性剤の添加量が表3に示す通りであるこ
と以外、実施例1と同様にしてJIS規格LR6形(単
3形)アルカリ電池を組み立てた。
(Comparative Examples 16 to 20) JIS standard LR6 type (AA) alkaline batteries were prepared in the same manner as in Example 1 except that the amounts of indium oxide and fluorine-based surfactant added were as shown in Table 3. Assembled.

【0019】以上のようにして組み立てた各LR6電池
について、未放電及び一部放電(2Ω30分放電)後の
電池を60℃で40日間貯蔵した後、水中で分解して電
池内部のガスを捕集した結果(n=10個の平均値)、
2Ω連続放電持続時間(0.9Vまで、n=6個の平均
値)及び1.2kΩ連続放電での単寿命発生率(n=5
0個)を調べた。表2及び表4にこれら電池の試験結果
を示す。
For each LR6 battery assembled as described above, the undischarged and partially discharged (2Ω 30 minutes discharge) batteries were stored at 60 ° C. for 40 days and then decomposed in water to capture gas inside the batteries. Collected results (n = 10 average values),
2Ω continuous discharge duration (up to 0.9V, n = 6 average value) and 1.2kΩ continuous discharge single life occurrence rate (n = 5
0) was investigated. Tables 2 and 4 show the test results of these batteries.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表4】 [Table 4]

【0022】表2及び表4より明らかなように、比較例
4,7,10及び13によると、インジウム、ビスマ
ス、アルミニウム、ガリウムを単独で添加しても、未放
電、一部放電ともに60℃40日貯蔵で漏液してしま
い、ガス発生抑制に効果がないことがわかるが、実施例
1〜17のように複数元素系になると相乗効果によっ
て、比較例1の鉛を含有した亜鉛合金よりもガス発生が
抑制される。
As is clear from Tables 2 and 4, according to Comparative Examples 4, 7, 10 and 13, even if indium, bismuth, aluminum and gallium were added alone, both undischarged and partially discharged were 60 ° C. It can be seen that liquid is leaked after 40 days of storage and there is no effect in suppressing gas generation. However, when a multi-element system is used as in Examples 1 to 17, a synergistic effect results in a lead-containing zinc alloy of Comparative Example 1. Also, gas generation is suppressed.

【0023】実施例1〜3及び比較例2〜3によると、
亜鉛合金中の添加元素としてのインジウムは、鉛無添加
の場合、非常にガス発生抑制に効果があり、インジウム
を添加しない(比較例2)と、ビスマス、アルミニウ
ム、ガリウム等を添加しても実用可能なレベルにはなら
ない。また、インジウムを0.1重量%より多く添加し
ても(比較例3)、際立った効果はなく、コストの面か
ら考えるとインジウムは0.1重量%以下が良い。
According to Examples 1-3 and Comparative Examples 2-3,
Indium as an additive element in the zinc alloy is very effective in suppressing gas generation when lead is not added, and is practically used even if indium is not added (Comparative Example 2) and bismuth, aluminum, gallium, etc. are added. Not at a possible level. Even if indium is added in an amount of more than 0.1% by weight (Comparative Example 3), there is no remarkable effect, and in terms of cost, indium is preferably 0.1% by weight or less.

【0024】実施例1,4,5及び比較例5,6による
と、亜鉛合金中の添加元素としてのビスマスは表面を平
滑化し、表面積を減少させることによりガス発生を抑制
すると考えられるが、その反面、添加量が多くなると重
負荷放電特性に悪影響を及ぼすようであるので、ガス発
生抑制と重負荷放電特性のバランスを考慮すると、0.
001〜0.01重量%の範囲で添加することが望まし
い。
According to Examples 1, 4, 5 and Comparative Examples 5, 6, bismuth as an additive element in the zinc alloy is considered to suppress the gas generation by smoothing the surface and reducing the surface area. On the other hand, it seems that the heavy load discharge characteristics are adversely affected when the added amount is large, and therefore, considering the balance between the gas generation suppression and the heavy load discharge characteristics,
It is desirable to add in the range of 001 to 0.01% by weight.

【0025】実施例1,6,7及び比較例8,9による
と、アルミニウムはガス発生抑制効果は大きいが、添加
量が多くなると軽負荷放電時に短寿命を引き起こし易い
ことが懸念されるので、ガス発生抑制と軽負荷放電特性
のバランスを考えると、0.001〜0.01重量%の
範囲で添加することが望ましい。
According to Examples 1, 6 and 7 and Comparative Examples 8 and 9, although aluminum has a great effect of suppressing gas generation, there is a concern that a large amount of aluminum tends to cause a short life at light load discharge. Considering the balance between suppression of gas generation and light load discharge characteristics, it is desirable to add in the range of 0.001 to 0.01% by weight.

【0026】実施例1,8,9及び比較例11,12に
よると、ガリウムを添加することによるガス発生抑制効
果は明らかであるが、0.01重量%より多く添加して
も(比較例12)、際立った効果はなく、コストの面か
ら考えるとガリウムは0.01重量%以下が良い。
According to Examples 1, 8 and 9 and Comparative Examples 11 and 12, the gas generation suppressing effect by the addition of gallium is clear, but even if it is added in an amount of more than 0.01% by weight (Comparative Example 12). ), There is no noticeable effect, and 0.01% by weight or less of gallium is preferable from the viewpoint of cost.

【0027】実施例1,10〜13及び比較例14,1
5によると、バリウム等の元素を添加すると、インジウ
ム、ビスマス、アルミニウム、ガリウムの4元素を添加
した場合よりも一部放電後のガス発生がより少ないより
安全なアルカリ電池が得られることがわかる。但し、バ
リウム等の添加量が多過ぎると、かえってガス発生が多
くなる傾向があるので、0.05重量%以下であること
が望ましい。また、本実施例には記載していないが、バ
リウム、カルシウム、ストロンチウムの内の2種以上を
適量添加しても、本実施例と同様に良好な結果が得られ
た。
Examples 1, 10 to 13 and Comparative Examples 14 and 1
5, it can be seen that the addition of an element such as barium produces a safer alkaline battery with less gas generation after partial discharge than the case of adding the four elements of indium, bismuth, aluminum and gallium. However, if the addition amount of barium or the like is too large, the amount of gas generated tends to increase, so the content is preferably 0.05% by weight or less. Although not described in this example, even if two or more kinds of barium, calcium and strontium were added in an appropriate amount, good results were obtained as in this example.

【0028】実施例1,14〜17及び比較例16〜2
0によると、酸化インジウムの添加は、一部放電後のガ
ス発生を、密閉構造を有するアルカリ電池で実用可能な
レベルに抑制するために必要であることは明白である。
しかし、0.5重量%より多く添加しても際立った効果
はなく、コストの面から考えると、0.5重量%以下の
添加量で良い。
Examples 1, 14-17 and Comparative Examples 16-2
According to 0, it is clear that the addition of indium oxide is necessary to suppress the gas generation after partial discharge to a level practical for an alkaline battery having a sealed structure.
However, adding more than 0.5% by weight has no remarkable effect, and from the viewpoint of cost, the addition amount of 0.5% by weight or less is sufficient.

【0029】なお、本実施例には記載していないが、酸
化インジウムの代わりに水酸化インジウム、硝酸インジ
ウム、塩化インジウム、硫酸インジウム等のインジウム
化合物を添加しても、本実施例と同様に良好な結果が得
られた。また、フッ素系界面活性剤の添加は未放電での
ガス発生抑制に効果があることがわかるが、0.01重
量%より多く添加すると、ゲル状負極のインピーダンス
が上昇するために重負荷放電に悪影響を及ぼすようであ
るので、0.01重量%以下の添加量でよい。
Although not described in this embodiment, even if an indium compound such as indium hydroxide, indium nitrate, indium chloride or indium sulfate is added instead of indium oxide, the same effect as in this embodiment is obtained. The results were obtained. Also, it can be seen that the addition of the fluorine-based surfactant is effective in suppressing the gas generation in the undischarged state, but if added in an amount of more than 0.01% by weight, the impedance of the gelled negative electrode will increase, resulting in heavy load discharge. Since it seems to have an adverse effect, the amount added may be 0.01% by weight or less.

【0030】[0030]

【発明の効果】以上説明したように、本発明の亜鉛合金
粉末と防食剤を使用したゲル状負極を有する亜鉛アルカ
リ電池は、無汞化且つ鉛無添加という電池のさらなる低
公害化を達成し、しかも無汞化・鉛添加亜鉛合金粉末を
使用した場合よりもガス発生が少なく安全で高性能な優
れたものとなっている。
As described above, the zinc-alkaline battery having the gelled negative electrode using the zinc alloy powder and the anticorrosive of the present invention achieves further pollution reduction of the battery which is free of lead and containing no lead. Moreover, it is excellent in that it produces less gas and is safer and has higher performance than the case of using the leadless zinc alloy powder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によりなるLR6形アルカリ電池の断面
図である。
FIG. 1 is a cross-sectional view of an LR6 type alkaline battery according to the present invention.

【符号の説明】[Explanation of symbols]

4 ゲル状負極 5 集電棒 6 ガスケット 4 Gelled negative electrode 5 Current collector rod 6 Gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 インジウム0.01〜0.1重量%、ビ
スマス0.001〜0.01重量%、アルミニウム0.
001〜0.01重量%、ガリウム0.001〜0.0
1重量%、及びカルシウム、ストロンチウム、バリウム
からなる群より選ばれた少なくとも1種類以上を、0.
001〜0.05重量%含有する無汞化且つ鉛無添加の
亜鉛合金粉末を負極活物質としたゲル状負極を有する亜
鉛アルカリ電池。
1. Indium 0.01 to 0.1% by weight, bismuth 0.001 to 0.01% by weight, aluminum 0.
001 to 0.01% by weight, gallium 0.001 to 0.0
1% by weight and at least one selected from the group consisting of calcium, strontium and barium,
A zinc-alkaline battery having a gelled negative electrode in which a lead-free zinc alloy powder containing 001 to 0.05% by weight is used as a negative electrode active material.
【請求項2】 該ゲル状負極に亜鉛合金粉末の防食剤と
して、インジウム化合物を亜鉛合金粉末に対してインジ
ウム換算で0.005〜0.5重量%添加したことを特
徴とする請求項1記載の亜鉛アルカリ電池。
2. An indium compound as an anticorrosive agent for zinc alloy powder is added to the gelled negative electrode in an amount of 0.005 to 0.5% by weight in terms of indium with respect to the zinc alloy powder. Zinc alkaline battery.
【請求項3】 該ゲル状負極に亜鉛合金粉末の防食剤と
して、フッ素系界面活性剤を亜鉛合金粉末に対して0.
0005〜0.01重量%添加したことを特徴とする請
求項1または請求項2記載の亜鉛アルカリ電池。
3. A gelling negative electrode containing a fluorine-based surfactant as an anticorrosive agent for zinc alloy powder in an amount of 0.1.
The zinc alkaline battery according to claim 1 or 2, wherein the zinc alkaline battery is added in an amount of 0005 to 0.01% by weight.
JP5148280A 1993-05-28 1993-05-28 Zinc-alkaline battery Pending JPH06338319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5148280A JPH06338319A (en) 1993-05-28 1993-05-28 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5148280A JPH06338319A (en) 1993-05-28 1993-05-28 Zinc-alkaline battery

Publications (1)

Publication Number Publication Date
JPH06338319A true JPH06338319A (en) 1994-12-06

Family

ID=15449239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5148280A Pending JPH06338319A (en) 1993-05-28 1993-05-28 Zinc-alkaline battery

Country Status (1)

Country Link
JP (1) JPH06338319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118286A (en) * 2008-11-14 2010-05-27 Hitachi Maxell Ltd Alkaline battery
JP2010153287A (en) * 2008-12-26 2010-07-08 Hitachi Maxell Ltd Alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118286A (en) * 2008-11-14 2010-05-27 Hitachi Maxell Ltd Alkaline battery
JP2010153287A (en) * 2008-12-26 2010-07-08 Hitachi Maxell Ltd Alkaline battery

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0955207A (en) Zinc-alkali battery
JPH065284A (en) Zinc alkaline battery
JPS6240162A (en) Zinc alkaline battery
JPH06338319A (en) Zinc-alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH09270254A (en) Zinc alkaline battery
JPH06338314A (en) Zinc-alkaline battery
JPH0822822A (en) Zinc alkaline battery
JPH06338318A (en) Zinc-alkaline battery
JPH0119622B2 (en)
JPH0317181B2 (en)
JP2563109B2 (en) Alkaline battery
JPH065285A (en) Zinc alkaline battery
JPH06223828A (en) Zinc alkaline battery
JPH06338317A (en) Zinc-alkaline battery
JPH0955206A (en) Zinc-alkali battery
JPH0822823A (en) Zinc alkaline battery
JPH09265977A (en) Zinc alkaline battery
JPH07105941A (en) Zinc alkaline battery
JPH0955208A (en) Zinc-alkali battery
JP2563108B2 (en) Alkaline battery
JPH09265978A (en) Zinc alkaline battery