JP3561299B2 - Zinc alloy powder for alkaline batteries - Google Patents

Zinc alloy powder for alkaline batteries Download PDF

Info

Publication number
JP3561299B2
JP3561299B2 JP24058194A JP24058194A JP3561299B2 JP 3561299 B2 JP3561299 B2 JP 3561299B2 JP 24058194 A JP24058194 A JP 24058194A JP 24058194 A JP24058194 A JP 24058194A JP 3561299 B2 JP3561299 B2 JP 3561299B2
Authority
JP
Japan
Prior art keywords
alloy powder
zinc alloy
surface area
repose
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24058194A
Other languages
Japanese (ja)
Other versions
JPH0878017A (en
Inventor
弘明 村島
衛 高岡
健治 一箭
克巳千 緒方
和也 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP24058194A priority Critical patent/JP3561299B2/en
Publication of JPH0878017A publication Critical patent/JPH0878017A/en
Application granted granted Critical
Publication of JP3561299B2 publication Critical patent/JP3561299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明はアルカリ電池用亜鉛合金粉末に関し、詳しくは粉末の安息角、比表面積を所定の範囲の値とし特定の元素を含有することにより、水素ガス発生、特に放電後のガス発生を抑制し、電池の耐漏液性を向上させたアルカリ電池用亜鉛合金粉末に関する。
【0002】
【従来の技術】
電解液が苛性カリ、苛性ソーダのようなアルカリ水溶液であるアルカリ電池の負極として使用されるアルカリ電池用亜鉛合金粉末は概ね次のように製造されている。すなわち4N(純度99.99%)以上の高純度電気亜鉛を用いて少量の添加金属で合金化し、これをアトマイズ法で噴霧して得た不規則形状の粒子である。
【0003】
このようなアルカリ電池用亜鉛合金粉末はアルカリ電解液中での水素過電圧が低く、電池内で放電された場合の化学分極も比較的大きいことから、水素過電圧を高め電解液による腐食を抑制するため水銀を添加した汞化亜鉛合金粉末が用いられてきた。
【0004】
近年水銀による環境汚染が問題となり水銀含有量が0%すなわち無汞化亜鉛合金粉末を使用した電池の開発が期待されるようになった。今日例えばインジウムなどの亜鉛合金粉末添加元素を種々組み合わせたり、表面処理をする等で水銀含有量を0%とした無汞化亜鉛粉末が活物質として用いられるようになってきている。
【0005】
【発明が解決しようとする課題】
しかしながら、無汞化亜鉛合金粉末を使用することで汞化亜鉛電池粉に求められていた特性を必ずしも満足するにはいたっておらず、例えば負極用亜鉛合金粉末のアルカリ電解液中での腐食による放電前後の水素ガス発生特性が十分でなく、特に過放電後のガス発生が多い点で問題があった。
【0006】
したがって本発明は、このような問題点を解決するためのもので、亜鉛合金粉末の物理特性および合金組成を改良することにより、従来技術のものに比して水素ガス発生を抑制する、特に過放電後の水素ガス発生を抑制する無水銀アルカリ電池用亜鉛合金粉末を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、この目的に沿って鋭意研究した結果、亜鉛合金粉末が特定の範囲の安息角と比表面積とを満足し、かつ特定の範囲の添加元素を有していると、これらの相乗効果によって特性が改善され、過放電後の水素ガス発生が大巾に抑制されることを見いだし本発明に到達した。
【0008】
すなわち本発明は、安息角が40度以下および比表面積が0.013〜0.03m2/gであってさらに、アルミニウムならば0.005重量%以下、インジウムならば0.07重量%以下、ビスマスならば0.01重量%以下という制限条件の下で、アルミニウム、インジウムおよびビスマスを含み、残部が亜鉛および不可避不純物からなることを特徴とするアルカリ電池用亜鉛合金粉末である。
【0009】
【作用】
上記のように構成することにより以下のような作用がある。
【0010】
ここで各添加元素の効果としては以下のように推定されている。インジウムは亜鉛合金粉末表面の水素過電圧を高めて、電池として保存中の腐食によるガス発生を抑制する作用があり、アルミニウムは亜鉛に合金化することにより、亜鉛合金粉末粒子の表面を平滑化する効果があって、これによって反応性に関係する表面積を減少させることとなり、ガス発生抑制効果を発揮せしめる効果がある。またビスマスは亜鉛の水素過電圧を高めてガス発生を抑制する効果を有している。
【0011】
しかし、各成分元素の含有量が上記範囲を逸脱した場合には、水素ガスの発生を抑制する効果が得られなかったり、実用的な放電性能が維持できないという問題が生じる。またこれらの成分のいずれかが欠けても上記した本発明の効果は得られない。
【0012】
また本発明の亜鉛合金粉末は比表面積0.013から0.03m/gの範囲であること、安息角が40度以下にあることが必要である。その範囲を越えると初期の水素ガス発生を抑制する効果が得られない。
【0013】
ここでいう比表面積とはいわゆるBET法(気体吸着法)にて求めた値である。また安息角とは図2に示したように、水平においた直径D(mm)の皿2上に漏斗3から亜鉛合金粉末1を流し落とし、その高さH(mm)を求め以下の式を用いて求めた。φr=tan−1(2H/D)
【0014】
ここで亜鉛合金粉末の比表面積が0.013m/g未満でガス発生抑制効果が少なくなるのは、比表面積値が低くなると亜鉛合金粉末の粒子形状が球状に近くなったり、粒子全体が大きくなり反応性が悪くなって放電前のガス発生は少なくなるが、本発明の目的とする過放電後のガス発生については、放電により表面が露出しその露出面が新たに活性化されガス発生量が多くなることによると思われる。
【0015】
また比表面積が0.03m/gを越えたりあるいは安息角が40度を超えるものは亜鉛合金粉末の粒子形状が針状に近くなり反応性が良くなりすぎるものと思われる。
【0016】
以下実施例、比較例によって本発明を具体的に説明する。尚以下の「%」はすべて重量%を意味する。
【0017】
【実施例1〜4】
純度99.995%以上の溶融した金属亜鉛にインジウム0.04〜0.06%を加えて調整したベースメタルに各添加元素(アルミニウムとビスマス)を所定範囲の含有量となるように溶解する。次にこの溶解物をアトマイズ法により高圧ガスによって噴射し、粉体にして亜鉛合金粉末を得た。
【0018】
このようにして作製した亜鉛合金粉末をふるい分けして、安息角40度以下、あるいは比表面積が0.013〜0.03m/gの範囲の産物を得て電池用亜鉛合金粉末とした。なお、ベースメタルの粉末で所定の安息角、比表面積をもつものも用意した。
【0019】
得られた電池用亜鉛合金粉末について過放電後のガス発生速度、比表面積、安息角を求めた。
【0020】
ここで過放電後のガス発生速度については図1に示した測定法により行った。すなわち、亜鉛合金粉末をゲル化後、LR6型セル4(単3アルカリ電池)に組み込み、20℃10Ωで48時間放電後、45℃の恒温槽11において、キャップ5つきの集電棒6をはずし、流動パラフィン7を満たしシリコーンゴム栓8で封じた試験官9中でのガス発生速度をピペット10の目盛で読んで求めた。その結果を安息角、比表面積とともに表1に示した。
【0021】
【比較例1〜7】
実施例と同様にインジウム0.05%を添加したベースメタルを調整後、添加元素が所定範囲内外の含有量となるように溶解して、実施例の要領に従い亜鉛合金粉末を得てから、ふるい分けして安息角が40度を超え比表面積が所定範囲内外のサンプルを用意した。
【0022】
これらのサンプルについて、実施例と同様に過放電後のガス発生速度、比表面積、安息角を求め、その結果を表1に示した。
【0023】
【表1】

Figure 0003561299
表1に示されているように、添加成分、比表面積および安息角がすべて所定範囲内にある実施例1〜4は、水素ガス発生の抑制効果がすぐれている。
【0024】逆に比較例1〜7はアルミニウム、インジウム、ビスマスの添加成分の単独もしくは2種以上の組み合わせ、比表面積、所定範囲外の安息角を変化させたものであり、これらの例では水素ガス発生を抑制する効果は認められない。
【0025】
【発明の効果】
以上の説明のごとく特定の範囲の添加元素を加え、安息角、比表面積が特定の範囲の亜鉛粉末はアルカリ電池の負極活物質に用いることにより、過放電後の水素ガス発生を大幅に抑制する。
【図面の簡単な説明】
【図1】過放電後のガス発生速度を求めるため実施例および比較例に用いた過放電後ガス発生測定装置の側断面図である。
【図2】安息角測定装置を示す側面図である。
【符号の説明】
1 亜鉛合金粉末
2 皿
3 漏斗
4 LR6セル
5 キャップ
6 集電棒
7 流動パラフィン
8 シリコーンゴム栓
9 試験管
10 ピペット
11 恒温槽
D 皿の直径
H 粉末の高さ
φr 安息角[0001]
[Industrial applications]
The present invention relates to a zinc alloy powder for an alkaline battery, in particular, by controlling the angle of repose of the powder, the specific surface area to a value within a predetermined range and containing a specific element, to suppress hydrogen gas generation, particularly gas generation after discharge, The present invention relates to a zinc alloy powder for an alkaline battery having improved leakage resistance of the battery.
[0002]
[Prior art]
A zinc alloy powder for an alkaline battery used as a negative electrode of an alkaline battery in which an electrolytic solution is an aqueous alkaline solution such as caustic potash and caustic soda is generally manufactured as follows. That is, the particles are irregularly shaped particles obtained by alloying with a small amount of added metal using high-purity electrozinc having a purity of 4N (purity: 99.99%) or more and spraying the alloy by an atomizing method.
[0003]
Such zinc alloy powder for alkaline batteries has a low hydrogen overvoltage in an alkaline electrolyte and a relatively large chemical polarization when discharged in the battery, so that the hydrogen overvoltage is increased and corrosion by the electrolyte is suppressed. Mercurized zinc alloy powders with added mercury have been used.
[0004]
In recent years, environmental pollution by mercury has become a problem, and the development of batteries using a mercury-free zinc alloy powder having a mercury content of 0% has been expected. Today, for example, zinc-free mercury-free zinc powder having a mercury content of 0% is being used as an active material by variously combining elements added with zinc alloy powder such as indium or by performing surface treatment.
[0005]
[Problems to be solved by the invention]
However, the use of non-melonized zinc alloy powder has not always been able to satisfy the properties required for zinc-melted battery powder. For example, discharge due to corrosion of zinc alloy powder for a negative electrode in an alkaline electrolyte. There was a problem in that the hydrogen gas generation characteristics before and after were not sufficient, and in particular, there was much gas generation after overdischarge.
[0006]
Accordingly, the present invention is intended to solve such a problem, and suppresses the generation of hydrogen gas as compared with the prior art by improving the physical properties and alloy composition of the zinc alloy powder. An object of the present invention is to provide a zinc alloy powder for a mercury-free alkaline battery that suppresses generation of hydrogen gas after discharge.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies for this purpose and found that the zinc alloy powder satisfies a specific range of the angle of repose and specific surface area, and that the zinc alloy powder has a specific range of the additive element. The inventors have found that the characteristics are improved by the synergistic effect, and the generation of hydrogen gas after overdischarge is largely suppressed, and the present invention has been achieved.
[0008]
That is, the present invention provides an angle of repose of 40 degrees or less and a specific surface area of 0.013 to 0.03 m 2 / g. Further, aluminum is 0.005% by weight or less, indium is 0.07% by weight or less, A zinc alloy powder for an alkaline battery, which contains aluminum, indium and bismuth under the restriction condition of 0.01% by weight or less in the case of bismuth, with the balance being zinc and unavoidable impurities.
[0009]
[Action]
With the above configuration, the following operation is provided.
[0010]
Here, the effect of each additive element is estimated as follows. Indium has the effect of increasing the hydrogen overvoltage on the surface of zinc alloy powder and suppressing gas generation due to corrosion during storage as a battery, and the effect of aluminum alloying with zinc to smooth the surface of zinc alloy powder particles. As a result, the surface area related to the reactivity is reduced, which has the effect of exerting the gas generation suppressing effect. Bismuth has the effect of increasing the hydrogen overvoltage of zinc to suppress gas generation.
[0011]
However, when the content of each component element deviates from the above range, there arises a problem that the effect of suppressing the generation of hydrogen gas cannot be obtained and that practical discharge performance cannot be maintained. In addition, even if any of these components is missing, the above-described effects of the present invention cannot be obtained.
[0012]
The zinc alloy powder of the present invention needs to have a specific surface area of 0.013 to 0.03 m 2 / g and a repose angle of 40 degrees or less. If it exceeds the range, the effect of suppressing the initial generation of hydrogen gas cannot be obtained.
[0013]
Here, the specific surface area is a value obtained by a so-called BET method (gas adsorption method). Also, as shown in FIG. 2, the angle of repose is as shown in FIG. 2. A zinc alloy powder 1 is poured from a funnel 3 onto a horizontal dish 2 having a diameter D (mm), and the height H (mm) is obtained. It was determined using φr = tan −1 (2H / D)
[0014]
When the specific surface area of the zinc alloy powder is less than 0.013 m 2 / g, the gas generation suppressing effect is reduced because the particle shape of the zinc alloy powder becomes nearly spherical or the whole particle becomes large when the specific surface area is reduced. As a result, gas generation before overdischarge decreases due to poor reactivity.However, with regard to gas generation after overdischarge, which is the object of the present invention, the surface is exposed by discharge and the exposed surface is newly activated, and the amount of gas generated It seems to be due to the increase.
[0015]
If the specific surface area exceeds 0.03 m 2 / g or the angle of repose exceeds 40 degrees, the zinc alloy powder is considered to have a needle-like particle shape and the reactivity becomes too good.
[0016]
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, all the following "%" means weight%.
[0017]
[Examples 1 to 4]
Each of the additional elements (aluminum and bismuth) is dissolved in a predetermined range in a base metal prepared by adding 0.04 to 0.06% of indium to molten zinc metal having a purity of 99.995% or more. Next, this melt was sprayed with a high-pressure gas by an atomizing method to obtain a zinc alloy powder.
[0018]
The zinc alloy powder produced in this manner was sieved to obtain a product having a repose angle of 40 degrees or less or a specific surface area in the range of 0.013 to 0.03 m 2 / g, which was used as a zinc alloy powder for a battery. A base metal powder having a predetermined angle of repose and a specific surface area was also prepared.
[0019]
The gas generation rate, specific surface area and angle of repose after overdischarge of the obtained zinc alloy powder for batteries were determined.
[0020]
Here, the gas generation rate after overdischarge was measured by the measuring method shown in FIG. That is, after the zinc alloy powder was gelled, incorporated in an LR6 type cell 4 (AA alkaline battery), and discharged at 20 ° C. for 10 hours for 48 hours, the current collecting rod 6 with the cap 5 was removed in the 45 ° C. The gas generation rate in the tester 9 filled with the paraffin 7 and sealed with the silicone rubber stopper 8 was determined by reading on the scale of the pipette 10. The results are shown in Table 1 together with the angle of repose and the specific surface area.
[0021]
[Comparative Examples 1 to 7]
After adjusting the base metal to which 0.05% of indium was added in the same manner as in the example, the added element was dissolved so as to have a content outside the predetermined range, and a zinc alloy powder was obtained according to the procedure of the example. Then, a sample having a repose angle exceeding 40 degrees and a specific surface area within a predetermined range was prepared.
[0022]
For these samples, the gas generation rate after overdischarge, the specific surface area, and the angle of repose were determined in the same manner as in the examples, and the results are shown in Table 1.
[0023]
[Table 1]
Figure 0003561299
As shown in Table 1, Examples 1 to 4 in which the added components, the specific surface area and the angle of repose are all within predetermined ranges have excellent effects of suppressing hydrogen gas generation.
Conversely, Comparative Examples 1 to 7 are those in which aluminum, indium, and bismuth are added alone or in combination of two or more of them, the specific surface area, and the angle of repose outside the predetermined range are changed. No effect of suppressing gas generation is observed.
[0025]
【The invention's effect】
As described above, a specific range of the additive element is added, and the repose angle and specific surface area of the zinc powder in the specific range are used for the negative electrode active material of the alkaline battery, thereby significantly suppressing the generation of hydrogen gas after overdischarge. .
[Brief description of the drawings]
FIG. 1 is a side sectional view of a post-overdischarge gas generation measuring apparatus used in Examples and Comparative Examples to determine a gas generation rate after overdischarge.
FIG. 2 is a side view showing a repose angle measuring device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Zinc alloy powder 2 Dish 3 Funnel 4 LR6 cell 5 Cap 6 Current collecting rod 7 Liquid paraffin 8 Silicone rubber stopper 9 Test tube 10 Pipette 11 Thermostat D Dish diameter H Powder height φr Angle of repose

Claims (1)

安息角が40度以下および比表面積が0.013〜0.03m2/gであってさらに、アルミニウムならば0.005重量%以下、インジウムならば0.07重量%以下、ビスマスならば0.01重量%以下という制限条件の下で、アルミニウム、インジウムおよびビスマスを含み、残部が亜鉛および不可避不純物からなることを特徴とするアルカリ電池用亜鉛合金粉末。The angle of repose is 40 degrees or less and the specific surface area is 0.013 to 0.03 m 2 / g. Further, 0.005% by weight or less for aluminum, 0.07% by weight or less for indium, and 0.07% by weight for bismuth. A zinc alloy powder for an alkaline battery, comprising aluminum, indium and bismuth, with the balance being zinc and unavoidable impurities under a restriction condition of not more than 01% by weight.
JP24058194A 1994-09-08 1994-09-08 Zinc alloy powder for alkaline batteries Expired - Fee Related JP3561299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24058194A JP3561299B2 (en) 1994-09-08 1994-09-08 Zinc alloy powder for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24058194A JP3561299B2 (en) 1994-09-08 1994-09-08 Zinc alloy powder for alkaline batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002198789A Division JP2003068295A (en) 2002-07-08 2002-07-08 Zinc alloy powder for use in alkali battery

Publications (2)

Publication Number Publication Date
JPH0878017A JPH0878017A (en) 1996-03-22
JP3561299B2 true JP3561299B2 (en) 2004-09-02

Family

ID=17061652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24058194A Expired - Fee Related JP3561299B2 (en) 1994-09-08 1994-09-08 Zinc alloy powder for alkaline batteries

Country Status (1)

Country Link
JP (1) JP3561299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533902B (en) * 2008-03-10 2014-01-08 松下电器产业株式会社 Gelled negative electrode and alkaline battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025552A (en) * 2000-07-12 2002-01-25 Fdk Corp Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
JP4736345B2 (en) * 2004-04-23 2011-07-27 パナソニック株式会社 Alkaline battery
JP4560129B1 (en) * 2009-09-07 2010-10-13 パナソニック株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533902B (en) * 2008-03-10 2014-01-08 松下电器产业株式会社 Gelled negative electrode and alkaline battery

Also Published As

Publication number Publication date
JPH0878017A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP3561299B2 (en) Zinc alloy powder for alkaline batteries
JP2006040887A (en) Alkaline battery
JP2975527B2 (en) Zinc alloy powder for mercury-free alkaline batteries
JPH04237952A (en) Manufacture of unamalgamated zinc alloy powder for alkaline dry battery
JP3617743B2 (en) Negative electrode material for alkaline manganese battery and method for producing the same
JP2006261126A (en) Zinc alloy powder for alkaline cell
JP3532797B2 (en) Zinc alloy powder and alkaline battery using the same
JPWO2019181538A1 (en) Alkaline battery
JP2003068295A (en) Zinc alloy powder for use in alkali battery
JP2004253276A (en) Zinc alloy powder for alkaline battery, and alkaline battery using it
JPS62123653A (en) Zinc-alkaline battery
JPH0636765A (en) Zinc-alkaline battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP5079218B2 (en) Negative electrode active material and alkaline battery using the same
JP2798680B2 (en) Alkaline battery
JP2002025552A (en) Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP3056417B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH05299075A (en) Zinc alkaline battery
JPH04296451A (en) Alkaline battery
JPH0620688A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees