JPH0119622B2 - - Google Patents

Info

Publication number
JPH0119622B2
JPH0119622B2 JP10015482A JP10015482A JPH0119622B2 JP H0119622 B2 JPH0119622 B2 JP H0119622B2 JP 10015482 A JP10015482 A JP 10015482A JP 10015482 A JP10015482 A JP 10015482A JP H0119622 B2 JPH0119622 B2 JP H0119622B2
Authority
JP
Japan
Prior art keywords
zinc
mercury
amount
alloy
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10015482A
Other languages
Japanese (ja)
Other versions
JPS58218762A (en
Inventor
Akio Nagamine
Akira Hayashi
Kazumasa Yoshida
Kojiro Myasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10015482A priority Critical patent/JPS58218762A/en
Priority to US06/499,884 priority patent/US4500614A/en
Publication of JPS58218762A publication Critical patent/JPS58218762A/en
Publication of JPH0119622B2 publication Critical patent/JPH0119622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、亜鉛を負極とし、アルカリ電解液を
用いたアルカリマンガン電池、酸化銀電池、空気
電池等のアルカリ電池に関するものである。 本発明は、水銀量を従来のアルカリ電池より低
減し、しかも負極からのガス発生を抑制すると同
時に重負荷放電特性の低下を防ぎ実用電池として
用いられるものを提供することを目的とするもの
である。 従来のアルカリ電池においては、負極の反応面
積を大きくするため亜鉛粉末が通常用いられ水素
過電圧を高くしてガス発生を防ぐためアマルガム
化をおこなつている。しかし表面積が大きいため
亜鉛に対して5〜10wt%の水銀量を必要とする。
例えば、JIS名称LR20、LR14またはLR6等のサ
イズの大きいアルカリ電池では負極に用いられる
亜鉛量が多いので必然的に水銀量も多くなる。 このような理由から水銀量を低減し、しかもア
ルカリ電解液中での亜鉛の腐蝕を防止してガス発
生を抑制し、これによつて電解液漏液を防止する
ために種々の金属を亜鉛に添加することが提案さ
れている。 例えば、特開昭53−103127号公報によれば、イ
ンジウム(In)、ガリウム(Ga)を単独か、また
は混合して水銀とアマルガム化した合金を亜鉛に
被覆し、この際インジウムまたはガリウムが亜鉛
に対して2〜10wt%、水銀が亜鉛に対して2〜
14wt%となるように被覆せしめている。 また他の例としては、タンタル(Ta)、タリウ
ム(T)、ガリウム(Ga)、インジウム(In)
のうちの1種または3種と水銀を使用しないか微
量の水銀とを任意の割合でアマルガム化して亜鉛
粉末に被覆することも特開昭53−41733号公報に
示されている。この従来例では水銀の添加量は具
体的に記載されていない。 さらにまた、特開昭47−35727号公報には、均
質固相溶融合金として、化学的あるいは電解共還
元もしくは電解共付着法によつて得た金属間合金
または侵入型合金を融点あるいは、融点に近いと
ころで均質固相溶融合金とする周知の方法によつ
て得たガリウム(Ga)、鉛(Pb)、ゲルマニウム
(Ge)を含む亜鉛合金に水銀を亜鉛に対して10wt
%アマルガムした負極を用いるアルカリ電池も提
案されている。 上記の各従来例の記載から亜鉛に対して水銀量
を最小2wt%から最大14wt%の重量範囲で用いる
ことが、電解液の漏液を促進するガス発生の抑制
および重負荷放電特性の向上のために適正な添加
量であると理解できる。 上記の従来例に記載された負荷を用いた場合、
ガス発生量の抑制およびび重負荷放電特性の効果
が充分得られるが、水銀量の使用については環境
汚染の面からできるだけ減少することが望まし
い。現在では使用済のアルカリ電池は土壌中に埋
没し人工海水を散布して水銀の溶出量をJIS K
0102工場排水試験に準拠して測定した結果、1年
後の溶出量は0.3μg/でありより少ない量の水
銀を用いしかも電池放電性能を低下せしめないア
ルカリ電池を得る必要がある。 本発明者らは、種々検討した結果、ガリウム、
インジウム、タリウムのうちの2種以上の金属と
亜鉛との合金粉末に水銀量を亜鉛に対して0.05wt
%以上1.8wt%以下含有せしめた負極をアルカリ
電池に用いることによつて重負荷放電特性を損う
ことがなく、しかも水銀溶出のないアルカリ電池
が得られることがわかつた。 以下本発明の実施例を図面を参照して説明す
る。 実施例 1 1は金属容器で、内部に二酸化マンガンと鱗状
黒鉛とを配合した正極合剤2を加圧充填してあ
る。3はパルプおよび合成繊維とを混抄したセパ
レータで内部に下記に示した第1表に記載した合
金組成の亜鉛粉末に水銀を含有せしめた負極4を
酸化亜鉛を飽和したアルカリ電解液をポリアクリ
ル酸ソーダでゲル状にした電解液とともに充填し
てある。5は合成ゴムまたはポリエチレンなどか
らなる絶縁ガスケツトである。負極端子板6に溶
接した真鍮製の集電棒7は前記負極4の中心に挿
入してある。8は絶縁チユーブで正極端子板9の
外周縁から負極端子板6ならびに金属容器の外周
縁を被覆し金属外装缶の上下開口端部を内方に折
曲して密封口したアルカリ電池とする。 上記実施例における亜鉛合金粉末は次のように
して得たものである。この実施例では溶融した亜
鉛にガリウム、インジウム、タリウムの3種の金
属をその所定量を投入して撹拌混合し合金化した
のち、亜鉛粉末を調製した。この合金粉末を弱ア
ルカリ性水溶液中で撹拌しながら金属水銀を注加
してアマルガム化したのち、水洗し、約60℃で減
圧乾燥して調製した。その合金組成は第1表に示
したものであり、また上記実施例に述べたJIS名
称LR6形アルカリ電池の負極に用いて重負荷放電
性能および水銀溶出量の測定結果をそれぞれ第1
表に示した。
The present invention relates to alkaline batteries, such as alkaline manganese batteries, silver oxide batteries, and air batteries, which use zinc as a negative electrode and an alkaline electrolyte. The object of the present invention is to provide a battery that can be used as a practical battery by reducing the amount of mercury compared to conventional alkaline batteries, suppressing gas generation from the negative electrode, and at the same time preventing deterioration of heavy load discharge characteristics. . In conventional alkaline batteries, zinc powder is usually used to increase the reaction area of the negative electrode, and amalgamation is performed to increase the hydrogen overvoltage and prevent gas generation. However, since the surface area is large, 5 to 10 wt% of mercury is required relative to zinc.
For example, in large alkaline batteries such as JIS LR20, LR14, or LR6, the amount of zinc used in the negative electrode is large, so the amount of mercury is also inevitably large. For these reasons, various metals have been added to zinc in order to reduce the amount of mercury, prevent corrosion of zinc in alkaline electrolyte, suppress gas generation, and thereby prevent leakage of electrolyte. It is proposed to add For example, according to Japanese Patent Application Laid-open No. 53-103127, zinc is coated with an alloy of indium (In) and gallium (Ga), either alone or in a mixture with mercury, and in this case, indium or gallium is 2 to 10 wt% of mercury to zinc, and 2 to 10 wt% of mercury to zinc.
It is coated with a concentration of 14wt%. Other examples include tantalum (Ta), thallium (T), gallium (Ga), and indium (In).
JP-A-53-41733 also discloses that one or three of these and no mercury or a trace amount of mercury may be amalgamated in arbitrary proportions and coated on zinc powder. In this conventional example, the amount of mercury added is not specifically described. Furthermore, JP-A No. 47-35727 discloses that an intermetallic alloy or an interstitial alloy obtained by chemical or electrolytic co-reduction or electrolytic co-deposition method is used as a homogeneous solid-phase molten alloy at the melting point or at the melting point. A zinc alloy containing gallium (Ga), lead (Pb), and germanium (Ge) obtained by a well-known method to form a homogeneous solid-phase soluble alloy in a nearby area is injected with 10wt of mercury relative to zinc.
Alkaline batteries using % amalgamated negative electrodes have also been proposed. From the description of each of the above conventional examples, it is found that using mercury in the range of a minimum of 2wt% to a maximum of 14wt% relative to zinc is effective in suppressing gas generation that promotes electrolyte leakage and improving heavy-load discharge characteristics. Therefore, it can be understood that the amount added is appropriate. When using the load described in the conventional example above,
Although the effects of suppressing the amount of gas generated and increasing heavy load discharge characteristics can be sufficiently obtained, it is desirable to reduce the amount of mercury used as much as possible from the viewpoint of environmental pollution. Currently, used alkaline batteries are buried in the soil and sprayed with artificial seawater to measure the amount of mercury eluted.
As a result of measurement in accordance with the 0102 factory wastewater test, the elution amount after one year was 0.3 μg/, and it is necessary to obtain an alkaline battery that uses a smaller amount of mercury and does not deteriorate the battery discharge performance. As a result of various studies, the present inventors found that gallium,
The amount of mercury is 0.05wt relative to zinc in the alloy powder of two or more metals of indium and thallium and zinc.
It has been found that by using a negative electrode containing mercury in an amount of 1.8 wt % or more in an alkaline battery, the heavy load discharge characteristics are not impaired and an alkaline battery without mercury elution can be obtained. Embodiments of the present invention will be described below with reference to the drawings. Example 1 1 is a metal container in which a positive electrode mixture 2 containing manganese dioxide and scaly graphite is filled under pressure. 3 is a separator made of a mixture of pulp and synthetic fibers, and inside is a negative electrode 4 containing mercury in zinc powder having the alloy composition shown in Table 1 below, and an alkaline electrolyte saturated with zinc oxide containing polyacrylic acid. It is filled with an electrolyte made into a gel with soda. 5 is an insulating gasket made of synthetic rubber or polyethylene. A brass current collector rod 7 welded to the negative electrode terminal plate 6 is inserted into the center of the negative electrode 4. An insulating tube 8 covers the outer circumferential edge of the positive terminal plate 9, the negative electrode terminal plate 6, and the outer circumferential edge of the metal container, and the upper and lower open ends of the metal exterior can are bent inward to form an alkaline battery with a sealed opening. The zinc alloy powder in the above examples was obtained as follows. In this example, predetermined amounts of three metals, gallium, indium, and thallium, were added to molten zinc, stirred and mixed to form an alloy, and then zinc powder was prepared. This alloy powder was amalgamated by pouring metallic mercury into a slightly alkaline aqueous solution while stirring, then washed with water, and dried under reduced pressure at approximately 60°C to prepare the powder. The alloy composition is shown in Table 1, and the heavy load discharge performance and mercury elution amount were measured using the negative electrode of the JIS name LR6 type alkaline battery described in the above example.
Shown in the table.

【表】 第1表中、亜鉛利用率とは250mAと500mAの
定電流放電をおこない終止電圧0.9Vまでの放電
持続時間から亜鉛負極の利用率を求めたものであ
る。また水銀溶出量は土壌中に金属容器に孔をあ
けた電池を埋設し人工海水を散布して1年後、土
壌中に溶出した水銀を化学分析して求めたもので
ある。 この実施例の試料No.1〜3の合金組成では、亜
鉛利用率がいずれの場合も高純度亜鉛粉末に
6.4wt%の水銀量をアマルガム化して含有させた
従来品より高い値であつた。 この理由としては、ガリウム、インジウム、タ
リウムの3種の金属が亜鉛の腐蝕を防止すること
と、亜鉛に対する水銀量が0.05wt%以上1.8wt%
以下であつても電解液中での亜鉛の自己放電を防
止するからと考えられる。 なお、本発明の効果をさらに明確にするため、
負極亜鉛の腐蝕性を評価するためにガス発生量を
測定した。この試験には酸化亜鉛を飽和した
35wt%の苛性カリ溶液3.5ml中に各試料No.1〜7
までの亜鉛合金粉末を5.00g秤量して浸漬し、45
℃で72時間放置し発生した水素ガスを捕捉しガス
発生量(ml/g/日)を求めた。その結果は第2
表にそれぞれ示した。
[Table] In Table 1, the zinc utilization rate is the utilization rate of the zinc negative electrode determined from the discharge duration until the final voltage is 0.9V when constant current discharges are performed at 250 mA and 500 mA. The amount of mercury eluted was determined by chemically analyzing the mercury eluted into the soil one year after burying a battery with a hole in a metal container in the soil and spraying artificial seawater. In the alloy compositions of samples No. 1 to 3 in this example, the zinc utilization rate is high in all cases.
This value was higher than that of a conventional product containing 6.4 wt% of mercury in amalgam form. The reason for this is that the three metals gallium, indium, and thallium prevent corrosion of zinc, and the amount of mercury relative to zinc is 0.05wt% or more and 1.8wt%.
This is considered to be because self-discharge of zinc in the electrolytic solution is prevented even if the amount is below. In addition, in order to further clarify the effects of the present invention,
The amount of gas generated was measured to evaluate the corrosivity of negative electrode zinc. This test involved zinc oxide saturated
Each sample No. 1 to 7 in 3.5 ml of 35 wt% caustic potash solution
Weigh and soak 5.00g of zinc alloy powder up to 45
The hydrogen gas generated after being left at ℃ for 72 hours was captured and the amount of gas generated (ml/g/day) was determined. The result is the second
Each is shown in the table.

【表】 この表からわかるように、0.05〜1.80wt%の水
銀量の範囲では、0.002〜0.006ml/g/日のガス
発生量であり、比較例の試料No.4の水銀を加えて
いないものと試料No.5の0.04wt%の水銀量ではそ
れぞれ0.045ml/g/日、0.009ml/g/日のガス
発生量を生じるので本発明の3種の金属を亜鉛と
合金化して亜鉛の防腐効果を生じることがわか
る。また水銀量は比較例の試料No.5およびNo.6と
比べて、水銀量は0.05wt%以上必要であり、また
第1表に示した水銀溶出量との関係から1.8wt%
以下が望ましい。 以下に述べる各実施例には、亜鉛にガリウム、
インジウム、タリウムのうちの2種の金属とを溶
融して亜鉛粉末とし、水銀によるアマルガム化は
実施例1と同様にして得たものである。また亜鉛
利用率、水銀溶出量は実施例1に記載したのと同
一構造のLR6形アルカリ電池で、またガス発生量
も実施例1と同一の試験法を用いた。 実施例 2 この実施例では、亜鉛―ガリウム―タリウムの
亜鉛合金粉末を負極としたものである。合金組成
は第3表に、ガス発生量は、第4表にそれぞれ示
した。
[Table] As can be seen from this table, in the range of 0.05 to 1.80 wt% mercury, the gas generation amount is 0.002 to 0.006 ml/g/day, and the comparative sample No. 4, which does not contain mercury Since the amount of mercury of 0.04wt% in Sample No. 5 and Sample No. 5 results in gas generation of 0.045ml/g/day and 0.009ml/g/day, respectively, the three metals of the present invention are alloyed with zinc. It can be seen that it has a preservative effect. In addition, the amount of mercury is required to be 0.05wt% or more compared to samples No. 5 and No. 6 of the comparative example, and from the relationship with the amount of mercury elution shown in Table 1, it is 1.8wt%.
The following are desirable. In each of the examples described below, gallium is added to zinc.
Zinc powder was obtained by melting two metals, indium and thallium, and amalgamated with mercury in the same manner as in Example 1. Further, the zinc utilization rate and the mercury elution amount were measured using an LR6 type alkaline battery having the same structure as described in Example 1, and the same test method as in Example 1 was used for the gas generation amount. Example 2 In this example, a zinc alloy powder of zinc-gallium-thallium was used as the negative electrode. The alloy composition is shown in Table 3, and the amount of gas generated is shown in Table 4.

【表】【table】

【表】 実施例 3 この実施例では、亜鉛―インジウム―タリウム
の亜鉛合金粉末を負極としたものでである。合金
組成は第5表に、ガス発生量は第6表にそれぞれ
示した。
[Table] Example 3 In this example, a zinc alloy powder of zinc-indium-thallium was used as the negative electrode. The alloy composition is shown in Table 5, and the amount of gas generated is shown in Table 6.

【表】【table】

【表】 実施例 4 この実施例では、亜鉛―ガリウム―インジウム
の亜鉛合金粉末を負極としたものである。合金組
成は第7表に、ガス発生量は第8表にそれぞれ示
した。
[Table] Example 4 In this example, a zinc alloy powder of zinc-gallium-indium was used as the negative electrode. The alloy composition is shown in Table 7, and the amount of gas generated is shown in Table 8.

【表】【table】

【表】 前記各実施例を比較すると亜鉛にガリウム、イ
ンジウム、タリウムの3種の金属との合金で水銀
アマルガムしたものが亜鉛利用率およびガス発生
量ともすぐれているが、亜鉛にガリウム、インジ
ウム、タリウムのうちから2種を選択して合金と
した場合でも亜鉛利用率は250mA放電で最低92
%、500mA放電で79%を示しており、6.4wt%の
水銀でアマルガムした従来品より若干劣るが、こ
の程度では実用電池の使用上問題はない。 本発明では、亜鉛に合金として添加する金属と
してガリウム、インジウム、タリウムの3種に限
定しているが、防蝕効果を示す金属のうち特にこ
の3種の金属が防蝕効果が高いからである。また
これら金属のうち1種のみでは、いずれの場合も
亜鉛利用率およびガス発生量が高く本発明の効果
は期待できない。 なおまた、本発明で水銀量を0.05wt%以上
1.8wt%以下に限定した理由は、亜鉛利用率で示
したように重負荷放電特性の点から0.05wt%以上
必要であるが水銀溶出による自然環境への影響を
考えると1.8wt%以下がよい。本発明電池の場合
はガリウム、インジウム、タリウムが水銀とアマ
ルガム化した形で残り、そのため溶出しにくいも
のと考えられる。 上述のごとく本発明は、重負荷放電特性をそこ
なうことなく水銀量を低減したアルカリ電池を提
供できるものである。
[Table] Comparing the above examples, the one in which mercury amalgam is made of an alloy of zinc and three metals, gallium, indium, and thallium, has an excellent zinc utilization rate and gas generation amount. Even when two types of thallium are selected and made into an alloy, the zinc utilization rate is at least 92 at 250mA discharge.
%, 79% at 500mA discharge, which is slightly inferior to the conventional product amalgamated with 6.4wt% mercury, but at this level there is no problem in using it as a practical battery. In the present invention, the metals added to zinc as an alloy are limited to three types, gallium, indium, and thallium, because these three types of metals have a particularly high corrosion-preventing effect among metals that exhibit a corrosion-preventing effect. Further, if only one of these metals is used, the zinc utilization rate and gas generation amount will be high in any case, and the effects of the present invention cannot be expected. Furthermore, in the present invention, the amount of mercury is reduced to 0.05wt% or more.
The reason for limiting the amount to 1.8wt% or less is that as shown in the zinc utilization rate, 0.05wt% or more is necessary from the viewpoint of heavy load discharge characteristics, but considering the impact on the natural environment due to mercury elution, 1.8wt% or less is better. . In the case of the battery of the present invention, gallium, indium, and thallium remain in an amalgamated form with mercury, and therefore are considered to be difficult to elute. As described above, the present invention can provide an alkaline battery with reduced mercury content without impairing heavy load discharge characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明実施例におけるアルカリ電池の縦
断面図である。 1…金属容器、2…正極合剤、3…セパレー
タ、4…負極、6…負極端子板、7…集電棒。
The drawing is a longitudinal sectional view of an alkaline battery in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Metal container, 2... Positive electrode mixture, 3... Separator, 4... Negative electrode, 6... Negative terminal plate, 7... Current collector rod.

Claims (1)

【特許請求の範囲】[Claims] 1 ガリウム、インジウム、タリウムのうちの2
種以上の金属と亜鉛との亜鉛合金粉末に水銀量を
亜鉛に対して0.05wt%以上1.8wt%以下含有せし
めた負極を備えることを特徴とするアルカリ電
池。
1 2 of gallium, indium, and thallium
What is claimed is: 1. An alkaline battery comprising: a negative electrode comprising a zinc alloy powder containing at least 0.05 wt% and 1.8 wt% of mercury based on zinc;
JP10015482A 1982-06-11 1982-06-11 Alkaline battery Granted JPS58218762A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10015482A JPS58218762A (en) 1982-06-11 1982-06-11 Alkaline battery
US06/499,884 US4500614A (en) 1982-06-11 1983-06-01 Alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10015482A JPS58218762A (en) 1982-06-11 1982-06-11 Alkaline battery

Publications (2)

Publication Number Publication Date
JPS58218762A JPS58218762A (en) 1983-12-20
JPH0119622B2 true JPH0119622B2 (en) 1989-04-12

Family

ID=14266398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10015482A Granted JPS58218762A (en) 1982-06-11 1982-06-11 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS58218762A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110859A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline-zinc battery
JPS6110860A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
JPS6177258A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61153949A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Also Published As

Publication number Publication date
JPS58218762A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
EP0474382B1 (en) Substantially mercury-free electrochemical cells
US4500614A (en) Alkaline cell
JP3317526B2 (en) Alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH05135776A (en) Cylindrical alkaline battery
EP0205783A2 (en) Alkaline cell employing a zinc electrode with reduced mercury additive
JPH0119622B2 (en)
JPH0955207A (en) Zinc-alkali battery
JPH065284A (en) Zinc alkaline battery
JPH0136669B2 (en)
JPH0562683A (en) Alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH09270254A (en) Zinc alkaline battery
JP2563106B2 (en) Alkaline battery
JPH0119623B2 (en)
KR890004989B1 (en) Zinc-alkaline battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JPH06223828A (en) Zinc alkaline battery
JPH0822822A (en) Zinc alkaline battery
JPH0562682A (en) Alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS63279565A (en) Alkaline battery
JPH07105941A (en) Zinc alkaline battery
JPH06338319A (en) Zinc-alkaline battery