JPH02304868A - Alkaline battery and its negative active material - Google Patents

Alkaline battery and its negative active material

Info

Publication number
JPH02304868A
JPH02304868A JP1124283A JP12428389A JPH02304868A JP H02304868 A JPH02304868 A JP H02304868A JP 1124283 A JP1124283 A JP 1124283A JP 12428389 A JP12428389 A JP 12428389A JP H02304868 A JPH02304868 A JP H02304868A
Authority
JP
Japan
Prior art keywords
mercury
alloy powder
zinc
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124283A
Other languages
Japanese (ja)
Inventor
Toyohide Uemura
植村 豊秀
Kiyotaka Yasuda
清隆 安田
Tomiko Yamaguchi
富子 山口
Hidetoshi Inoue
秀利 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1124283A priority Critical patent/JPH02304868A/en
Publication of JPH02304868A publication Critical patent/JPH02304868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce hydrogen gas evolution in the low content of mercury by using amalgamated zinc alloy powder containing a specified amount of each of bismuth, lead, aluminium, indium, and mercury. CONSTITUTION:A negative active material comprising zinc alloy powder containing 0.01-0.5wt.% bismuth, 0.005-0.5wt.% lead, 0.001-0.005wt.% aluminium, 0.005-0.2wt.% indium, and 0.001-1.0wt.% mercury is used. The content of mercury is required to reduce to 1.0wt.% or less as social needs. By synergistic effect of these elements added, hydrogen gas evolution is further reduced compared with conventional low mercury amalgamated zinc alloy powder, and furthermore discharge performance is increased.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明はアルカリ電池およびその負極活物質に関し、詳
しくはビスマス、鉛、アルミニウム、インジウムおよび
水銀を特定範囲で含有した汞化亜鉛合金粉末よりなり、
低水銀量においてもガス発生量を低減し、また異常なガ
ス発生異常放電も起こさず、しかも電池性能である放電
特性を高い水準に維持した負極活物質および該負極活物
質を用いたアルカリ電池に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to an alkaline battery and its negative electrode active material, and more specifically, it is made of a zinc chloride alloy powder containing bismuth, lead, aluminum, indium, and mercury within a specific range. ,
A negative electrode active material that reduces the amount of gas generated even at low mercury levels, does not cause abnormal gas generation or abnormal discharge, and maintains discharge characteristics, which are battery performance, at a high level, and an alkaline battery using the negative electrode active material. .

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
[Prior Art] In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛粉末を負極活
物質として用いることが専ら行なわれている。このため
、今日市販されているアルカリ電池の負極活物質は1.
5〜1(1重量%程度の多量の水銀を含有しており、社
会的ニーズとして、より低水銀のもの、あるいは無水銀
の電池の開発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent the corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery.The use of zinc chloride powder, which utilizes the hydrogen overvoltage of mercury, as an active material for the negative electrode has been studied. It is carried out exclusively. For this reason, the negative electrode active materials of alkaline batteries commercially available today are 1.
5-1 (about 1% by weight), and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減されるべく亜鉛に各
種金属を添加した亜鉛合金粉末に関する提案が種々なさ
れている。例えば、亜鉛に鉛を添加した亜鉛合金粉末、
あるいは本発明者等による亜鉛に鉛とアルミニウムを添
加した亜鉛合金粉末等がある。
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, zinc alloy powder made by adding lead to zinc,
Alternatively, there is a zinc alloy powder made by the inventors of the present invention in which lead and aluminum are added to zinc.

その中で、とりわけアルミニウムを含む亜鉛合金粉末は
、ガスの発生の抑制効果が大きく、低汞化のための有力
な材料であるとして注目され、使用されている。
Among these, zinc alloy powder containing aluminum is attracting attention and being used because it has a great effect of suppressing gas generation and is an effective material for reducing stress.

[発明が解決しようとする課題] しかしながら、アルミニウム含有亜鉛合金粉末を負極活
物質として用いた場合には、特に軽負荷放電時に急速な
放電性能の低下が見られることが問題になっている。
[Problems to be Solved by the Invention] However, when aluminum-containing zinc alloy powder is used as a negative electrode active material, there is a problem in that the discharge performance rapidly deteriorates particularly during light load discharge.

これら放電性能の低下した電池の内部を分解して調べた
結果、放電反応生成物によって内部短絡を起こしている
ことが判明した。
As a result of disassembling and examining the internal parts of these batteries with degraded discharge performance, it was found that internal short circuits were caused by discharge reaction products.

この現象の起こる理由は、次のように考えられている。The reason why this phenomenon occurs is thought to be as follows.

すなわち、アルミニウムを含む亜鉛合金粉末か、特定の
電流で放電されることによって特異な結晶か成長し、こ
の結晶がセパレータを貫通し、その結果短絡現象を引き
起こすのである。
That is, the zinc alloy powder containing aluminum or a specific crystal grows when discharged with a specific current, and this crystal penetrates the separator, resulting in a short circuit phenomenon.

本発明は、上記のような状況に鑑み、負極活物質として
用いられる汞化亜鉛合金粉末からの水素ガス発生が低水
銀量でも抑制され、放電性能も高い水準に維持され、ま
た部分放電後のガス発生も少なく、併せて内部短絡など
の異常放電を起こさないアルカリ電池およびその負極活
物質を提供することを目的とする。
In view of the above circumstances, the present invention suppresses the generation of hydrogen gas from the zinc oxide alloy powder used as the negative electrode active material even with a low amount of mercury, maintains the discharge performance at a high level, and maintains the discharge performance after partial discharge. It is an object of the present invention to provide an alkaline battery that generates less gas and does not cause abnormal discharge such as internal short circuit, and its negative electrode active material.

[課題を解決するための手段および作用]本発明者等は
上記目的を達成するために鋭意研究をしたところ、ビス
マス、鉛、アルミニウム、インジウムおよび水銀を特定
範囲の全添加し、これを負極活物質に用いることにより
、これら添加元素の相乗的な効果によって、従来の低汞
化した亜鉛合金粉末よりも更に水素ガス発生量を低下さ
せ、しかも放電性能に優れたアルカリ電池か得られるこ
とを見出し本発明に到達した。
[Means and effects for solving the problem] In order to achieve the above object, the present inventors conducted intensive research, and found that bismuth, lead, aluminum, indium, and mercury were all added in a specific range, and this was added to the anode active material. It was discovered that when used in materials, due to the synergistic effect of these additive elements, the amount of hydrogen gas generated was further reduced than with conventional low-rate zinc alloy powders, and an alkaline battery with excellent discharge performance could be obtained. We have arrived at the present invention.

すなわち、本発明は、ビスマスを0.01〜0.5重量
%、鉛を0.005〜0.5重量%、アルミニウムを0
.001〜0.005重量%、インジウムを0.005
〜0.2重量%、水銀を0.001〜1.0重量部含有
する汞化亜鉛合金粉末からなる負極活物質および該負極
活物質を用いたアルカリ電池にある。
That is, in the present invention, bismuth is 0.01 to 0.5% by weight, lead is 0.005 to 0.5% by weight, and aluminum is 0.01 to 0.5% by weight.
.. 001-0.005% by weight, 0.005% indium
-0.2% by weight and 0.001 to 1.0 parts by weight of mercury, and an alkaline battery using the negative electrode active material.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において、負極活物質として用いられる汞化亜鉛
合金粉末は、上述したように鉛0.005〜0.5重量
%(50〜5000重量ppn+) 、ビスマス0.O
1〜0,5重量%(100〜5000重量IIpII+
) 、アルミニウム0.001〜0.005重量%(1
0〜50重量ppIり、インジウム 0.001〜0.
2重量%(10〜2000重量pIllff) 、水銀
0.001〜1,0重量%を含有し、残部が亜鉛からな
るものである。
In the present invention, the zinc oxide alloy powder used as the negative electrode active material contains 0.005 to 0.5% by weight of lead (50 to 5000 ppn+ by weight) and 0.00% by weight of bismuth, as described above. O
1-0.5% by weight (100-5000% by weight IIpII+
), aluminum 0.001-0.005% by weight (1
0-50 ppI by weight, indium 0.001-0.
2% by weight (10 to 2000 weight pIllff), 0.001 to 1.0% by weight of mercury, and the balance consists of zinc.

鉛、ビスマス、アルミニウム、インジウムの各含有量が
上記の下限未満のときは、負極活物質をアルカリ電池に
配置したときの水素ガス発生抑制および放電性能の向上
に対する含有効果が小さく、また上限を超えて添加して
も、それ以上の含有効果が生じない。また、水銀の含有
量は社会的なニーズとして 1.0重量%以下とするこ
とが必要である。
When the content of lead, bismuth, aluminum, and indium is less than the above lower limit, the effect of the content on suppressing hydrogen gas generation and improving discharge performance when the negative electrode active material is placed in an alkaline battery is small, and when the content exceeds the upper limit. Even if it is added, no further effect will be produced. Additionally, the mercury content must be kept at 1.0% by weight or less to meet social needs.

この負極活物質として用いられる汞化亜鉛合金粉末は、
随伴不純物である鉄を20重量 ppm以下、クロムを
5重量ppm以下、モリブテン、ヒ素、バナジウム、ア
ンチモン、ゲルマニウムをそれぞれ1重量ppra以下
に抑制するように、使用原料や製造工程を厳密に管理す
ることが望ましい。
The zinc chloride alloy powder used as the negative electrode active material is
Strictly control the raw materials and manufacturing process to keep accompanying impurities iron below 20 ppm by weight, chromium below 5 ppm by weight, and molybdenum, arsenic, vanadium, antimony, and germanium below 1 ppra by weight each. is desirable.

このような汞化亜鉛合金粉末の製造方法は任意であるが
、例えば次の3通りの方法が例示される。
Although the method for producing such a zinc chloride alloy powder is arbitrary, the following three methods are exemplified.

(1)亜鉛溶湯中に添加元素である鉛、ビスマス、アル
ミニウムまたはこれに加えてインジウムを所定量添加し
、撹拌して合金化させた後、圧縮空気によりアトマイズ
し、粉体化させ、篩い分けを行なって整粒し亜鉛合金粉
末を水銀−インジウムアマルガムで湿式または乾式汞化
して汞化亜鉛合金粉末を得る。
(1) Add a predetermined amount of additional elements lead, bismuth, aluminum, or indium in addition to these into molten zinc, stir and alloy, then atomize with compressed air, turn into powder, and sieve. The granulated zinc alloy powder is subjected to wet or dry amalgamation using mercury-indium amalgam to obtain an aqueous zinc alloy powder.

〈2〉亜鉛溶湯中に添加元素である鉛、ビスマス、アル
ミニウム、インジウムを所定量添加し、撹拌して合金化
させた後、圧縮空気によりアトマイズし、粉体化させ、
篩い分けを行なって整粒した亜鉛合金粉末を水銀で湿式
または乾式汞化して汞化亜鉛合金粉末を得る。
<2> Add a predetermined amount of additional elements lead, bismuth, aluminum, and indium to the molten zinc, stir to alloy, and then atomize with compressed air and turn it into powder.
The sieved and sized zinc alloy powder is subjected to wet or dry sieving with mercury to obtain a sieved zinc alloy powder.

(3)亜鉛溶湯中に添加元素である鉛、ビスマス、アル
ミニウム、インジウム、水銀を所定量添加し、撹拌して
合金化させた後、圧縮空気によりアトマイズし、粉体化
させ、篩い分けを行なって整粒して水化亜鉛合金粉末を
得る(溶湯汞化)。
(3) Predetermined amounts of additive elements lead, bismuth, aluminum, indium, and mercury are added to molten zinc, stirred to form an alloy, and then atomized with compressed air, pulverized, and sieved. The hydrated zinc alloy powder is obtained by sizing the powder (melting process).

ここでいう湿式汞化とは、粉体化して得られた亜鉛合金
粉末と水銀または水銀−インジウムアマルガムとを例え
ば1096水酸化カリウム水溶液中に投入し、混合撹拌
して汞化処理を行ない、汞化亜鉛合金粉末を得るもので
ある。また、乾式汞化とは、粉体化して得られた亜鉛合
金粉末と水銀または水銀−インジウムアマルガムとをリ
ボンブレンダー等の混合機に投入して、一定雰囲気下で
5〜20分程度混合、撹拌しながら汞化処理を行ない、
汞化亜鉛合金粉末を得るものである。
The wet process referred to here means that the zinc alloy powder obtained by pulverization and mercury or mercury-indium amalgam are put into, for example, a 1096 potassium hydroxide aqueous solution, mixed and stirred to perform the process of forming a liquid. A zinc chloride alloy powder is obtained. In addition, dry oxidation involves putting the zinc alloy powder obtained by pulverization and mercury or mercury-indium amalgam into a mixer such as a ribbon blender, and mixing and stirring in a constant atmosphere for about 5 to 20 minutes. At the same time, carry out the filtration process,
A zinc chloride alloy powder is obtained.

このようにして得られた汞化亜鉛合金粉末を負極活物質
として使用することによって、放電前もしくは部分放電
後の水素ガス発生を抑制するばかりでなく、異常放電も
見られないアルカリ電池が得られる。
By using the zinc oxide alloy powder obtained in this way as a negative electrode active material, it is possible to obtain an alkaline battery that not only suppresses hydrogen gas generation before discharge or after partial discharge, but also shows no abnormal discharge. .

本発明のアルカリ電池は、電解液に苛性カリ、苛性ソー
ダ等を主成分とするアルカリ水溶液を用い、負極活物質
に上記した汞化亜鉛合金粉末、正極活物質に二酸化マン
ガン、酸化銀、酸素等を用いることにより得られる。
The alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components as an electrolyte, uses the above-mentioned zinc chloride alloy powder as a negative electrode active material, and uses manganese dioxide, silver oxide, oxygen, etc. as a positive electrode active material. It can be obtained by

し実施例] 以下、本発明を実施例等に基づき具体的に説明する。な
お、第1表の各元素の含有割合は、最終的に得られる汞
化亜鉛合金粉末中の含有割合であり、その単位は重量基
準である。
EXAMPLES] Hereinafter, the present invention will be specifically explained based on Examples. The content ratio of each element in Table 1 is the content ratio in the finally obtained zinc chloride alloy powder, and the unit is based on weight.

実施例1〜14および比較例1〜4 第1表の組成の汞化亜鉛合金粉末を以下の5通りの方法
によって調製した。
Examples 1 to 14 and Comparative Examples 1 to 4 Zinc alloy powders having the compositions shown in Table 1 were prepared by the following five methods.

(1)亜鉛溶湯中に第1表の添加元素を所定量添加し、
撹拌して合金化させた後、圧縮空気によりアトマイズし
、粉体化させ、篩い分けを行なって整粒して亜鉛合金粉
末(アトマイズ粉末)を得た。
(1) Adding specified amounts of additive elements listed in Table 1 to molten zinc,
After stirring and alloying, the mixture was atomized with compressed air, pulverized, sieved, and sized to obtain zinc alloy powder (atomized powder).

次に、この亜鉛合金粉末と水銀−インジウムアマルガム
とをリボンブレンダーにて乾式汞化し、第1表に示す組
成の汞化亜鉛合金粉末を得た(実施例1〜11)。
Next, this zinc alloy powder and mercury-indium amalgam were dry blended using a ribbon blender to obtain zinc alloy powders having the compositions shown in Table 1 (Examples 1 to 11).

(2)亜鉛溶湯中に第1表の添加元素を所定量添加し、
撹拌して合金化させた後、圧縮空気によりアトマイズし
、粉体化させ、篩い分けを行なって整粒して亜鉛合金粉
末(アトマイズ粉末)を得た。
(2) Adding specified amounts of additive elements listed in Table 1 to molten zinc,
After stirring and alloying, the mixture was atomized with compressed air, pulverized, sieved, and sized to obtain zinc alloy powder (atomized powder).

次に、この亜鉛合金粉末と水銀とをリボンブレンダーに
て乾式汞化し、第1表に示す組成の汞化亜鉛合金粉末を
得た(実施例12)。
Next, this zinc alloy powder and mercury were dry-blended using a ribbon blender to obtain a blister-zinc alloy powder having the composition shown in Table 1 (Example 12).

(3)亜鉛溶湯中に第1表の添加元素を所定量添加し、
撹拌して合金化させた後、圧縮空気によりアトマイズし
、粉体化させ、篩い分けを行なって整粒し、第1表に示
す組成の水化亜鉛合金粉末(アトマイズ粉末)を得た(
実施例13)。
(3) Adding specified amounts of additive elements listed in Table 1 to molten zinc,
After stirring and alloying, it was atomized with compressed air, pulverized, sieved and sized to obtain zinc hydrate alloy powder (atomized powder) having the composition shown in Table 1.
Example 13).

(4)亜鉛溶湯中に第1表の添加元素を所定量添加し、
撹拌して合金化させた後、圧縮空気によりアトマイズし
、粉体化させ、篩い分けを行なって整粒して汞化亜鉛合
金粉末(アトマイズ粉末)を得た。次に、この亜鉛合金
粉末を10%水酸化カリウム水溶液中に投入し、水銀を
撹拌下漬下して汞化処理を行ない、水洗した後に濾過、
乾燥を行なって第1表に示す組成の汞化亜鉛合金粉末を
得た(実施例14および比較例4)。
(4) Adding specified amounts of additive elements listed in Table 1 to molten zinc,
After stirring and alloying, the mixture was atomized with compressed air, pulverized, sieved and sized to obtain a zinc alloy powder (atomized powder). Next, this zinc alloy powder was put into a 10% potassium hydroxide aqueous solution, immersed in mercury with stirring to perform a filtration treatment, washed with water, filtered,
Drying was performed to obtain zinc chloride alloy powders having the compositions shown in Table 1 (Example 14 and Comparative Example 4).

(5)亜鉛溶湯中に第1表の添加元素を所定量添加し、
撹拌して合金化させた後、圧縮空気によりアトマイズし
、粉体化させ、篩い分けを行なって整粒して汞化亜鉛合
金粉末(アトマイズ粉末)を得た。次に、この亜鉛合金
粉末を10%水酸化カリウム水溶液中に投入し、水銀−
インジウムアマルガムを 撹拌下漬下して汞化処理を行
ない、水洗した後に濾過、乾燥を行なって第1表に示す
組成の水化亜鉛合金粉末を得た(比較例1〜3)。
(5) Adding specified amounts of additive elements listed in Table 1 to molten zinc,
After stirring and alloying, the mixture was atomized with compressed air, pulverized, sieved and sized to obtain a zinc alloy powder (atomized powder). Next, this zinc alloy powder was put into a 10% potassium hydroxide aqueous solution, and the mercury-
Indium amalgam was soaked under stirring, subjected to a filtration treatment, washed with water, filtered and dried to obtain zinc hydrate alloy powders having the compositions shown in Table 1 (Comparative Examples 1 to 3).

このようにして得られた水化亜鉛合金粉末を負極活物質
とし、この負極活物質とゲル化剤および40%水酸化カ
リウム溶液に酸化亜鉛を飽和させた電解液を用いてゲル
状化したものを負極剤とし、また正極に二酸化マンガン
と導電剤を混合して正極剤とした。これら負極剤と正極
剤を用いて、第1図に示す市販の電池(LR−8)の構
成に近似させたアルカリマンガン電池を用いて試験を行
なった。
The thus obtained zinc hydrate alloy powder is used as a negative electrode active material, and is gelled using this negative electrode active material, a gelling agent, and an electrolytic solution in which 40% potassium hydroxide solution is saturated with zinc oxide. was used as a negative electrode material, and a positive electrode material was prepared by mixing manganese dioxide and a conductive agent with the positive electrode. Using these negative electrode materials and positive electrode materials, a test was conducted using an alkaline manganese battery having a configuration similar to that of a commercially available battery (LR-8) shown in FIG.

第1図のアルカリマンガン電池は、正極缶1、正極2、
負極(ゲル状化した汞化亜鉛合金粉末)3、セパレータ
ー4、封口体5、負極底板6、負極集電体7、キャップ
8、熱収縮性樹脂チューブ9、絶縁リング10,11 
、外装缶正極缶12で構成されている。
The alkaline manganese battery shown in Figure 1 consists of a positive electrode can 1, a positive electrode 2,
Negative electrode (gelled zinc alloy powder) 3, separator 4, sealing body 5, negative electrode bottom plate 6, negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9, insulating rings 10, 11
, an exterior can and a positive electrode can 12.

この電池を負極に用いられる汞化亜鉛合金粉末種類を変
えて各々10個づつ電池を組み立て、60℃で20日間
保存し、その時の電池1個当りの水素ガス発生量(威)
を測定し、各々10個の測定結果の平均値を第1表に示
した。
This battery was assembled into 10 batteries each using different types of zinc chloride alloy powder used for the negative electrode, and stored at 60°C for 20 days.The amount of hydrogen gas generated per battery at that time was
were measured, and the average value of each 10 measurement results is shown in Table 1.

部分放電後のガス発生は、1Ωの抵抗で放電した場合の
放電時間の1/2だけ放電させ、その後、上記と同様に
して60℃で20日間保存し、その時の電池1個当りの
水素ガス発生量(rd)を測定し、各々10個の測定結
果の平均値を第1表に示した。
Gas generation after partial discharge is determined by discharging for 1/2 of the discharge time when discharging with a resistance of 1 Ω, then storing it at 60°C for 20 days in the same manner as above, and reducing the amount of hydrogen gas per battery at that time. The amount generated (rd) was measured, and the average value of the 10 measurement results is shown in Table 1.

また、電池については、各々10個ずっ2Ω負荷におい
て連続放電試験を実施し、放電時間の平均値を比較例4
の値を100とした指数表示で示した。
In addition, for each battery, a continuous discharge test was conducted with 10 batteries each under a 2Ω load, and the average value of the discharge time was determined in Comparative Example 4.
The value is expressed as an index with the value as 100.

さらに、異常放電については例えば300Ω軽負荷で連
続放電した場合、急速な電圧低下を起こしたものには×
、急速な電圧低下を起こさないものにはOとして第1表
に示した。
Furthermore, regarding abnormal discharge, for example, when continuously discharging under a light load of 300Ω, if a rapid voltage drop occurs,
, Those that do not cause a rapid voltage drop are indicated as O in Table 1.

これらの結果を負極活物質として用いられる汞化亜鉛合
金粉末の組成と併せて第1表に示す。
These results are shown in Table 1 together with the composition of the zinc chloride alloy powder used as the negative electrode active material.

第1表に示されるごとく、実施例1〜14は負極活物質
として用いられる汞化亜鉛合金粉末の製造法に拘らず、
比較例1に示される 1/2放電後の異常なガス発生を
起こさず、また、比較例2〜3に示される異常放電も起
こさないことは明らかである。また、この実施例1〜1
4は放電時間についても水銀含有量が1.0重量%以下
であるにも拘らず、水銀含有量が9,0重量%の比較例
4の値と比較してほとんど遜色ないことが判る。
As shown in Table 1, in Examples 1 to 14, regardless of the manufacturing method of the zinc chloride alloy powder used as the negative electrode active material,
It is clear that the abnormal gas generation after 1/2 discharge shown in Comparative Example 1 does not occur, nor does the abnormal discharge shown in Comparative Examples 2 and 3 occur. In addition, Examples 1 to 1
It can be seen that the discharge time of Example 4 is almost comparable to that of Comparative Example 4, which has a mercury content of 9.0% by weight, even though the mercury content is 1.0% by weight or less.

[発明の効果コ 以上説明したように、鉛、ビスマス、アルミニウム、イ
ンジウムおよび水銀を一定量含有する汞化亜鉛合金粉末
を負極活物質とする本発明によれば、水銀含有量が低減
されているにも拘らず、電池内で発生する水素ガスを大
幅に低減でき、また異常なガス発生や異常放電も起こす
こともなく、しかも放電性能も高い水準に維持し得るこ
とから、その工業的価値が大である。
[Effects of the Invention] As explained above, according to the present invention in which the negative electrode active material is a zinc chloride alloy powder containing a certain amount of lead, bismuth, aluminum, indium, and mercury, the mercury content is reduced. Despite this, it is possible to significantly reduce the amount of hydrogen gas generated within the battery, and there is no abnormal gas generation or abnormal discharge, and the discharge performance can be maintained at a high level, so it has great industrial value. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の構成図
を示す。 1:正極缶、     2:正極、 3:負極、      4:セパレーター、5:封口体
、     6:負極底板、7:負極集電体、   8
:キャップ、9:熱収縮性樹脂チューブ、 10.11  :絶縁リング、 12:外装缶。
FIG. 1 shows a block diagram of an alkaline manganese battery according to the present invention. 1: Positive electrode can, 2: Positive electrode, 3: Negative electrode, 4: Separator, 5: Sealing body, 6: Negative electrode bottom plate, 7: Negative electrode current collector, 8
: Cap, 9: Heat-shrinkable resin tube, 10.11: Insulating ring, 12: Exterior can.

Claims (1)

【特許請求の範囲】 1、ビスマスを0.01〜0.5重量%、鉛を0.00
5〜0.5重量%、アルミニウムを0.001〜0.0
05重量%、インジウムを0.005〜0.2重量%、
水銀を0.001〜1.0重量%含有する汞化亜鉛合金
粉末からなるアルカリ電池用負極活物質。 2、請求項1に記載の汞化亜鉛合金粉末を負極活物質に
用いたアルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of bismuth, 0.00% of lead
5-0.5% by weight, aluminum 0.001-0.0
05% by weight, indium 0.005-0.2% by weight,
A negative electrode active material for alkaline batteries comprising a zinc chloride alloy powder containing 0.001 to 1.0% by weight of mercury. 2. An alkaline battery using the zinc chloride alloy powder according to claim 1 as a negative electrode active material.
JP1124283A 1989-05-19 1989-05-19 Alkaline battery and its negative active material Pending JPH02304868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124283A JPH02304868A (en) 1989-05-19 1989-05-19 Alkaline battery and its negative active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124283A JPH02304868A (en) 1989-05-19 1989-05-19 Alkaline battery and its negative active material

Publications (1)

Publication Number Publication Date
JPH02304868A true JPH02304868A (en) 1990-12-18

Family

ID=14881506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124283A Pending JPH02304868A (en) 1989-05-19 1989-05-19 Alkaline battery and its negative active material

Country Status (1)

Country Link
JP (1) JPH02304868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Similar Documents

Publication Publication Date Title
JPH0222984B2 (en)
JPS6240162A (en) Zinc alkaline battery
JPH02304868A (en) Alkaline battery and its negative active material
JPS61153950A (en) Zinc alkaline storage battery
JPS6177257A (en) Zinc alkaline battery
JPH0317181B2 (en)
JPH02306540A (en) Manufacture of negative electrode active substance for alkaline storage battery
JPS62123653A (en) Zinc-alkaline battery
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH06223829A (en) Zinc alkaline battery
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0377274A (en) Manufacture of negative electrode active material for alkaline battery
JPH06338319A (en) Zinc-alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS6240157A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery