JPH0955206A - Zinc-alkali battery - Google Patents

Zinc-alkali battery

Info

Publication number
JPH0955206A
JPH0955206A JP7204333A JP20433395A JPH0955206A JP H0955206 A JPH0955206 A JP H0955206A JP 7204333 A JP7204333 A JP 7204333A JP 20433395 A JP20433395 A JP 20433395A JP H0955206 A JPH0955206 A JP H0955206A
Authority
JP
Japan
Prior art keywords
zinc
indium
alloy powder
zinc alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7204333A
Other languages
Japanese (ja)
Inventor
Kiyoto Yoda
清人 依田
Teiji Okayama
定司 岡山
Hideyuki Ogata
秀之 小方
Seiichi Hikata
誠一 日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7204333A priority Critical patent/JPH0955206A/en
Publication of JPH0955206A publication Critical patent/JPH0955206A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc-alkali battery with no environmental pollution and high safety by retarding gas evolution without adding mercury and lead. SOLUTION: In a zinc-alkali battery, zinc alloy powder containing 0.01-0.1wt.% indium, 0.001-0.01wt.% aluminum, 0.001-0.01wt.% bismuth, 0.001-0.05wt.% titanium, and a total of 0.001-0.05wt.% at least one element selected from the group comprising lithium, sodium, and potassium is used as a negative active material. In addition, 0.05-0.5wt.% indium compound in indium equivalent is added to the zinc alloy powder as the inhibitor of the zinc alloy powder. Thereby, the internal gas evolution of the battery is retarded without adding mercury and lead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛アルカリ電池に
関し、詳しくは無汞化且つ鉛無添加の亜鉛合金粉末を負
極活物質として用いた低公害且つ安全で高性能な亜鉛ア
ルカリ電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkali battery, and more particularly to a low-pollution, safe and high-performance zinc-alkaline battery using a lead-free zinc alloy powder as a negative electrode active material. .

【0002】[0002]

【従来の技術】従来、亜鉛アルカリ電池の負極活物質と
しては、亜鉛の腐食によるガス発生を抑制し電気特性を
向上させることを目的として、汞化亜鉛合金粉末が用い
られていた。ところが、近年、使用済み電池による環境
汚染が問題視されるようになってきたことから、低公害
化が社会的な要望となり、亜鉛合金粉末を無汞化(無水
銀)にするための亜鉛合金組成や防食剤(インヒビタ
ー)等の研究が進められ、ついに実用上問題のない無水
銀アルカリ電池用ゲル状負極が開発されるに至った。
2. Description of the Related Art Conventionally, zinc hydride alloy powder has been used as a negative electrode active material for zinc alkaline batteries for the purpose of suppressing gas generation due to corrosion of zinc and improving electrical characteristics. However, in recent years, environmental pollution due to used batteries has come to be a problem, and it has become a social demand to reduce pollution, and zinc alloy powder is used to make zinc alloy powder non-silver (anhydrous). Research on the composition and anticorrosive agent (inhibitor) has been advanced, and finally, a gelled negative electrode for a mercury-free alkaline battery without any practical problems has been developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、無水銀
アルカリ電池で実用化されている無汞化亜鉛合金粉末中
には、水素ガス発生を抑制するために水銀と同様に有害
物質である鉛を数百ppm添加していることから、鉛無
添加の亜鉛合金粉末を用いた無水銀アルカリ電池への要
望が高まっている。
However, in the non-melonized zinc alloy powder that has been put to practical use in mercury-free alkaline batteries, lead, which is a harmful substance like mercury, is contained in order to suppress the generation of hydrogen gas. Due to the addition of 100 ppm, there is an increasing demand for a mercury-free alkaline battery using a lead-free zinc alloy powder.

【0004】ところで、現在までに鉛を添加していない
亜鉛アルカリ電池用亜鉛合金に関して特許公開されたも
のとしては、特開昭63−133450号公報、特開平
2−194103号公報等数多くあり、その中にはある
程度の耐食性を期待できるものもあるが、十分とは言え
ない。また、発生したガスを逃がす構造を有する電池に
は使用可能であっても、円筒型アルカリマンガン乾電池
等の密閉構造を有する電池には、実用化できないものが
多い。さらに未放電時のガス発生は抑制できても一部放
電した後のガス発生までは抑制できず、実用可能なゲル
状負極とはなり得ない。このような状況から、よりガス
発生の少ない亜鉛合金組成の開発並びに密閉構造を有す
るアルカリ電池にも適用可能なゲル状負極の開発が急務
となっていた。
[0004] By the way, there have been many patent publications concerning zinc alloys for zinc-alkaline batteries to which lead has not been added so far, such as JP-A-63-133450 and JP-A-2-194103. Some of them can be expected to have some corrosion resistance, but they are not enough. Further, although it can be used for a battery having a structure for releasing generated gas, many batteries having a sealed structure such as a cylindrical alkaline manganese dry battery cannot be put to practical use. Furthermore, even if the generation of gas during non-discharge can be suppressed, the generation of gas after partial discharge cannot be suppressed, so that a gelled negative electrode cannot be practically used. Under such circumstances, there has been an urgent need to develop a zinc alloy composition with less gas generation and a gelled negative electrode applicable to an alkaline battery having a sealed structure.

【0005】本発明は、上記状況に鑑みてなされたもの
で、その目的は無汞化且つ鉛無添加の亜鉛合金粉末を用
いた低公害且つ安全で高性能な亜鉛アルカリ電池を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a low-pollution, safe, and high-performance zinc-alkaline battery using a zinc alloy powder free of lead and containing no lead. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は亜鉛アルカリ電池において、インジウム
0.01〜0.1重量%、アルミニウム0.001〜
0.01重量%、ビスマス0.001〜0.01重量
%、チタン0.001〜0.05重量%およびリチウ
ム,ナトリウム,カリウムからなる群より選ばれた少な
くとも1種類以上を合計0.001〜0.05重量%含
有する亜鉛合金粉末を負極活物質とし、さらに亜鉛合金
粉末の防食剤としてインジウム化合物を亜鉛合金粉末に
対してインジウム換算で0.005〜0.5重量%添加
したことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a zinc alkaline battery in which 0.01 to 0.1% by weight of indium and 0.001 to 0.001 of aluminum are used.
0.01% by weight, 0.001 to 0.01% by weight of bismuth, 0.001 to 0.05% by weight of titanium, and at least one selected from the group consisting of lithium, sodium and potassium in a total amount of 0.001 to 0.001. A zinc alloy powder containing 0.05 wt% is used as a negative electrode active material, and an indium compound is added as an anticorrosive agent for the zinc alloy powder in an amount of 0.005 to 0.5 wt% in terms of indium with respect to the zinc alloy powder. And

【0007】本発明では亜鉛合金の鉛の代替元素とし
て、インジウム,アルミニウム,ビスマス,チタンおよ
びリチウム,ナトリウム,カリウム等を添加することに
より、無汞化・鉛添加亜鉛合金よりも未放電時の耐食性
を高めることができる。この場合の各添加元素の作用機
構の詳細は十分明らかになってはいないが、各元素を単
独で添加した場合には水素ガス発生を実用可能なレベル
に抑制できないことを確認していることから、複数元素
添加の相乗効果によって亜鉛合金表面の水素過電圧が高
められたり、表面が平滑化されて表面積が減少すること
により、耐食性が向上するものと考えられる。なお、こ
こで鉛無添加と表現したのは、現在の一般的な亜鉛精練
技術では純亜鉛といわれるものでも鉛が30ppm程度
不純物として混入することは避けられないからであり、
鉛含量0を意味するものではない。30ppm以下とす
るのは技術的には可能であるが、コスト的に不利である
と考えられる。
In the present invention, by adding indium, aluminum, bismuth, titanium and lithium, sodium, potassium, etc. as an alternative element to lead in the zinc alloy, corrosion resistance at the time of non-discharge is improved as compared with the non-free lead-containing zinc alloy. Can be increased. The details of the action mechanism of each additive element in this case are not fully understood, but it has been confirmed that hydrogen gas generation cannot be suppressed to a practical level when each element is added alone. It is considered that the corrosion resistance is improved by increasing the hydrogen overvoltage on the surface of the zinc alloy by the synergistic effect of the addition of a plurality of elements, or by reducing the surface area by smoothing the surface. The term “lead-free” is used here because it is unavoidable that lead is mixed as an impurity of about 30 ppm even in what is called pure zinc in the current general zinc refining technology.
It does not mean that the lead content is zero. Although it is technically possible to set it to 30 ppm or less, it is considered to be disadvantageous in terms of cost.

【0008】上記亜鉛合金粉末を使用すると、従来の鉛
添加亜鉛合金粉末を使用した場合より電池のガス発生量
が少なく、低公害で安全性の高い亜鉛アルカリ電池を得
ることができる。しかし、発生したガスを逃がすような
構造の電池の場合はよいが、密閉構造を有する円筒型ア
ルカリマンガン電池等では必ずしも充分ではなく、さら
に改良が必要になる。その場合は上記亜鉛合金粉末に防
食剤(インヒビター)としてインジウム化合物を添加す
ることにより所期の目的を達成することができる。防食
剤としてインジウム化合物を添加すると、密閉構造を有
する電池でも実用可能となる。インジウム化合物のガス
発生抑制機構は明らかではないが、特に電池を一部放電
した場合のガス発生に多大の効果がある。
When the above zinc alloy powder is used, the amount of gas generated in the battery is smaller than that in the case of using the conventional lead-added zinc alloy powder, and a zinc alkaline battery with low pollution and high safety can be obtained. However, although a battery having a structure that allows the generated gas to escape is preferable, a cylindrical alkaline manganese battery having a sealed structure is not always sufficient, and further improvement is required. In that case, the intended purpose can be achieved by adding an indium compound as a corrosion inhibitor (inhibitor) to the zinc alloy powder. When an indium compound is added as an anticorrosive agent, it can be used even in a battery having a sealed structure. Although the mechanism for suppressing the gas generation of the indium compound is not clear, it has a great effect on the gas generation particularly when the battery is partially discharged.

【0009】インジウム化合物の添加量は、亜鉛合金粉
末に対してインジウム換算で0.005%より少ないと
効果がなく、また0.5%より多くしても際立った効果
はないので、コスト面などを勘案して0.005〜0.
5%が適当である。
If the amount of the indium compound added to the zinc alloy powder is less than 0.005% in terms of indium, it is ineffective, and if it is more than 0.5%, there is no remarkable effect. 0.005 to 0.
5% is appropriate.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例について詳
細に説明する。 (実施例1)まず、ゲル化剤としてのポリアクリル酸
0.4重量部に試薬特級相当以上の酸化インジウム(I
2 3 )を0.039重量部(In換算として亜鉛合
金粉末に対して0.05重量%)加え、ポットミルで1
0分間均一に混合した後、これをIn:0.05重量
%,Al:0.005重量%,Bi:0.005重量
%,Ti:0.005重量%およびK:0.01重量%
を含む粒径100〜300μmの亜鉛合金粉末65重量
部に加え、汎用混合機で5分間攪拌し、均一に混合し
た。次いで酸化亜鉛を3.5重量%溶解した35重量%
濃度の苛性カリ水溶液35重量部に、前記亜鉛合金粉末
の混合物を4分間かけて徐々に添加するとともに、15
0mmHg以下の減圧状態で攪拌・混合し、さらに、1
0mmHg以下の減圧状態にして5分間攪拌して、均一
なゲル状負極を製造した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. (Example 1) First, 0.4 parts by weight of polyacrylic acid as a gelling agent was added to indium oxide (I
n 2 O 3 ) was added in an amount of 0.039 parts by weight (0.05% by weight based on zinc alloy powder in terms of In), and 1
After uniformly mixing for 0 minutes, In: 0.05 wt%, Al: 0.005 wt%, Bi: 0.005 wt%, Ti: 0.005 wt% and K: 0.01 wt%
Was added to 65 parts by weight of a zinc alloy powder having a particle diameter of 100 to 300 μm, and the mixture was stirred for 5 minutes with a general-purpose mixer and uniformly mixed. 35% by weight of zinc oxide dissolved in 3.5% by weight
The mixture of the zinc alloy powder was gradually added to 35 parts by weight of a caustic potash aqueous solution having a concentration of 4 minutes, and
Stir and mix under a reduced pressure of 0 mmHg or less, then 1
The pressure was reduced to 0 mmHg or less and stirred for 5 minutes to produce a uniform gelled negative electrode.

【0011】得られたゲル状負極を用いて図1に示すJ
IS規格LR6形(単3形)アルカリ電池を組み立て
た。図1において、1は正極端子を兼ねる有底円筒形の
金属缶であり、この金属缶1内には円筒状に加圧成型し
た正極合剤2が充填されている。正極合剤2は、二酸化
マンガン粉末とカーボン粉末を混合し、これを金属缶1
内に収納し所定の圧力で中空円筒状に加圧成型したもの
である。また、正極合剤2の中空部には、アセタール化
ポリビニルアルコール繊維の不織布からなる有底円筒状
のセパレータ3を介して前記方法で製造したゲル状負極
4が充填されている。ゲル状負極4内には真鍮製の負極
集電棒5が、その上端部をゲル状負極4より突出するよ
うに挿着されている。負極集電棒5の突出部外周面およ
び金属缶1の上部内周面には二重環状のポリアミド樹脂
からなる絶縁ガスケット6が配設されている。また、ガ
スケット6の二重環状部の間にはリング状の金属板7が
配設され、かつ金属板7には負極端子を兼ねる帽子形の
金属封口板8が集電棒5の頭部に当接するように配設さ
れている。そして、金属缶1の開口縁を内方に屈曲させ
ることによりガスケット6および金属封口板8で金属缶
1内を密封口している。
Using the gelled negative electrode thus obtained, the J shown in FIG.
An IS standard LR6 type (AA) alkaline battery was assembled. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can that also serves as a positive electrode terminal. The metal can 1 is filled with a positive electrode mixture 2 which is pressure-molded into a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and carbon powder, which is mixed in a metal can 1
It is housed inside and pressure-molded into a hollow cylinder at a predetermined pressure. The hollow portion of the positive electrode mixture 2 is filled with the gelled negative electrode 4 manufactured by the above-described method via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber. In the gelled negative electrode 4, a brass negative electrode current collector rod 5 is inserted so that the upper end portion thereof protrudes from the gelled negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is provided on the outer peripheral surface of the protruding portion of the negative electrode current collecting rod 5 and the upper inner peripheral surface of the metal can 1. A ring-shaped metal plate 7 is disposed between the double annular portions of the gasket 6, and a cap-shaped metal sealing plate 8 also serving as a negative electrode terminal is provided on the metal plate 7 so as to contact the head of the current collecting rod 5. It is arranged to touch. The opening edge of the metal can 1 is bent inward to seal the inside of the metal can 1 with the gasket 6 and the metal sealing plate 8.

【0012】(実施例2〜13)亜鉛粉の合金組成が表
に示す通りであること以外、実施例1と同様にしてJI
S規格LR6形(単3形)アルカリ電池を組み立てた。
(Examples 2 to 13) JI was prepared in the same manner as in Example 1 except that the alloy composition of zinc powder was as shown in the table.
An S standard LR6 type (AA) alkaline battery was assembled.

【0013】(実施例14〜15)酸化インジウムの添
加量が表に示す通りであること以外、実施例1と同様に
してJIS規格LR6形(単3形)アルカリ電池を組み
立てた。
(Examples 14 to 15) A JIS standard LR6 type (AA) alkaline battery was assembled in the same manner as in Example 1 except that the added amount of indium oxide was as shown in the table.

【0014】(比較例1〜15)亜鉛粉の合金組成が表
に示す通りであること以外、実施例1と同様にしてJI
S規格LR6形(単3形)アルカリ電池を組み立てた。
Comparative Examples 1 to 15 JI was prepared in the same manner as in Example 1 except that the alloy composition of the zinc powder was as shown in the table.
An S standard LR6 type (AA) alkaline battery was assembled.

【0015】(比較例16〜17)酸化インジウムの添
加量が表に示す通りであること以外、実施例1と同様に
してJIS規格LR6形(単3形)アルカリ電池を組み
立てた。
Comparative Examples 16 to 17 JIS standard LR6 (AA) alkaline batteries were assembled in the same manner as in Example 1 except that the amount of indium oxide added was as shown in the table.

【0016】以上のようにして組み立てた各LR6形電
池について、未放電および一部放電(2Ω30分放電)
後の電池を60℃で40日間貯蔵した後、水中で分解し
て電池内部のガスを捕集し、ガス発生量を調べた(n=
10個の平均値)。また、2Ω連続放電した場合の持続
時間を調べた(n=10個の平均値)。結果を表1に示
す。
Each LR6 type battery assembled as described above was undischarged and partially discharged (2Ω 30 minutes discharge)
After storing the subsequent battery at 60 ° C. for 40 days, the battery was decomposed in water to collect the gas inside the battery, and the gas generation amount was examined (n =
10 average values). In addition, the duration of continuous discharge of 2Ω was examined (n = 10 average values). The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1より明らかなように、比較例4,7,
10および13によると、インジウム,アルミニウム,
ビスマス,チタンを単独で添加しても、未放電・一部放
電ともに60℃40日貯蔵で漏液してしまい、ガス発生
抑制に効果がないことがわかるが、実施例1〜15のよ
うに複数元素系になると相乗効果によって、比較例1の
鉛を含有した亜鉛合金よりもガス発生が抑制される。
As is clear from Table 1, Comparative Examples 4, 7,
According to 10 and 13, indium, aluminum,
It can be seen that even if bismuth and titanium are added alone, both undischarged and partial discharge are leaked by storage at 60 ° C. for 40 days, which is not effective in suppressing gas generation. With a multi-element system, the synergistic effect suppresses gas generation more than the lead-containing zinc alloy of Comparative Example 1.

【0019】実施例1〜3および比較例2,3による
と、亜鉛合金中の添加元素としてのインジウムは鉛無添
加の場合、非常にガス発生抑制に効果があり、インジウ
ムを添加しない(比較例2)と、アルミニウム,ビスマ
ス,チタン等を添加しても実用可能なレベルにはならな
い。また、インジウムを0.1重量%より多く添加して
も(比較例3)際立った効果はなく、コストの面から考
えるとインジウムは0.1重量%以下がよい。
According to Examples 1 to 3 and Comparative Examples 2 and 3, indium as an additive element in the zinc alloy is very effective in suppressing gas generation when lead is not added, and indium is not added (comparative example). Even if 2) and aluminum, bismuth, titanium, etc. are added, it does not reach a practical level. Further, if indium is added in an amount of more than 0.1% by weight (Comparative Example 3), there is no remarkable effect, and in terms of cost, indium is preferably 0.1% by weight or less.

【0020】実施例1,4,5および比較例5,6によ
ると、アルミニウムはガス発生抑制効果は大きい。しか
しながら、表には示していないが、添加量が多くなると
1.2kΩ連続放電での短寿命の発生率が24%(n=
50個中)と高くなる等、軽負荷放電特性に悪影響を及
ぼすことがあるので、ガス発生抑制と軽負荷放電特性の
バランスを考えると、0.001〜0.01重量%の範
囲で添加することが望ましい。
According to Examples 1, 4, 5 and Comparative Examples 5, 6, aluminum has a great effect of suppressing gas generation. However, although not shown in the table, the rate of occurrence of short life at 1.2 kΩ continuous discharge was 24% (n =
It may have a bad influence on the light load discharge characteristics such as a high value (in 50 pieces), so in consideration of the balance between gas generation suppression and the light load discharge characteristics, 0.001 to 0.01% by weight is added. Is desirable.

【0021】実施例1,6,7および比較例8,9によ
ると、ビスマスを添加することによるガス発生抑制効果
は明らかであるが、添加量が多すぎる(比較例9)と2
Ω連続放電等の重負荷放電特性が悪くなるので、ビスマ
スの添加量は0.01重量%以下がよい。
According to Examples 1, 6 and 7 and Comparative Examples 8 and 9, the gas generation suppressing effect by the addition of bismuth is clear, but the addition amount is too large (Comparative Example 9) and 2
Since the heavy load discharge characteristics such as Ω continuous discharge are deteriorated, the addition amount of bismuth is preferably 0.01% by weight or less.

【0022】実施例1,8,9および比較例11,12
によると、チタンを添加すると、ガス発生抑制効果は明
らかであるが、0.05重量%より多く添加しても(比
較例12)際だった効果はなく、チタンの添加量は0.
05重量%以下でよい。
Examples 1, 8, 9 and Comparative Examples 11, 12
According to the above, when titanium is added, the gas generation suppressing effect is apparent, but even if it is added in an amount of more than 0.05% by weight (Comparative Example 12), there is no remarkable effect, and the addition amount of titanium is 0.1%.
It may be up to 05% by weight.

【0023】実施例1,10〜13および比較例14,
15によると、リチウム,ナトリウム,カリウム等を添
加すると、未放電でのガス発生抑制効果が大きいことが
わかるが、0.05重量%より多く添加しても(比較例
15)際だった効果はなく、添加量は0.05重量%以
下でよい。
Examples 1, 10 to 13 and Comparative Example 14,
15, it is found that the addition of lithium, sodium, potassium or the like has a great effect of suppressing gas generation in an undischarged state, but the addition of more than 0.05% by weight (Comparative Example 15) has a remarkable effect. However, the addition amount may be 0.05% by weight or less.

【0024】実施例1,14,15および比較例16,
17によると、酸化インジウムの添加は、一部放電後の
ガス発生を、密閉構造を有するアルカリ電池で実用可能
なレベルに抑制するために必要であることがわかる。し
かし、インジウム換算で0.5重量%より多く添加して
も際だった効果はなく、コストの面から考えると、イン
ジウム換算で0.5重量%以下の添加量でよい。なお、
本実施例には記載していないが、酸化インジウムの代わ
りに水酸化インジウム,硝酸インジウム,塩化インジウ
ム,硫酸インジウム等のインジウム化合物を添加しても
本実施例と同様に良好な結果が得られた。
Examples 1, 14, 15 and Comparative Example 16,
17, it is found that the addition of indium oxide is necessary to suppress the gas generation after partial discharge to a level that is practical for an alkaline battery having a sealed structure. However, even if added in excess of 0.5 wt% in terms of indium, there is no remarkable effect, and in terms of cost, the amount added may be 0.5 wt% or less in terms of indium. In addition,
Although not described in this example, even if an indium compound such as indium hydroxide, indium nitrate, indium chloride, or indium sulfate was added instead of indium oxide, good results were obtained as in this example. .

【0025】[0025]

【発明の効果】以上説明したように、本発明の亜鉛アル
カリ電池は、無汞化且つ鉛無添加でありながらガス発生
を抑制することができる。したがって、本発明によれば
低公害で安全性の高い亜鉛アルカリ電池を提供すること
ができる。
As described above, the zinc-alkaline battery of the present invention can suppress the generation of gas while being free of lead and containing no lead. Therefore, according to the present invention, a zinc alkaline battery with low pollution and high safety can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である亜鉛アルカリ電池の断
面図。
FIG. 1 is a sectional view of a zinc alkaline battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…金属缶、2…正極合剤、3…セパレータ、4…ゲル
状負極、5…負極集電棒、6…絶縁ガスケット、7…リ
ング状金属板、8…金属封口板。
DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Gel negative electrode, 5 ... Negative electrode collector rod, 6 ... Insulating gasket, 7 ... Ring-shaped metal plate, 8 ... Metal sealing plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日方 誠一 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichi Hikata 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 インジウム0.01〜0.1重量%、ア
ルミニウム0.001〜0.01重量%、ビスマス0.
001〜0.01重量%、チタン0.001〜0.05
重量%およびリチウム,ナトリウム,カリウムからなる
群より選ばれた少なくとも1種類以上を合計0.001
〜0.05重量%含有する亜鉛合金粉末を負極活物質と
し、さらに亜鉛合金粉末の防食剤としてインジウム化合
物を亜鉛合金粉末に対してインジウム換算で0.005
〜0.5重量%添加したことを特徴とする亜鉛アルカリ
電池。
1. Indium 0.01 to 0.1% by weight, aluminum 0.001 to 0.01% by weight, bismuth 0.1%.
001 to 0.01% by weight, titanium 0.001 to 0.05
0.001% by weight and at least one selected from the group consisting of lithium, sodium, and potassium
~ 0.05% by weight of zinc alloy powder as a negative electrode active material, and an indium compound as a corrosion inhibitor of zinc alloy powder 0.005 in terms of indium with respect to zinc alloy powder.
A zinc-alkaline battery characterized by being added by 0.5 wt%.
JP7204333A 1995-08-10 1995-08-10 Zinc-alkali battery Pending JPH0955206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7204333A JPH0955206A (en) 1995-08-10 1995-08-10 Zinc-alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7204333A JPH0955206A (en) 1995-08-10 1995-08-10 Zinc-alkali battery

Publications (1)

Publication Number Publication Date
JPH0955206A true JPH0955206A (en) 1997-02-25

Family

ID=16488769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7204333A Pending JPH0955206A (en) 1995-08-10 1995-08-10 Zinc-alkali battery

Country Status (1)

Country Link
JP (1) JPH0955206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495289B1 (en) * 1994-10-19 2002-12-17 Canon Kabushiki Kaisha Lithium secondary cell with an alloyed metallic powder containing electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495289B1 (en) * 1994-10-19 2002-12-17 Canon Kabushiki Kaisha Lithium secondary cell with an alloyed metallic powder containing electrode

Similar Documents

Publication Publication Date Title
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0955207A (en) Zinc-alkali battery
JPH065284A (en) Zinc alkaline battery
JPH0421310B2 (en)
JPH09270254A (en) Zinc alkaline battery
JPH0955206A (en) Zinc-alkali battery
JPH06223829A (en) Zinc alkaline battery
JPH0955208A (en) Zinc-alkali battery
JPH0119622B2 (en)
JPH0562683A (en) Alkaline battery
JPH06338319A (en) Zinc-alkaline battery
JPH06223828A (en) Zinc alkaline battery
JPH06338314A (en) Zinc-alkaline battery
JPH0822822A (en) Zinc alkaline battery
JPH07105941A (en) Zinc alkaline battery
JPH10172555A (en) Zinc alkaline battery
JPH065285A (en) Zinc alkaline battery
JPH0822823A (en) Zinc alkaline battery
JPH09265978A (en) Zinc alkaline battery
JPH09265977A (en) Zinc alkaline battery
JPH08203519A (en) Zinc alkaline battery
JPH06338317A (en) Zinc-alkaline battery
JPH06203832A (en) Zinc alkaline battery
JPH0620687A (en) Alkaline battery