JPH03230476A - Negative electrode active material for alkaline battery - Google Patents

Negative electrode active material for alkaline battery

Info

Publication number
JPH03230476A
JPH03230476A JP2025070A JP2507090A JPH03230476A JP H03230476 A JPH03230476 A JP H03230476A JP 2025070 A JP2025070 A JP 2025070A JP 2507090 A JP2507090 A JP 2507090A JP H03230476 A JPH03230476 A JP H03230476A
Authority
JP
Japan
Prior art keywords
alloy powder
negative electrode
zinc alloy
zinc
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2025070A
Other languages
Japanese (ja)
Inventor
Toyohide Uemura
植村 豊秀
Sadao Okamoto
貞夫 岡本
Tomiko Yamaguchi
富子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2025070A priority Critical patent/JPH03230476A/en
Publication of JPH03230476A publication Critical patent/JPH03230476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the gas generation in a battery, improve corrosion resistance, and improve discharge performance by using zinc alloy powder or amalgamated zinc alloy powder with the apparent specific weight within a fixed range as a negative electrode active material. CONSTITUTION:An alkali-manganese battery is constituted of a positive electrode can 1, a positive electrode 2, a negative electrode (gelatinized zinc alloy powder) 8, a separator 4, a sealing body 5, a negative electrode bottom plate 6, negative electrode current collector 7, a cap 8, a heat-contraction resin tube 9, insulating rings 10, 11, and an outer can 12. The active material of the negative electrode 3 is made of zinc alloy powder or amalgamated zinc alloy powder with the apparent specific weight 3.7-4.1. Zinc-lead-aluminum alloy powder or zinc-lead-bismuth alloy powder containing preset quantities of lead, bismuth and aluminum is obtained. Atomized alloy powder and mercury-indium amalgam are put in a 10% potassium hydroxide aqueous solution and mixed and stirred, and amalgamation treatment is applied to obtain amalgamated zinc alloy powder.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はアルカリ電池用負極活物質に関し、詳しくは電
池内でのガス発生を抑制することにより耐食性を向上さ
せ、しかも電池内への充填性を増加させることにより放
電性能に優れたアルカリ電池用負極活物質に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a negative electrode active material for alkaline batteries, and more specifically, it improves corrosion resistance by suppressing gas generation within the battery, and also improves filling properties into the battery. The present invention relates to a negative electrode active material for alkaline batteries that has excellent discharge performance by increasing .

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って、長期保存中に電池内部
のガス圧が高まり、密閉が完全なほど爆発等の危険が伴
なう。
[Prior Art] In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛合金粉末を負
極活物質として用いることが専ら行なわれている。この
ため、今日市販されているアルカリ電池の負極活物質は
1.5重量%程度の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀のもので高
容量を維持した電池の開発が強く期待されるようになっ
てきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. is carried out exclusively. For this reason, the negative electrode active materials of alkaline batteries commercially available today contain about 1.5% by weight of mercury, and social needs require lower mercury or mercury-free materials to maintain high capacity. There are strong expectations for the development of new batteries.

[発明か解決しようとする課題] このため、1,5重量%以下の水銀を含有する汞化亜鉛
合金粉末として亜鉛−インジウムー鉛−水銀合金粉末に
加えて、ビスマスやアルミニウムを添加する合金粉末が
提案されている。
[Invention or problem to be solved] For this reason, an alloy powder containing bismuth and aluminum in addition to a zinc-indium-lead-mercury alloy powder is developed as a zinc chloride alloy powder containing 1.5% by weight or less of mercury. Proposed.

しかし、これら低水銀の汞化亜鉛合金粉末を負極活物質
として用いた場合でも、耐食性、放電性能が共に満足の
行くものは得られていない。
However, even when these low-mercury zinc oxide alloy powders are used as negative electrode active materials, satisfactory corrosion resistance and discharge performance have not been obtained.

本発明は、かかる課題を解決すべくなされたもので、電
池内のガス発生を抑制することにより耐食性を向上させ
、しかもアルカリ電池の放電性能にも優れたアルカリ電
池用負極活物質の製造方法を提供することを目的とする
The present invention was made to solve these problems, and provides a method for producing a negative electrode active material for alkaline batteries that improves corrosion resistance by suppressing gas generation within the battery and also has excellent discharge performance of alkaline batteries. The purpose is to provide.

[課題を解決するための手段] 本発明者等は、この目的に沿って鋭意研究の結果、見掛
は比重か一定範囲内にある亜鉛合金粉末または汞化亜鉛
合金粉末をアルカリ電池用負極活物質として用いること
により、上記目的が達成されることを知見して、本発明
に到達した。
[Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors have found that zinc alloy powder or zinc chloride alloy powder whose apparent specific gravity is within a certain range is used as a negative electrode active material for alkaline batteries. The present invention was achieved by discovering that the above object can be achieved by using it as a substance.

すなわち、本発明のアルカリ電池用負極活物質は見掛は
比重か3.7〜4.1である亜鉛合金粉末または汞化亜
鉛合金粉末からなることを特徴とする。
That is, the negative electrode active material for alkaline batteries of the present invention is characterized by being made of a zinc alloy powder or a zinc alloy powder having an apparent specific gravity of 3.7 to 4.1.

本発明の負極活物質は、上述のように見掛は比重が3.
7〜4.1である亜鉛合金粉末または汞化亜鉛合金粉末
(以下、場合により亜鉛合金粉末と総称する)を用いる
ものである。この見掛は比重は、JIS Z 2504
に記載されている方法によって求められる値である。
As mentioned above, the negative electrode active material of the present invention has an apparent specific gravity of 3.
7 to 4.1 (hereinafter collectively referred to as zinc alloy powder in some cases). This apparent specific gravity is JIS Z 2504
This is the value obtained by the method described in .

通常、アルカリ電池用に使用されている亜鉛合金粉末の
見掛は比重は3.0〜3.6程度であるのに対し、本発
明で用いる亜鉛合金粉末は、これより見掛は比重が高い
上記範囲のものである。この範囲にある亜鉛合金粉末は
、形状が丸味を帯び、表面の凹凸もないことから電池内
への充填性が高く、しかもゲル電解液中に十分に懸濁す
るため、結果的に耐食性、放電特性が共に著しく改善さ
れる。
Normally, zinc alloy powder used for alkaline batteries has an apparent specific gravity of about 3.0 to 3.6, whereas the zinc alloy powder used in the present invention has an apparent specific gravity higher than this. It is within the above range. Zinc alloy powder in this range has a rounded shape and no surface irregularities, so it has high filling properties into batteries, and is also sufficiently suspended in the gel electrolyte, resulting in corrosion resistance and discharge resistance. Both properties are significantly improved.

亜鉛合金粉末の見掛は比重が3.7未満では、水銀含有
量を0〜0.15重量%と低減させた場合、放電特性お
よび耐食性の向上を併せて達成することができない。す
なわち、見掛は比重の小さい亜鉛合金粉末は電池内への
充填性が悪く、従って放電容量が低下する。また見掛は
比重の小さい亜鉛合金粉末は形状が細長いものが多く、
かつ表面状態については凹凸が多い。従って、表面積が
大きくなり、耐食性に劣る。
If the apparent specific gravity of the zinc alloy powder is less than 3.7, it is not possible to achieve both improvements in discharge characteristics and corrosion resistance when the mercury content is reduced to 0 to 0.15% by weight. That is, the zinc alloy powder, which has an apparently small specific gravity, has poor filling properties into the battery, resulting in a decrease in discharge capacity. In addition, zinc alloy powder, which has an apparently small specific gravity, often has an elongated shape.
Moreover, the surface condition has many irregularities. Therefore, the surface area becomes large and corrosion resistance is poor.

一方、亜鉛合金粉末の見掛けが比重4.1を超える場合
には、電池内への充填性は良いが、ゲル電解液中で十分
に懸濁せず、従って、電池底部に沈積して、放電時にお
ける電解液との反応性が阻害される。この結果、放電特
性に劣る。
On the other hand, when the apparent specific gravity of the zinc alloy powder exceeds 4.1, it fills well into the battery, but is not sufficiently suspended in the gel electrolyte, and therefore deposits at the bottom of the battery and prevents discharge. The reactivity with the electrolyte at the time is inhibited. As a result, the discharge characteristics are poor.

このように、亜鉛合金粉末の見掛は比重が3.7〜4.
1の範囲において、特に耐食性、放電特性に好結果をも
たらす。
Thus, the apparent specific gravity of the zinc alloy powder is 3.7 to 4.
In the range of 1, particularly good results are brought about in corrosion resistance and discharge characteristics.

このような見掛は比重が3.7〜4.1の亜鉛合金粉末
を得るには、例えば次の方法が一例として採用される。
In order to obtain such a zinc alloy powder having an apparent specific gravity of 3.7 to 4.1, the following method is employed, for example.

すなわち、所定量の鉛、ビスマス、アルミニウム等を含
有する亜鉛−鉛一アルミニウム合金粉末または亜鉛−鉛
一ビスマス合金粉末(アトマイズ合金粉末)を得る。そ
の方法としては、例えば亜鉛溶渦中に鉛、ビスマス、ア
ルミニウム等を所定量添加し、撹拌して合金化させた後
、圧縮不活性ガスによりアトマイズし、粉体化させ、さ
らに篩い分けを行なって整粒する方法が採用される。
That is, a zinc-lead-aluminum alloy powder or a zinc-lead-bismuth alloy powder (atomized alloy powder) containing a predetermined amount of lead, bismuth, aluminum, etc. is obtained. For example, a predetermined amount of lead, bismuth, aluminum, etc. is added to a zinc melt, stirred to form an alloy, and then atomized with compressed inert gas to form a powder, and then sieved. A method of grading is adopted.

なお、アトマイズに際しては、不活性ガス(アルゴン、
窒素等)を用いてアトマイズ室内の空気と置換して、酸
素濃度を1〜3容量%とする。
In addition, when atomizing, inert gas (argon,
The air in the atomization chamber is replaced with nitrogen (nitrogen, etc.) to bring the oxygen concentration to 1 to 3% by volume.

アトマイズ室内の酸素濃度を1容量%未満とすると、得
られた亜鉛合金粉末の見掛は比重は4.1よりも大きく
なり、逆に酸素濃度を3容量%超にすると、得られた亜
鉛合金粉末の見掛は比重は3.7未満となり、いずれも
好ましくない。
When the oxygen concentration in the atomizing chamber is less than 1% by volume, the apparent specific gravity of the zinc alloy powder obtained is greater than 4.1; The apparent specific gravity of the powder is less than 3.7, which is not preferable.

なお、見掛は比重が3.7〜4.1の亜鉛合金粉末を得
る方法として、上記と別の方法を採用してもよい。
Note that a method other than the above method may be used to obtain a zinc alloy powder having an apparent specific gravity of 3.7 to 4.1.

こうして得られた亜鉛合金粉末を汞化する場合には、例
えば水銀−インジウムアマルガムにて湿式または乾式汞
化を行なう。
When the zinc alloy powder thus obtained is to be subjected to aqueous conversion, wet or dry amalgamation is carried out using, for example, mercury-indium amalgam.

ここでいう湿式汞化とは、粉体化して得られた上記アト
マイズ合金粉末と水銀−インジウムアマルガムとを例え
ば10%水酸化カリウム水溶液中に投入し、混合撹拌し
て汞化処理を行ない、汞化亜鉛合金粉末を得るものであ
る。また、乾式汞化とは、粉体化して得られたアトマイ
ズ合金粉末と水銀−インジウムアマルガムとをリボンブ
レンダー等の混合機に投入して、一定雰囲気下で5〜2
0分程度混合、撹拌しながら汞化処理を行ない、汞化亜
鉛合金粉末を得るものである。ここで用いられる水銀−
インジウムアマルガムは、例えば10%塩酸中で水銀、
インジウムをアマルガム化して得られるものである。
Wet atomization here refers to the above-mentioned atomized alloy powder obtained by pulverization and mercury-indium amalgam, which are put into, for example, a 10% potassium hydroxide aqueous solution, and mixed and stirred to perform a atomization treatment. A zinc chloride alloy powder is obtained. In addition, dry atomization is a process in which the atomized alloy powder obtained by pulverization and mercury-indium amalgam are put into a mixer such as a ribbon blender, and the mixture is heated for 5 to 2 hours under a constant atmosphere.
The oxidation treatment is performed while mixing and stirring for about 0 minutes to obtain the oxidation zinc alloy powder. Mercury used here -
Indium amalgam, for example, contains mercury in 10% hydrochloric acid.
It is obtained by amalgamating indium.

本発明の負極活物質を用いたアルカリ電池は、電解液に
苛性カリ、苛性ソーダ等を主成分とするアルカリ水溶液
を用い、負極活物質に上記した亜鉛合金粉末または汞化
亜鉛合金粉末、正極活物質に二酸化マンガン、酸化銀、
酸素等を用いることにより得られる。
An alkaline battery using the negative electrode active material of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as a main component as an electrolyte, uses the above-mentioned zinc alloy powder or zinc chloride alloy powder as a negative electrode active material, and uses a positive electrode active material as a positive electrode active material. manganese dioxide, silver oxide,
Obtained by using oxygen etc.

[実施例] 以下、実施例等に基づいて本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples and the like.

実施例1〜7および比較例1〜7 第1表の組成の汞化亜鉛合金粉末を以下の方法によって
調製した。
Examples 1 to 7 and Comparative Examples 1 to 7 Zinc alloy powder having the composition shown in Table 1 was prepared by the following method.

先ず、純度99.997%以上の亜鉛地金を約500℃
で溶融した亜鉛溶湯中に鉛、ビスマス、アルミニウムを
所定量添加し、撹拌して合金化させた後、所定の雰囲気
に調整してアトマイズを行ない、粉体化させた。次いで
、篩い分けを行なって35〜200メツシユに整粒して
亜鉛合金粉末を得た。
First, zinc ingot with a purity of 99.997% or more is heated to about 500℃.
A predetermined amount of lead, bismuth, and aluminum were added to the molten zinc, stirred to form an alloy, and then adjusted to a predetermined atmosphere and atomized to form a powder. Next, the powder was sieved and sized to a size of 35 to 200 mesh to obtain a zinc alloy powder.

ここでアトマイズ室内の酸素濃度は、実施例1〜7につ
いては1〜3容量%の範囲内に調整し、また比較例5〜
6についてはアトマイズ室内の酸素濃度を0.1〜0.
5容量%の範囲内に調整した。
Here, the oxygen concentration in the atomizing chamber was adjusted within the range of 1 to 3% by volume for Examples 1 to 7, and for Comparative Examples 5 to 7.
For No. 6, the oxygen concentration in the atomization chamber was set to 0.1 to 0.
It was adjusted within the range of 5% by volume.

なお、比較例1〜4および比較例7については、通常行
なわれているように大気中(酸素濃度21こ容量%)に
てアトマイズを行なった。これらの亜鉛合金粉末をその
まま、あるいは汞化して第1表に示す組成のものを得た
In addition, for Comparative Examples 1 to 4 and Comparative Example 7, atomization was performed in the atmosphere (oxygen concentration 21% by volume) as usual. These zinc alloy powders were used as they were or after being made into powders to obtain powders having the compositions shown in Table 1.

見掛は比重の測定はJIS Z 2504に従って行な
った。すなわち、底面に5馴径の滴下穴を有する漏斗(
床面から漏斗穴までの高さ約70mm)−支持台付きを
用い、床面に内容積25dの容器を滴下穴の下に置き、
この漏斗と容器よりなる蔵持化学機械製作所製の「カサ
比重測定機」を用いて行なった。
The apparent specific gravity was measured in accordance with JIS Z 2504. In other words, a funnel (
(Height from floor to funnel hole: approx. 70 mm) - Using a support stand, place a container with an internal volume of 25 d on the floor below the drip hole,
The measurement was carried out using a "Used Specific Gravity Measuring Machine" manufactured by Kuramochi Kagaku Kikai Seisakusho, which consists of this funnel and a container.

なお、第1表の値は10回の測定の平均値である。Note that the values in Table 1 are the average values of 10 measurements.

また、このようにして得られた亜鉛合金粉末を負極活物
質とし、この負極活物質とゲル化剤および10%水酸化
カリウム溶液に酸化亜鉛を飽和させた電解液を用いてゲ
ル状化したものを負極剤とし、また正極に二酸化マンガ
ンと導電剤を混合して正極剤とした。これら負極剤と正
極剤を用いて、第1図に示す市販の電池(LR−6)の
構成に近似させたアルカリマンガン電池を用いて試験を
行なった。
In addition, the zinc alloy powder obtained in this way is used as a negative electrode active material, and the negative electrode active material is gelled using a gelling agent and an electrolytic solution in which zinc oxide is saturated in a 10% potassium hydroxide solution. was used as a negative electrode material, and a positive electrode material was prepared by mixing manganese dioxide and a conductive agent with the positive electrode. Using these anode materials and cathode materials, a test was conducted using an alkaline manganese battery having a configuration similar to that of a commercially available battery (LR-6) shown in FIG.

第1図のアルカリマンガン電池は、正極缶1、正極2、
負極(ゲル状化した亜鉛合金粉末)3、セパレーター4
、封口体5、負極底板6、負極集電体7、キャップ8、
熱収縮性樹脂チューブ9、絶縁リング10.11、外装
缶12で構成されている。
The alkaline manganese battery shown in Figure 1 consists of a positive electrode can 1, a positive electrode 2,
Negative electrode (gelled zinc alloy powder) 3, separator 4
, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7, a cap 8,
It is composed of a heat-shrinkable resin tube 9, an insulating ring 10, 11, and an outer can 12.

充填量は、セパレーター上部から2#の所まで負極剤を
投入し、その時の投入量を比較例4の値を100とした
指数表示で示した。その結果を第1表に示した。
The filling amount was determined by adding the negative electrode agent to a position 2# from the top of the separator, and the amount added at that time was expressed as an index with the value of Comparative Example 4 as 100. The results are shown in Table 1.

ガス発生量は、上記のようにして作成したアルカリマン
ガン電池を60℃で20日間保存し、その時の電池1個
当りの水素ガス発生量(IRl)を測定し、各々10個
の測定結果の平均値を第1表に示した。
The amount of gas generated was determined by storing the alkaline manganese batteries prepared as described above at 60°C for 20 days, measuring the amount of hydrogen gas generated (IRl) per battery at that time, and calculating the average of the 10 measurement results. The values are shown in Table 1.

また放電時間は、上記のようにして作成したアルカリマ
ンガン電池を各々10個ずつ2Ω負荷において連続放電
試験を実施し、終止電圧0.9vまでの放電時間の平均
値を比較例7の値を100とした指数表示で第1表に示
した。
In addition, the discharge time was determined by conducting a continuous discharge test with 10 alkaline manganese batteries prepared as described above under a 2Ω load, and calculating the average value of the discharge time to the final voltage of 0.9V by 100% of the value of Comparative Example 7. It is shown in Table 1 in index form.

第1表に示されるごとく、見掛は比重が3.7〜4.1
である亜鉛合金粉末を用いた実施例1〜6は、水銀含有
量を0〜0.15重量%と非常に低減させたにも拘らず
、見掛は比重が3.7〜4.1の範囲を外れる同一水銀
含有量の亜鉛合金粉末を用いた比較例1〜6と比較して
、水素ガス発生が抑制され、しかも放電性能に優れてお
り、見掛は比重が3,6て水銀含有量が1,5重量%の
亜鉛合金粉末を用いた比較例7と比較しても、はぼ同等
もしくはそれ以上のレベルとなっている。
As shown in Table 1, the apparent specific gravity is 3.7 to 4.1.
In Examples 1 to 6 using zinc alloy powder, the apparent specific gravity was 3.7 to 4.1 even though the mercury content was extremely reduced to 0 to 0.15% by weight. Compared to Comparative Examples 1 to 6 using zinc alloy powder with the same mercury content, which is outside the range, hydrogen gas generation is suppressed and the discharge performance is excellent, with an apparent specific gravity of 3.6 and mercury content. Even when compared with Comparative Example 7 using zinc alloy powder in an amount of 1.5% by weight, the level is almost the same or higher.

また、実施例7は見掛は比重が4.1で水銀含有量か1
.5重量%の亜鉛合金粉末を用いたものであるが、比較
例7と比較して水素ガス発生がさらに抑制され、また放
電性能も大幅に向上している。
In addition, in Example 7, the apparent specific gravity was 4.1 and the mercury content was 1.
.. Although 5% by weight of zinc alloy powder was used, hydrogen gas generation was further suppressed compared to Comparative Example 7, and the discharge performance was also significantly improved.

[発明の効果] 以上説明のごとく、見掛は比重が3.7〜4.1の亜鉛
合金粉末からなる本発明の負極活物質は、水銀含有量が
0〜0.15重量%と極めて低汞化率においても、電池
内で発生する水素ガスを大幅に低減でき、しかも放電性
能も高い水準に維持し得ることから、その工業的価値が
大である。
[Effects of the Invention] As explained above, the negative electrode active material of the present invention, which is made of zinc alloy powder with an apparent specific gravity of 3.7 to 4.1, has an extremely low mercury content of 0 to 0.15% by weight. In terms of hydrogenation rate, hydrogen gas generated within the battery can be significantly reduced, and the discharge performance can also be maintained at a high level, so it has great industrial value.

従って、本発明はアルカリ電池用負極活物質として好適
である。
Therefore, the present invention is suitable as a negative electrode active material for alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1・・・正極缶、    2・・・正極、3・・・負極
、      4・・・セパレーター5・・・封口体、
    6・・・負極底板、7・・・負極集電体、  
8・・・キャップ、9・・・熱収縮性樹脂チューブ、 10.11・・・絶縁リング、 12・・・外装缶。
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. 1... Positive electrode can, 2... Positive electrode, 3... Negative electrode, 4... Separator 5... Sealing body,
6... Negative electrode bottom plate, 7... Negative electrode current collector,
8... Cap, 9... Heat-shrinkable resin tube, 10.11... Insulating ring, 12... Exterior can.

Claims (1)

【特許請求の範囲】[Claims] 1、見掛け比重が3.7〜4.1である亜鉛合金粉末ま
たは汞化亜鉛合金粉末からなるアルカリ電池用負極活物
質。
1. A negative electrode active material for alkaline batteries comprising a zinc alloy powder or a zinc alloy powder having an apparent specific gravity of 3.7 to 4.1.
JP2025070A 1990-02-06 1990-02-06 Negative electrode active material for alkaline battery Pending JPH03230476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025070A JPH03230476A (en) 1990-02-06 1990-02-06 Negative electrode active material for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025070A JPH03230476A (en) 1990-02-06 1990-02-06 Negative electrode active material for alkaline battery

Publications (1)

Publication Number Publication Date
JPH03230476A true JPH03230476A (en) 1991-10-14

Family

ID=12155666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025070A Pending JPH03230476A (en) 1990-02-06 1990-02-06 Negative electrode active material for alkaline battery

Country Status (1)

Country Link
JP (1) JPH03230476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945908A1 (en) * 1996-10-09 1999-09-29 Dowa Mining Co., Ltd. Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
WO2001091224A1 (en) * 2000-05-24 2001-11-29 Eveready Battery Company, Inc. Zero mercury air cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945908A1 (en) * 1996-10-09 1999-09-29 Dowa Mining Co., Ltd. Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
WO2001091224A1 (en) * 2000-05-24 2001-11-29 Eveready Battery Company, Inc. Zero mercury air cell
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
US5296267A (en) Process for preparing non-amalgamated zinc alloy powder for alkali dry cells
JPH0222984B2 (en)
JPH03230476A (en) Negative electrode active material for alkaline battery
JPS61153950A (en) Zinc alkaline storage battery
JPH0418671B2 (en)
JP3561299B2 (en) Zinc alloy powder for alkaline batteries
JP3286346B2 (en) Zinc alkaline battery
JPH0317181B2 (en)
JPH0719604B2 (en) Alkaline battery manufacturing method
JP4852875B2 (en) Alkaline battery
JPWO2019181538A1 (en) Alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPH0317182B2 (en)
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP3219418B2 (en) Zinc alkaline battery
JP2002025552A (en) Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
JPH03138861A (en) Negative electrode active material for alkaline battery
JP3155203B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS6158165A (en) Gelled negative electrode of nommercury sealed alkaline battery
JPH04366549A (en) Zinc alkaline battery