JPS5971259A - Alkaline storage battery and its manufacturing method - Google Patents

Alkaline storage battery and its manufacturing method

Info

Publication number
JPS5971259A
JPS5971259A JP57181432A JP18143282A JPS5971259A JP S5971259 A JPS5971259 A JP S5971259A JP 57181432 A JP57181432 A JP 57181432A JP 18143282 A JP18143282 A JP 18143282A JP S5971259 A JPS5971259 A JP S5971259A
Authority
JP
Japan
Prior art keywords
lead
indium
powder
mercury
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57181432A
Other languages
Japanese (ja)
Other versions
JPH0317181B2 (en
Inventor
Keiichi Kagawa
賀川 恵市
Hiroshi Hirahara
平原 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP57181432A priority Critical patent/JPS5971259A/en
Publication of JPS5971259A publication Critical patent/JPS5971259A/en
Publication of JPH0317181B2 publication Critical patent/JPH0317181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture an alkaline storage battery with the reduced content of Hg that suppresses the generation of H2 gas from a cathode material by using the Zn powder amalgamated with an alloy consisting of Pb, in, and Hg as a cathode active material for the battery. CONSTITUTION:Zn powder is thrown into a KOH aqueous solution and is pre- agitated. Then the Zn alloy amalgamated by pre-mixing Pb, In, and Hg is agitated while it is slowly being dropped into the said solution from a narrow hole. Subsequently, Zn-Pb-In-Hg powder is obtained by washing thus obtained alloy powder with water and drying it at low temperature and is used as a cathode active material. As a result, an alkaline storage battery with excellent performance that suppresses the generation of gas can be obtained.

Description

【発明の詳細な説明】 本発明はアルカリ電池おJ、びそのヅ7造方沃に関し、
詳しくは鉛とインジウムを並存させたアマルガム化亜鉛
粉末を電池用陰極活物質として用いたアルカリ電池およ
びその製造方法に関1′る。
[Detailed Description of the Invention] The present invention relates to a method for making an alkaline battery,
Specifically, the present invention relates to an alkaline battery using an amalgamated zinc powder in which lead and indium coexist as a cathode active material for a battery, and a method for manufacturing the same.

亜鉛を陰極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液香の強アルノJり性電解液を
用いるため、電池を密閉し71 kjればならない。こ
の電池の密閉は、電池の小型化をはかる際には特に重要
であるが、間詩に電池保存中の亜鉛の腐食により発生す
る水素ガスを閉じ込めることになる。従って長期保存中
に電池内部のガス圧が高まり、密閉が完全なほど爆発等
の危険が伴なう。その対策としで、電池の構造に工夫を
こらし発生ガスを選択的に電池外部へ導くことも種々行
なわれているが、未だ完全なりのではない。
In alkaline batteries and the like using zinc as the cathode active material, the battery must be hermetically sealed for 71 kj because a strong alkaline electrolyte with a potassium hydroxide aqueous solution aroma is used. This sealing of the battery is especially important when trying to downsize the battery, but it also traps hydrogen gas generated by corrosion of the zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure against this problem, various efforts have been made to improve the structure of the battery and selectively guide the generated gas to the outside of the battery, but this is not yet perfect.

そこで、―鉛陰極活物質の腐食そのものを防止して電池
内部のガス発生を少なくすることが研究され、水銀の水
素過電圧を利用したアマルガム化亜鉛を陰極活物質とし
て用いることが専ら行なわれている。しかしながら、今
日市販されているアルカリ電池の陰極活物質は、5〜1
5重惧%稈度の多量の水銀を含有しており、人体や他の
生物体に危険を与え、環境汚染を起こす恐れが大きい。
Therefore, research has been conducted into preventing corrosion of the lead cathode active material itself and reducing gas generation inside the battery, and amalgamated zinc, which utilizes the hydrogen overvoltage of mercury, has been exclusively used as the cathode active material. . However, the cathode active materials of alkaline batteries commercially available today are 5 to 1
It contains a large amount of mercury (5% culm), which poses a danger to humans and other living organisms, and is highly likely to cause environmental pollution.

そこで、水銀を用いず、代わりに鉛等を添加した亜鉛電
極を用いてガス発生を抑制する方法も提案されている。
Therefore, a method has been proposed in which gas generation is suppressed by using a zinc electrode to which lead or the like is added instead of using mercury.

しかしながら、そのような元素はある程度のガス発生抑
制効果を奏するが、水銀と置換されるに(ユはど遠いの
が現状である。また、鉛イオンやカドミウムイオン等を
添加した水銀イオンを含む酸性溶液に亜鉛粉末を浸漬し
て置換法によりアマルガメーションを行なうと同時に鉛
やカドミウムを亜1イ(粉末に添加させる方法も提案さ
れているが、この方法によっても、ガス発生を動子的に
抑制L〕つつ、水銀の含有量を低下させることはできな
い。
However, although such elements have the effect of suppressing gas generation to some extent, they are still far from being able to replace mercury. A method has also been proposed in which zinc powder is immersed in a solution and amalgamation is performed by the substitution method, and at the same time lead or cadmium is added to the powder. ] However, it is not possible to reduce the mercury content.

本発明は、以上のような現状を化の、1:2)か活物質
からの水素カス発生を抑制するために必要な水銀の含有
率を箸しく滅1少させ得る++y 441 ;R物V(
を用いたアルカリ電池およびその製造方法を提供するこ
とを目的とづる。
The present invention improves the above-mentioned current situation by reducing the mercury content necessary for suppressing the generation of hydrogen scum from active materials to a minimum of 1:2. (
The purpose of the present invention is to provide an alkaline battery using alkaline batteries and a method for manufacturing the same.

本発明者らはこの目的に沿っC1()意?i1[究の結
甲亜鉛からなる陰極活物質において、水銀に加えて鉛と
インジウムを並存さ一1!るど、水銀と鉛とインジウム
がガス発生抑制に対して相乗的に作用し、従来より用い
られてきたアマルガムイヒ亜鉛からイfる陰極活物質に
、1′3ける場合よりも水銀部を茗しく減少させても、
アマルガム化亜鉛を1;Z極活物??■どして用いt:
場合ど比較して同等以上のカス発生抑制効果並びに電池
性能効果を奏するに〒つた。
The inventors designed C1() for this purpose. i1 [In addition to mercury, lead and indium coexist in the cathode active material made of bonded zinc! However, mercury, lead, and indium act synergistically to suppress gas generation, and the mercury part is more concentrated in the cathode active material made from conventionally used amalgamated zinc than in the case of adding 1'3. Even if you reduce it properly,
Amalgamated zinc 1; Z polar active material? ? ■How to use:
In some cases, the same or higher scum generation suppression effect and battery performance effect were achieved.

すなわち本発明のアルカリ電池とは、 鉛とインジウムとを並存させたアマルガム化亜鉛粉末を
電池用陰極活物質として用いることを特徴とするアルカ
リ1電池にある。
That is, the alkaline battery of the present invention is an alkaline 1 battery characterized by using amalgamated zinc powder in which lead and indium coexist as a cathode active material for the battery.

従来の単なるアマルガム化亜鉛粉末からなる陰極活物質
が5〜15型部%の水銀含有率をイフするのに対し−で
、本発明のアルカリ電池に使用される陰極活物質は、5
重量%以下、ざらには、1重ω%ノス下になっても従来
のものと比較して同等以上にガス発生を抑制することが
できる。もちろん、水銀の含有率を大ぎくし、それに応
じてガス発生抑制機能を高めることもできる。本発明に
おける陰極活物質の好ましい水銀含有率は、実用的には
、5弔セ%以下で従来のアマルガム化亜鉛粉末からなる
陰極活物質よりも充分に大きい抑制効果を有する。
While the conventional cathode active material consisting of simply amalgamated zinc powder has a mercury content of 5 to 15 type parts, the cathode active material used in the alkaline battery of the present invention has a mercury content of 5 to 15%.
Even if it is less than 1 weight % by weight, or even less than 1 weight ω%, gas generation can be suppressed to the same degree or more than conventional products. Of course, it is also possible to increase the mercury content and increase the gas generation suppressing function accordingly. In practical terms, the preferable mercury content of the cathode active material in the present invention is 5% or less, which has a sufficiently greater suppressive effect than the conventional cathode active material made of amalgamated zinc powder.

また、鉛どインジウムの含イ1率は、それぞれ0.00
5〜1重量%程度の少量で配合効果が発揮され、それ以
上配合しても効果が少ない。
In addition, the content of lead and indium is 0.00, respectively.
A small amount of about 5 to 1% by weight is enough to exhibit the effect of blending, and even if more is blended, the effect is small.

本発明のアルカリ電池は、種々の方法で得られるが、好
ましい製造方法とは、 (1)鉛とインジウムと水銀を合金化させ、該合金を用
いて亜鉛粉末をアマルガム化させて得られるアマルガム
化亜鉛粉末を電池用陰極活物質として用いることを特徴
とするアルカリ電池の製造方法と、 5− (2)亜鉛と鉛とインジウムの合金粉末を水銀でアマル
ガム化させて得られるアマルガム化合金粉末を電池用陰
極活物質どして用いることを特徴とするアルカリ電池の
製造方法である。
The alkaline battery of the present invention can be obtained by various methods, but the preferred manufacturing method is: (1) Amalgamation obtained by alloying lead, indium, and mercury, and amalgamating zinc powder using the alloy. A method for producing an alkaline battery characterized by using zinc powder as a cathode active material for a battery; This is a method for producing an alkaline battery characterized by using the method as a cathode active material.

第1の製造方法は、例えば次のようにして実施される。The first manufacturing method is carried out, for example, as follows.

先ず水酸化カリウム水溶液のようなアルカリ液に亜鉛粉
末を投入し、1〜30分間予備撹拌を行なう。次いで、
予め鉛とインジウムと水銀を聞合して合金化させたもの
を細穴より徐々に上記の液に滴下しつつ30〜120分
間撹拌後、水洗Lノ、30〜60℃の低温で乾燥するこ
とによって、亜鉛−鉛−インジウム−水銀粉末を1:ノ
る。水銀は亜鉛のみならず鉛やインジウムとも常温下に
おいて合金を作る性質を有し、合金中の鉛、・′水銀あ
るいはインジウム/水銀の比率がそのまま保持されつつ
該合金が亜鉛粉末中に含有される。2従って合金中の鉛
並びにインジウムの含有率を変えることによって、亜鉛
粉末中の鉛、インジウムイし−C*銀の含有率を自由に
変えることができる。
First, zinc powder is added to an alkaline solution such as an aqueous potassium hydroxide solution and preliminarily stirred for 1 to 30 minutes. Then,
An alloy of lead, indium, and mercury mixed in advance is gradually dropped into the above liquid through a small hole and stirred for 30 to 120 minutes, then washed with water and dried at a low temperature of 30 to 60°C. Zinc-lead-indium-mercury powder was mixed in a 1:1 ratio. Mercury has the property of forming an alloy not only with zinc but also with lead and indium at room temperature, and the alloy is contained in zinc powder while maintaining the lead, mercury or indium/mercury ratio in the alloy. . 2. Therefore, by changing the content of lead and indium in the alloy, the content of lead and indium-C*silver in the zinc powder can be freely changed.

−〇− −11だ第2の製造方法どして、先ず、溶融亜鉛に鉛と
インジウムを添加し、合金粉末化させたものを、L−述
の方法ど同様な方法、すなわち亜鉛−鉛−インジウム合
金粉末を含有するアルカリ液に水銀を添加することに、
J:り亜鉛−鉛一インジウムー水銀粉末を得る。
-〇- -11 In the second manufacturing method, first, lead and indium are added to molten zinc, and the alloy powder is made into an alloy powder. By adding mercury to an alkaline solution containing indium alloy powder,
J: Obtain zinc-lead-indium-mercury powder.

このようにして得られた亜鉛−鉛一インジウムー水銀粉
末を陰極活物質として用いることによって、ガス発ip
が抑制され、しかも電池性能に優れたアルカリ電池が提
供される。
By using the zinc-lead-indium-mercury powder obtained in this way as a cathode active material, gas generation ip
Provided is an alkaline battery in which the amount of energy is suppressed and which has excellent battery performance.

以下、実施例おJ:び比較例に基づいて本発明を巨体的
に説明する。
Hereinafter, the present invention will be broadly explained based on Examples J and Comparative Examples.

実施例1(a)〜(e ) 先ず、1:3塩hす浴にて鉛0.0550 、インジウ
ム0.11g、水銀4.84CJを混合して鉛およびイ
ンジウ11の比率がそれぞれ1.1重量%、2,2重役
%の鉛−インジウムアマルガムを調製した。次いで、予
め調製していた10重昂%の水酸化カリウム溶液0.5
ノに35〜100メツシユの市販の電池用亜鉛粉末25
0gを投入し、20℃で5分間予備撹拌を行な−)だ。
Example 1 (a) to (e) First, 0.0550 lead, 0.11 g of indium, and 4.84 CJ of mercury were mixed in a 1:3 salt bath so that the ratio of lead and indium 11 was 1.1, respectively. A lead-indium amalgam of 2.2% by weight by weight was prepared. Next, 0.5% of a 10% potassium hydroxide solution prepared in advance
35 to 100 mesh commercially available zinc powder for batteries 25
0 g and pre-stirred for 5 minutes at 20°C.

次に、前記’f4i−インジウl\アマルガムを所定量
粗孔から徐々に滴下しながら20°Cで60分間撹拌す
ることによってアマルガメーションを行なった。アマル
カメーション終了後、水洗をr] jZい45℃で一昼
夜乾燥させた。このようにして鉛、インジウム、水銀の
含有率がぞれぞれ0.01市隈%、0.02手M%、0
.9重M%の亜鉛−鉛−インジウム−水銀粉末(実施例
1(a))を得た1′。
Next, amalgamation was performed by stirring at 20°C for 60 minutes while gradually dropping a predetermined amount of the 'f4i-indium\ amalgam through the coarse holes. After the amalgamation was completed, it was washed with water and dried at 45° C. for a day and a night. In this way, the content of lead, indium, and mercury was reduced to 0.01%, 0.02%, and 0.0%, respectively.
.. A 9% by weight zinc-lead-indium-mercury powder (Example 1(a)) was obtained 1'.

また、鉛、インジウムの比率が (1)鉛0.65重坦%、インジウム1.3手早%、(
2)鉛0,34重四%、インジウム0.67重9%、(
3)鉛0.20重燵%、インジウム0.40φ撥%、(
4)鉛0.14重缶%、インジウム0.29重量%の鉛
−インジウムアマルガムを調製後、前記と同様な方法で
アマルカメーシ]ンしC鉛含′P4’;0.01重量%
、インジウム含有率0.02重量%で水銀含有率がそれ
ぞれ1.5重量%(実施例1C1)))、3重量%(実
施例11′c g> ) 、 5重i%(実施例1(d
))、7重量%(実施例1(e))の亜鉛−1イ)−イ
ンジウム−水銀粉末を得た。
In addition, the ratio of lead and indium is (1) 0.65% lead, 1.3% indium, (
2) Lead 0.34% by weight, Indium 0.67% by weight, (
3) Lead 0.20%, indium 0.40φ repellent, (
4) After preparing a lead-indium amalgam containing 0.14% lead and 0.29% by weight indium, amalgamation was performed in the same manner as above to obtain a lead-containing 'P4'; 0.01% by weight.
, indium content of 0.02% by weight and mercury content of 1.5% by weight (Example 1C1))), 3% by weight (Example 11'c g>), 5% by weight (Example 1( d
)), 7% by weight (Example 1(e)) of zinc-1i)-indium-mercury powder was obtained.

このようにして得られた亜鉛−鉛−インジウム−水銀粉
末を陰極活物質として水素ガス発生試験を行なった。結
果を第1表に示す。なお、ガス発生試験は、電解液とし
て濃度40重置火の水酸化カリウム水溶液に酸化亜鉛を
飽和させたちの5がを用い、亜鉛−鉛一インジウムー水
銀粉末からなる陰極活物質をそれぞれ10g用いて45
℃でガス発生速度(mg/ a日)を測定した。
A hydrogen gas generation test was conducted using the zinc-lead-indium-mercury powder thus obtained as a cathode active material. The results are shown in Table 1. In addition, the gas generation test was carried out using a potassium hydroxide aqueous solution with a concentration of 40 times as the electrolyte, saturated with zinc oxide, and 10 g of each cathode active material consisting of zinc-lead-indium-mercury powder. 45
The gas evolution rate (mg/a day) was measured at °C.

また、この亜鉛−鉛一インジウムー水銀粉末からなる陰
極活物質について、第1図に示すアルカリマンカン電池
を用いて電池性能を評価した。第1図のアルカリマンガ
ン電池は、正極缶1、正極2、セパレーター3、アマル
ガム化亜鉛粉末をカルボキシメチルセルロースでゲル化
した負極4、負極集電体5、ゴムパツキン6、押さえ板
7で構成されている。
Further, the battery performance of this negative electrode active material made of zinc-lead-indium-mercury powder was evaluated using an alkaline mankan battery shown in FIG. The alkaline manganese battery shown in Fig. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of amalgamated zinc powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a holding plate 7. .

このアルカリマンガン電池を用いて放電負荷4Ω、20
℃の放電条件により終止電圧0.9V9− までの放電持続肋間測定し、キシ述の従来の陰極活物質
を用いた比較例1(d)の測定値を100とした指数で
示した。結果を第2表に示り一0実施例2 実施例1と同様な方法で、鉛、インジウムの11′。
Using this alkaline manganese battery, the discharge load is 4Ω, 20Ω.
The intercostal discharge was measured under the discharge conditions of .degree. C. until the final voltage was 0.9 V9-, and the measured value of Comparative Example 1(d) using the conventional cathode active material described above was set as an index of 100. The results are shown in Table 2. Example 2 In the same manner as in Example 1, lead and indium 11' were prepared.

率がそれぞれ5.2重重%、2.1重伊%の鉛−インジ
ウムアマルガムを調製後、アマルガメーションして、鉛
、インジウム、水銀含有率がそれぞれ0.05市早%、
0.02重量%、0.9小路%の亜鉛−鉛一インジウム
ー水銀粉末を得た。
After preparing lead-indium amalgam with a content of 5.2% by weight and 2.1% by weight, amalgamation was performed to obtain a lead, indium, and mercury content of 0.05% by weight, respectively.
Zinc-lead-indium-mercury powders of 0.02% by weight and 0.9% by weight were obtained.

この亜鉛−鉛一インジウムー水銀粉末を陰極活物質とし
て実施例1と同様の方法によって、ガス発生試験と電池
性能試験を行ないその結束を第1表および第2表に示し
た。
Using this zinc-lead-indium-mercury powder as a cathode active material, a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

実施例3 実施例1と同様な方法で、鉛、インジウムのn二重がそ
れぞれ1.1重間%、11.O重量%の鉛−インジウム
アマルガムを調製世、アマルガメーシコンして、鉛、イ
ンジウム、水銀含有率がそれぞれ0.01重量%、0.
1重量%、0.9重昂%の曲10− 鉛−鉛−インジウム−水銀粉末を得た。
Example 3 In the same manner as in Example 1, lead and indium n-doubles were prepared at 1.1 weight % and 11. A lead-indium amalgam containing 0.0% by weight was prepared and amalgamated so that the lead, indium and mercury contents were 0.01% by weight and 0.01% by weight, respectively.
A lead-lead-indium-mercury powder of 1% by weight and 0.9% by weight was obtained.

この亜鉛−鉛一インジウムー水銀粉末を陰極活物?1と
して実施例1ど同様の方法によって、ガス発生試験と電
池性能試験を行ないその結果を第1表、13よび第2表
に示した。
Is this zinc-lead-indium-mercury powder a cathode active material? As Example 1, a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1, 13, and 2.

実施例4 実施例1と同様な方法で、鉛、インジウムの比率がそれ
ぞれ5.7重量%、11.0重量%の鉛−インジウムア
マルガムを調製後、アマルガメーションして、鉛、イン
ジウム、水銀含有率がそれぞれ0.05重口%、0.1
重量%、0.9重量%の亜鉛−鉛一インジウムー水銀粉
末を得た。
Example 4 A lead-indium amalgam with lead and indium ratios of 5.7% by weight and 11.0% by weight, respectively, was prepared in the same manner as in Example 1, and then amalgamated to reduce the lead, indium, and mercury contents. are respectively 0.05 weight% and 0.1
A zinc-lead-indium-mercury powder of 0.9% by weight was obtained.

この亜鉛−鉛一インジウムー水銀粉末を陰極活物質とし
て実施例1と同様の方法によって、ガス発生試験と電池
性能試験を行ないその結果を第1表および第2表に示し
た。
Using this zinc-lead-indium-mercury powder as a cathode active material, a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

実施例5 溶融亜鉛に鉛とインジウムを投入して、約430℃の温
度で攪拌し、鉛、インジウムの含有率がそれぞれ0.0
5@量%、0.02重餉%の亜鉛−鎗一インジウム合金
を調製し、これを粉末化さ]!だ。
Example 5 Lead and indium were added to molten zinc and stirred at a temperature of about 430°C until the content of lead and indium was 0.0, respectively.
A zinc-yariichi indium alloy of 5% by mass and 0.02% by weight was prepared, and this was powdered]! is.

この亜鉛−鉛−インジウム合金粉末を水銀を用いて、実
施例1と同様なyJ払でフマルカメ−シー1ンして、鉛
、インジウム、水銀含有寮がそれぞれ0.05重量%、
0.02?F量%、0 、9”’: ?J’ % (1
) ’If、 @f)−鉛−インジウム−水銀粉末を得
た。
Using mercury, this zinc-lead-indium alloy powder was subjected to a fumarame sheen using the same method as in Example 1, so that the lead, indium, and mercury content was 0.05% by weight each.
0.02? F amount %, 0, 9"': ?J'% (1
) 'If, @f)-Lead-indium-mercury powder was obtained.

この亜鉛−Iff−インジウム−水銀粉末を陰極活物質
として実施例1と同様な方法によって、カス発生試験ど
電池11能試験を行ないその結果を第1表および第2表
に示した。
Using this zinc-Iff-indium-mercury powder as a cathode active material, a scum generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

比較例1(a)〜(e ) 従来から用いられている水銀含有率0.9弔事%(比較
例1(a))、1.5重量%(比較例1(1)))、3
型車%(比較例1 (cつ)、5重量%(比較例1((
1))、7重量%(比較例1(C))の亜5F)−水銀
粉末を陰極活物質どし、実施例1と同様の方法によって
、ガス発生試験と電池性能試験を行ないその結果を第1
表おJζび第2表に示した。
Comparative Examples 1(a) to (e) Conventionally used mercury content: 0.9% by weight (Comparative Example 1(a)), 1.5% by weight (Comparative Example 1(1))), 3
Model car% (Comparative example 1 (c), 5% by weight (Comparative example 1 ((
1)), 7% by weight (comparative example 1 (C)) - mercury powder was used as the cathode active material, and a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results were reported. 1st
It is shown in Table Jζ and Table 2.

第  1  表 13− 第  2  表 14− 第1表および第2表に示されるごとく、鉛とインジウム
を並存させた陰極活物質を用いた実施例1(a)〜(e
)、2〜4は、水銀−亜鉛のみを陰極活物質とした比較
例1(a)〜(e)に比較してガス発生抑制効果が高く
、しかも水銀の量を著しく減少させることができる。
1st Table 13- 2nd Table 14- As shown in Tables 1 and 2, Examples 1(a) to (e) using a cathode active material in which lead and indium coexisted.
), 2 to 4 have a higher gas generation suppressing effect than Comparative Examples 1(a) to (e) in which only mercury-zinc was used as the cathode active material, and the amount of mercury can be significantly reduced.

また、電池性能もは、水銀を5Φ量%含有する水銀−亜
鉛合金を陰極活物質とした比較例1(d)に比べて優れ
ていることが理解される。
It is also understood that the battery performance is superior to Comparative Example 1(d) in which a mercury-zinc alloy containing 5Φ% of mercury was used as the cathode active material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。 1:正極缶、 2:正極、 3:セパレーター、4:ア
マルガム化亜鉛粉末をカルホキジメチルセル[]−スで
ゲル化した負極、 5:負極集電体、 6:ゴムパツキン、7:押さλ板 15− 第1図 281−
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: Positive electrode can, 2: Positive electrode, 3: Separator, 4: Negative electrode made by gelling amalgamated zinc powder with carboxydimethyl cell []-su, 5: Negative electrode current collector, 6: Rubber packing, 7: Pressed λ plate 15- Figure 1 281-

Claims (1)

【特許請求の範囲】 1、鉛とインジウムとを並存させたアマルガム化亜鉛粉
末を電池用陰極活物質として用いることを特徴とするア
ルカリ電:i!!。 2、前記アマルガム化亜鉛粉末の鉛およびインジウム含
有率かそれぞれ0.005−1重量%である前記特許請
求の範囲第1項記載のアルカリ電池。 3、前記アマルカムイヒ押鉛扮末の水銀含有率か5重ダ
%以下である前記特許請求の範匠第1項または第2項記
載のアルカリ電池。 4、前記アマルガム化亜鉛粉末の水銀含有率が1重1%
以下である前記特許請求の範囲第3項記軟のアルカリ電
池。 5、鉛とインジウムと水銀を合金イヒさせ該合金を用い
て亜鉛粉末をアマルガム化させて得られるアマルガム化
亜鉛粉末を電池用陰極活物質として用いることを特徴と
するアルカリ電池の製造方法。 6、亜鉛と鉛とインジウムの合金粉末を水集でアマルガ
ム化させて得られるアマルガム化合金粉末を電池用陰極
活物質と17で用いることを特徴とするアルカリ電池の
製造方法。
[Claims] 1. An alkaline battery characterized by using amalgamated zinc powder in which lead and indium coexist as a cathode active material for batteries: i! ! . 2. The alkaline battery according to claim 1, wherein the lead and indium contents of the amalgamated zinc powder are each 0.005-1% by weight. 3. The alkaline battery according to claim 1 or 2, wherein the mercury content of the Amalkamuihi pressed lead powder is 5% or less. 4. The mercury content of the amalgamated zinc powder is 1% by weight.
A soft alkaline battery according to claim 3, which is as follows. 5. A method for producing an alkaline battery, characterized in that an amalgamated zinc powder obtained by alloying lead, indium, and mercury and amalgamating zinc powder using the alloy is used as a cathode active material for a battery. 6. A method for producing an alkaline battery, characterized in that an amalgamated alloy powder obtained by amalgamating an alloy powder of zinc, lead, and indium in a water collection is used as a battery cathode active material in 17.
JP57181432A 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method Granted JPS5971259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181432A JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181432A JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5971259A true JPS5971259A (en) 1984-04-21
JPH0317181B2 JPH0317181B2 (en) 1991-03-07

Family

ID=16100666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181432A Granted JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5971259A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973846A (en) * 1982-10-20 1984-04-26 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacture
EP0162411A2 (en) * 1984-05-17 1985-11-27 MITSUI MINING & SMELTING CO., LTD. Process for the production of active anode materials for use in cells
JPS6110860A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
JPS6110861A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS53103127A (en) * 1977-02-21 1978-09-08 Seiko Instr & Electronics Alkaline battery
JPS58181266A (en) * 1982-04-19 1983-10-22 Mitsui Mining & Smelting Co Ltd Negative active material for battery and its manufacture
JPS58225565A (en) * 1982-06-23 1983-12-27 Mitsui Mining & Smelting Co Ltd Alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS53103127A (en) * 1977-02-21 1978-09-08 Seiko Instr & Electronics Alkaline battery
JPS58181266A (en) * 1982-04-19 1983-10-22 Mitsui Mining & Smelting Co Ltd Negative active material for battery and its manufacture
JPS58225565A (en) * 1982-06-23 1983-12-27 Mitsui Mining & Smelting Co Ltd Alkaline battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973846A (en) * 1982-10-20 1984-04-26 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacture
JPH0317182B2 (en) * 1982-10-20 1991-03-07 Mitsui Mining & Smelting Co
EP0162411A2 (en) * 1984-05-17 1985-11-27 MITSUI MINING & SMELTING CO., LTD. Process for the production of active anode materials for use in cells
JPS6110860A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
JPS6110861A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
JPH0348619B2 (en) * 1984-05-25 1991-07-25 Toshiba Battery
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Also Published As

Publication number Publication date
JPH0317181B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
WO2005057695A1 (en) Alkaline button cell and method for producing same
JP2007294424A (en) Zinc-alkaline battery
JPH0222984B2 (en)
JPS5971259A (en) Alkaline storage battery and its manufacturing method
US3617384A (en) Zinc alkaline secondary cell
US20200388838A1 (en) Alkaline battery
US2692215A (en) Alkaline dry cell
JPH0418671B2 (en)
JPH0317182B2 (en)
JPS62123653A (en) Zinc-alkaline battery
JPS59175557A (en) Alkali cell
JP3219418B2 (en) Zinc alkaline battery
JPS58225565A (en) Alkaline battery
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPH0377274A (en) Manufacture of negative electrode active material for alkaline battery
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS59175559A (en) Alkali cell
JPS6394560A (en) Negative electrode active material for cell
JPH02170352A (en) Mercurized zinc alloy powder for alkaline cell and its manufacture
JPS61153951A (en) Zinc alkaline storage battery