JPS5890152A - 小形状金属試料の直接発光分光分析方法及び装置 - Google Patents
小形状金属試料の直接発光分光分析方法及び装置Info
- Publication number
- JPS5890152A JPS5890152A JP18886681A JP18886681A JPS5890152A JP S5890152 A JPS5890152 A JP S5890152A JP 18886681 A JP18886681 A JP 18886681A JP 18886681 A JP18886681 A JP 18886681A JP S5890152 A JPS5890152 A JP S5890152A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- crucible
- analysis
- pipe
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
本発明は、通常の固体発光分光分析装置では対象となら
ないような小形状の金属試料を溶解しながら直接発光分
光分析する方法及び装置に関するものである。
ないような小形状の金属試料を溶解しながら直接発光分
光分析する方法及び装置に関するものである。
金属製造業における金属や合金の製造工程管理あるいは
製品の品質管理には、主成分や含有される微量成分の分
析が必須で、この分析には一般に固体発光分光分析装置
が活用されている。発光分光分析は、試料片と対’FA
極間に高車EEをかけてス・ぞ−り放電あるいはアーク
放電全行なわせ、蒸発した各成分に基づく励起光を分光
して、各成分の分析線対における発光ス波りトル線強度
から試料中の各成分の含有率を求める分析方法である。
製品の品質管理には、主成分や含有される微量成分の分
析が必須で、この分析には一般に固体発光分光分析装置
が活用されている。発光分光分析は、試料片と対’FA
極間に高車EEをかけてス・ぞ−り放電あるいはアーク
放電全行なわせ、蒸発した各成分に基づく励起光を分光
して、各成分の分析線対における発光ス波りトル線強度
から試料中の各成分の含有率を求める分析方法である。
この際に対象とする分析試料の形状は、放電全行なわせ
るための装置構造から一定の制限全骨ける。
るための装置構造から一定の制限全骨ける。
通常、1b:径15鰭φ以上の大きさの平面を有してい
ることが8斐であり、これより小さな形状の塊状試料、
シェー・や−やドリルにより採取した切削状試料あるい
は粉末状試料などについての分析は困鈍である。これら
の形状の試料を分析するためには、一旦高温で溶解して
冷却固化させ、上述のような分析に適した形状に造り変
える方法もあるが再熔解処理が煩雑である上に試料中の
成分の偏析が起ってしまうなどの問題からほとんど実際
には採用され難い。従って、このような場合は鉱酸など
で溶解して溶液試料としたあと吸光光度法、原子吸光法
あるいは溶液発光分光法等のわハ々の分析法によって分
析している。これらの分析法は操作が煩雑で時間がかか
り、個人誤差が生じ易いなど多くの問題があることから
、小形状金属試料全直接的に簡単、迅速に分析する新規
分析装置の開発が強く要稍されていた。
ることが8斐であり、これより小さな形状の塊状試料、
シェー・や−やドリルにより採取した切削状試料あるい
は粉末状試料などについての分析は困鈍である。これら
の形状の試料を分析するためには、一旦高温で溶解して
冷却固化させ、上述のような分析に適した形状に造り変
える方法もあるが再熔解処理が煩雑である上に試料中の
成分の偏析が起ってしまうなどの問題からほとんど実際
には採用され難い。従って、このような場合は鉱酸など
で溶解して溶液試料としたあと吸光光度法、原子吸光法
あるいは溶液発光分光法等のわハ々の分析法によって分
析している。これらの分析法は操作が煩雑で時間がかか
り、個人誤差が生じ易いなど多くの問題があることから
、小形状金属試料全直接的に簡単、迅速に分析する新規
分析装置の開発が強く要稍されていた。
本発明はかかる問題点に鑑み、小形状金属試料を直接発
光分光分析するための研究開発を実施し、高周波誘導加
熱溶解−蒸発微粒子搬送−プラズマ励起発光分光分析法
を基本原理とし、簡単、迅速でかつ定は精度にすぐれる
新規分析方法及び装置全提供するにいたったものである
。
光分光分析するための研究開発を実施し、高周波誘導加
熱溶解−蒸発微粒子搬送−プラズマ励起発光分光分析法
を基本原理とし、簡単、迅速でかつ定は精度にすぐれる
新規分析方法及び装置全提供するにいたったものである
。
本発明の実14例装置を第1図及び第2図に示す。
第1図は本発明装置の全体の構成全示すものであり、第
2図は不発[ガ装置の主要部分全敗す蒸発微粒子発生装
置の詳細を示すものである。これらの図面にもとすいて
以下に本発明の詳細について説明する。
2図は不発[ガ装置の主要部分全敗す蒸発微粒子発生装
置の詳細を示すものである。これらの図面にもとすいて
以下に本発明の詳細について説明する。
本発明装置は、分析試料3′ft高周波誘導加熱装置6
によって溶解し、分析試料中に含まれる各成分全微粒子
として蒸発させる働きをする微粒子発生装置1、発生し
た微粒子を吹込み気体の流れによって搬送するための微
粒子搬送管16、微粒子及び搬送気体の一部を系外に排
出し、一部全分析装置へ導入するように分配するための
搬送気体分配装置17及びプラズマ中で微粒子全励起発
光させ、励起光全分光検出して試料中の諸成分の含有率
を求めるプラズマ励起源を有する分光分析装置19全主
体に構成され、小形状金属分析試料全加熱溶解して蒸発
微粒子と成し、プラズマ中に導入して発光分光分析する
分析方法及び装置である。
によって溶解し、分析試料中に含まれる各成分全微粒子
として蒸発させる働きをする微粒子発生装置1、発生し
た微粒子を吹込み気体の流れによって搬送するための微
粒子搬送管16、微粒子及び搬送気体の一部を系外に排
出し、一部全分析装置へ導入するように分配するための
搬送気体分配装置17及びプラズマ中で微粒子全励起発
光させ、励起光全分光検出して試料中の諸成分の含有率
を求めるプラズマ励起源を有する分光分析装置19全主
体に構成され、小形状金属分析試料全加熱溶解して蒸発
微粒子と成し、プラズマ中に導入して発光分光分析する
分析方法及び装置である。
微粒子発生装置1は、分析試料3を収容する耐火ルツJ
?4、これをほとんど密閉状態で収容する微粒子発生用
円筒管2、円筒管2の外周にルツボ4の高さに児合う位
置に設置された高周波あ躊加熱装mf 6 、円筒管2
の内部の所定位置にルッ?4を挿入設置aシ、円筒管2
内を密閉状に保持するためのルツボ設定装置d5、円筒
管2内を不活性雰囲気に保ち、蒸発微粒子15全分析装
置へ搬送するための搬送気体供給装置8及び蒸発微粒子
15を集めて分析装置へ送り込む微粒子搬送ロアなどか
ら構成される。微粒子発生装ff1lI′i微粒子搬送
管16により搬送気体分配装置17に接続されている。
?4、これをほとんど密閉状態で収容する微粒子発生用
円筒管2、円筒管2の外周にルツボ4の高さに児合う位
置に設置された高周波あ躊加熱装mf 6 、円筒管2
の内部の所定位置にルッ?4を挿入設置aシ、円筒管2
内を密閉状に保持するためのルツボ設定装置d5、円筒
管2内を不活性雰囲気に保ち、蒸発微粒子15全分析装
置へ搬送するための搬送気体供給装置8及び蒸発微粒子
15を集めて分析装置へ送り込む微粒子搬送ロアなどか
ら構成される。微粒子発生装ff1lI′i微粒子搬送
管16により搬送気体分配装置17に接続されている。
搬送気体分配装置17は微粒子搬送管16゜搬送気体排
出管18及び微粒子導入管2oか取り付けられたたて長
円筒管である。プラズマ励起源を有する発光分光分析装
置19は、微粒子導入管20、プラズマガス供紹管21
.冷却ガス供給管22、プラズマトーチ23.トーチ上
部外周に取り付けられた高周波発生装置24から成るプ
ラズマ発光部、プラズマ部25中で励起発光した微粒子
成分の発光スペクトルを集光レンズ26で集光し、スリ
ット、反射@292回折格子30などで分光し、各成分
のス被りトル線強度を測定する分光器27.検出器28
及び含有率算出演算装置31などから構成される。
出管18及び微粒子導入管2oか取り付けられたたて長
円筒管である。プラズマ励起源を有する発光分光分析装
置19は、微粒子導入管20、プラズマガス供紹管21
.冷却ガス供給管22、プラズマトーチ23.トーチ上
部外周に取り付けられた高周波発生装置24から成るプ
ラズマ発光部、プラズマ部25中で励起発光した微粒子
成分の発光スペクトルを集光レンズ26で集光し、スリ
ット、反射@292回折格子30などで分光し、各成分
のス被りトル線強度を測定する分光器27.検出器28
及び含有率算出演算装置31などから構成される。
耐火ルツボ4中に入れられた小形状の金属試料片は高周
波誘導加熱装置6によって短時間で迅速に溶解され、金
属試料は蒸発して微粒子となって発生する。耐火ルツボ
4は高温で浸食されにくいアルミナ、マグネシア、窒化
ホウ素あるいは炭素などの材質で製作したものが適当で
あるが、プラズマ発光分光分析装置19は一般に検出感
度が非常に高いために分析試料量は数グラムの少量でよ
く、従ってルツボ4は小型のもので十分である。
波誘導加熱装置6によって短時間で迅速に溶解され、金
属試料は蒸発して微粒子となって発生する。耐火ルツボ
4は高温で浸食されにくいアルミナ、マグネシア、窒化
ホウ素あるいは炭素などの材質で製作したものが適当で
あるが、プラズマ発光分光分析装置19は一般に検出感
度が非常に高いために分析試料量は数グラムの少量でよ
く、従ってルツボ4は小型のもので十分である。
蒸発した微粒子は直ちに搬送気体によって分析装置aに
送られ直後に分析されるので微粒子の蒸発速度全一定に
保つ必要がある。そのためには試料の溶解速度全一定と
する必要があり、ルツボ4に入れられる分析試料■汁は
ほぼ一定量とすることが望ましい。このように数分間の
短時間で1賦判の分析が完了してしまうので、微粉子発
生円筒管:2(7) 内に分析試料全設定するルツが設定装@5による試料交
換操作は短時間で容易に行えなければならない。本発明
実施例には、最も容易に行える例として上部にルツボ4
全のせたルツボ設定装置5の上、下動操作による試料交
換方法を採用した。ルツボ設定装置5は熱伝導率のよい
銅などで作られたたて長状のもので冷却水供給管11及
び同排出管12を取りつけてルツ?4からの高温に耐え
られるようにしである。このルツが設置装置5のたて方
向の途中には第2図に示すように受は台13が固定され
ており、試料交換を行ったあとに微粉子発生円筒管2の
下端に取りつけられたノ4ッキング14を上方向に押し
つけて円筒管2内を密閉状に保つことができる。この受
台13には搬送気体吹込み管9を介して気体流量全数段
階に調節できる流量調節弁10′に有した搬送気体供給
装置8が接続されている。蒸発微粒子15は、搬送管1
6等の内壁への付着残留を防ぐために高流速の搬送ガス
によって運びさられなければならない。そのために微粒
子は搬送ガスによって希釈されるが、希(8) 釈倍率が高くなり過ぎると感度が不足して定■できなく
なる。又、分析試料の高周波溶解は金属の酸化反応全防
止するために通常不活性気体の雰囲気で行うので、常に
不活性気体を吹込んでその雰囲気を保っておく必要があ
る。又、発生した微粒子はその全量全一定希釈倍率で迅
速に搬送する必要がある。これらの理由から、微粒子を
発生させる空間、すなわち微粒子発生用円筒管2の内容
積全極力小さくすることが必要である。従って、円筒管
2は内側に設定されるルツボ4の外径よりも大きくなく
てはならないが、ルツs? 4との距離をなるべく近づ
けた小径のもの全相いるのがよい。
送られ直後に分析されるので微粒子の蒸発速度全一定に
保つ必要がある。そのためには試料の溶解速度全一定と
する必要があり、ルツボ4に入れられる分析試料■汁は
ほぼ一定量とすることが望ましい。このように数分間の
短時間で1賦判の分析が完了してしまうので、微粉子発
生円筒管:2(7) 内に分析試料全設定するルツが設定装@5による試料交
換操作は短時間で容易に行えなければならない。本発明
実施例には、最も容易に行える例として上部にルツボ4
全のせたルツボ設定装置5の上、下動操作による試料交
換方法を採用した。ルツボ設定装置5は熱伝導率のよい
銅などで作られたたて長状のもので冷却水供給管11及
び同排出管12を取りつけてルツ?4からの高温に耐え
られるようにしである。このルツが設置装置5のたて方
向の途中には第2図に示すように受は台13が固定され
ており、試料交換を行ったあとに微粉子発生円筒管2の
下端に取りつけられたノ4ッキング14を上方向に押し
つけて円筒管2内を密閉状に保つことができる。この受
台13には搬送気体吹込み管9を介して気体流量全数段
階に調節できる流量調節弁10′に有した搬送気体供給
装置8が接続されている。蒸発微粒子15は、搬送管1
6等の内壁への付着残留を防ぐために高流速の搬送ガス
によって運びさられなければならない。そのために微粒
子は搬送ガスによって希釈されるが、希(8) 釈倍率が高くなり過ぎると感度が不足して定■できなく
なる。又、分析試料の高周波溶解は金属の酸化反応全防
止するために通常不活性気体の雰囲気で行うので、常に
不活性気体を吹込んでその雰囲気を保っておく必要があ
る。又、発生した微粒子はその全量全一定希釈倍率で迅
速に搬送する必要がある。これらの理由から、微粒子を
発生させる空間、すなわち微粒子発生用円筒管2の内容
積全極力小さくすることが必要である。従って、円筒管
2は内側に設定されるルツボ4の外径よりも大きくなく
てはならないが、ルツs? 4との距離をなるべく近づ
けた小径のもの全相いるのがよい。
円筒管2の材質は熱伝導性、耐熱性にすぐれる石英ガラ
ス等が適している。蒸発微粒子15′fe分析装盾19
へ送り込むための微粒子搬送ロアの構造及び取り付は位
置は重要である。本来、ルツボ4中で溶解された分析試
料3から煙状となって発生する微粒子は熱による対流か
ら溶湯表面直上に上昇する動きをとり、そのあとその周
囲に拡散してゆく。蒸発微粒子15全粉体として補集す
ることが目的ならば、拡散による多少の損失も間融にな
らないが、分析試料の成分組成を分析すること全目的と
する本発明においては、蒸発微粒子の全量を、あるいは
常時安定した一定量全搬送気体と共に分析装置へ送り込
まなければならない。蒸発微粒子を製造する場合とはこ
の点が大いに異なり、より効率のよい微粒子の搬送技術
が必要になる。
ス等が適している。蒸発微粒子15′fe分析装盾19
へ送り込むための微粒子搬送ロアの構造及び取り付は位
置は重要である。本来、ルツボ4中で溶解された分析試
料3から煙状となって発生する微粒子は熱による対流か
ら溶湯表面直上に上昇する動きをとり、そのあとその周
囲に拡散してゆく。蒸発微粒子15全粉体として補集す
ることが目的ならば、拡散による多少の損失も間融にな
らないが、分析試料の成分組成を分析すること全目的と
する本発明においては、蒸発微粒子の全量を、あるいは
常時安定した一定量全搬送気体と共に分析装置へ送り込
まなければならない。蒸発微粒子を製造する場合とはこ
の点が大いに異なり、より効率のよい微粒子の搬送技術
が必要になる。
溶湯表面の描方向あるいは斜め上方向から搬送気体全欧
きつけて微粒子をその反対側の横あるいは斜め上方向へ
送り込む方法なども考えられるが、本発明で必須となる
定量的な搬送を目的とする場合には溶湯表面上より自然
に直上に立ち昇った蒸発微粒子を周囲への拡散が起る直
前に、やはり溶湯表面を直上方向に向って流れる搬送気
体の流れに乗せて迅速に運び去る方法が最も効率がよく
適している。すなわち、微粒子搬送ロアはルツボ4中の
溶湯表面から一定間隔をもってその直上に垂直に設置さ
れるべきである。その搬送ロアの溶湯表面に接する開口
部分の形状はルツボ4の内径よりも小径の円筒管ないし
はほぼルツボ4の外径近〈まで先端部全波げた円錐形状
のものが適当である。搬送気体の吹込み管の設置位置は
図示したような受は台13に取り付けるか、あるいはそ
の反対方向である円筒管2の上部に取り付けるのがよい
。又、試料′5t?散粒子発生装置内に設定して高周波
溶解する前にルツボ中に残留している大気を予め排除す
る目的をもった不活性気体吹込み管全微粒子発生装f&
のいずれかの部分に取付けることが好ましい。このよう
にしてAr 、 HeあるいはN2などの搬送気体は吹
込み管9から吹き込まれ、円筒管2内を不活性雰囲気1
に保つが、出口は微粒子搬送ロアたけなので、溶湯表面
近傍全通ってその開口部に向う気体の流れができる。溶
湯面から発生して上昇した蒸発微粒子15はその搬送気
付の気流に引き込まれて、常時一定希釈倍率全もって搬
送管16へ送り込まれる。微粒子か微粒子発生用管2内
に拡散浮遊してしまうと次の試料の分析に移る前にそれ
らを予め排除しなければならず。
きつけて微粒子をその反対側の横あるいは斜め上方向へ
送り込む方法なども考えられるが、本発明で必須となる
定量的な搬送を目的とする場合には溶湯表面上より自然
に直上に立ち昇った蒸発微粒子を周囲への拡散が起る直
前に、やはり溶湯表面を直上方向に向って流れる搬送気
体の流れに乗せて迅速に運び去る方法が最も効率がよく
適している。すなわち、微粒子搬送ロアはルツボ4中の
溶湯表面から一定間隔をもってその直上に垂直に設置さ
れるべきである。その搬送ロアの溶湯表面に接する開口
部分の形状はルツボ4の内径よりも小径の円筒管ないし
はほぼルツボ4の外径近〈まで先端部全波げた円錐形状
のものが適当である。搬送気体の吹込み管の設置位置は
図示したような受は台13に取り付けるか、あるいはそ
の反対方向である円筒管2の上部に取り付けるのがよい
。又、試料′5t?散粒子発生装置内に設定して高周波
溶解する前にルツボ中に残留している大気を予め排除す
る目的をもった不活性気体吹込み管全微粒子発生装f&
のいずれかの部分に取付けることが好ましい。このよう
にしてAr 、 HeあるいはN2などの搬送気体は吹
込み管9から吹き込まれ、円筒管2内を不活性雰囲気1
に保つが、出口は微粒子搬送ロアたけなので、溶湯表面
近傍全通ってその開口部に向う気体の流れができる。溶
湯面から発生して上昇した蒸発微粒子15はその搬送気
付の気流に引き込まれて、常時一定希釈倍率全もって搬
送管16へ送り込まれる。微粒子か微粒子発生用管2内
に拡散浮遊してしまうと次の試料の分析に移る前にそれ
らを予め排除しなければならず。
非常に煩雑となるが、本方式によれば微粒子が溶湯表面
より発生して−L昇する流れを一柚のエアーカーテン状
の搬送気体の気流で包み込んでしまうので微粒子の拡散
は起りに〈〈その心配はない。
より発生して−L昇する流れを一柚のエアーカーテン状
の搬送気体の気流で包み込んでしまうので微粒子の拡散
は起りに〈〈その心配はない。
微粒子の蒸発発生法度及び粒径は、蒸発させる雰囲気の
圧力、加熱温度、雰囲気気体の種類等によって大きく影
響される。雰囲気を減圧にすれば蒸発速度は大となり、
より多量の微粒子を得ることができる。従って微粒子発
生速度を多くするには、本発明実施例図には示していな
いが、微粒子発生用管2内を最初に真空ポンプによって
真空にしてAr等の不活性気体をわずかに導入して減圧
状態に保持し、試料を溶解して微粒子を発生させ、次[
Ar等を吹き込んで大気圧に戻すとともに分析装化t1
9へ直ちに搬送するなどの方法を採用する。
圧力、加熱温度、雰囲気気体の種類等によって大きく影
響される。雰囲気を減圧にすれば蒸発速度は大となり、
より多量の微粒子を得ることができる。従って微粒子発
生速度を多くするには、本発明実施例図には示していな
いが、微粒子発生用管2内を最初に真空ポンプによって
真空にしてAr等の不活性気体をわずかに導入して減圧
状態に保持し、試料を溶解して微粒子を発生させ、次[
Ar等を吹き込んで大気圧に戻すとともに分析装化t1
9へ直ちに搬送するなどの方法を採用する。
微粒子の粒径は、プラズマを励起源とする発光分光分析
装置19で分析する際に定量精度に大きく影響するので
重要であり、特に粒径を極力小さくし、その粒度分布上
狭くする必要がある。本発明装置により鉄鋼試料を対象
に発生させた微粒子全電子顕微鏡観察によって調査した
ところ、その粒径は大略01μm以下の極めて微粒であ
り、粒度分布の巾も比較的狭くプラズマ発光分光分析で
対象とするための試料として最適であった。微小粒径の
蒸発粒子を得る条件としては、発生雰囲気の圧力を低く
する、加熱ン晶し!−!:全あまり高くしない、雰囲気
気体は原子量の少ないArなど7用いることが最も適当
であった。
装置19で分析する際に定量精度に大きく影響するので
重要であり、特に粒径を極力小さくし、その粒度分布上
狭くする必要がある。本発明装置により鉄鋼試料を対象
に発生させた微粒子全電子顕微鏡観察によって調査した
ところ、その粒径は大略01μm以下の極めて微粒であ
り、粒度分布の巾も比較的狭くプラズマ発光分光分析で
対象とするための試料として最適であった。微小粒径の
蒸発粒子を得る条件としては、発生雰囲気の圧力を低く
する、加熱ン晶し!−!:全あまり高くしない、雰囲気
気体は原子量の少ないArなど7用いることが最も適当
であった。
蒸発微粒子は吹き込んだ気体の流れにのせられて搬送管
16全辿って搬送気体分配装置17に搬送されるが、こ
こでの最も重要な問題は微粒子全搬送管16の内壁等に
付着残留させないことである。単に蒸発微粒子を補集す
る場合は多少の残留は問題にならないが、本発明のよう
に微粒子を分析してもとの分析試料中の成分量上水める
場合には、付着残留によって搬送気体中の微粒子濃度が
変動したり、次の分相試料に対するコンタミネーション
となって正確な分析値が得られなくなる。
16全辿って搬送気体分配装置17に搬送されるが、こ
こでの最も重要な問題は微粒子全搬送管16の内壁等に
付着残留させないことである。単に蒸発微粒子を補集す
る場合は多少の残留は問題にならないが、本発明のよう
に微粒子を分析してもとの分析試料中の成分量上水める
場合には、付着残留によって搬送気体中の微粒子濃度が
変動したり、次の分相試料に対するコンタミネーション
となって正確な分析値が得られなくなる。
蒸発微粒子は遅く静かな流れでの搬送や温度の低下が起
ると微粒子間の凝集や壁面への付着残留が起り易くなる
。従って、搬送管16はなるべく小径として搬送気体の
流速も速くする必要がある。
ると微粒子間の凝集や壁面への付着残留が起り易くなる
。従って、搬送管16はなるべく小径として搬送気体の
流速も速くする必要がある。
又、搬送管を数mないしは数十mのように長くしなけれ
ばならないときは、微粒子の多少の付着残留を防ぎにく
くなるが、この場合はこの残留割合が常時一定していれ
ば分析にはさしつかえない。
ばならないときは、微粒子の多少の付着残留を防ぎにく
くなるが、この場合はこの残留割合が常時一定していれ
ば分析にはさしつかえない。
しかし、1試料の分析が終了した時点で確実に除去して
おかなければ次試料に対してのコンタミネーションの原
因になる。しかし、種々の実験の結果、管内壁等に付着
した蒸発微粒子は短時間の内に気体を高速で吹きつけて
やれば容易に剥離して排除できることがわかったので、
分析終了直後に搬送気体の流量を増大させて排除する方
法を採用した。この搬送気体の流量制御は搬送気体供給
装置8の気体流量調節弁10の自動切替操作で取り行っ
た。搬送気体の流量調節は例えば、分析試料を微粒子発
生用円筒管2内に挿入した時点で10〜151/min
で流して円筒管2内等を不活性気体で置換し、次に試料
を高周波加熱した時点で3〜51/minの一定流量で
流して蒸発微粒子15を搬送管16へ送り込んで搬送し
、数分間以内で行われるプラズマ発光強度の測定終了直
後に10〜201/minの高速で流して円筒管2.搬
送情・16゜分配装置?’# 17などの内部の浮性微
粒子及び付着残留微粒子全糸外に排除するなどの方法を
とった。
おかなければ次試料に対してのコンタミネーションの原
因になる。しかし、種々の実験の結果、管内壁等に付着
した蒸発微粒子は短時間の内に気体を高速で吹きつけて
やれば容易に剥離して排除できることがわかったので、
分析終了直後に搬送気体の流量を増大させて排除する方
法を採用した。この搬送気体の流量制御は搬送気体供給
装置8の気体流量調節弁10の自動切替操作で取り行っ
た。搬送気体の流量調節は例えば、分析試料を微粒子発
生用円筒管2内に挿入した時点で10〜151/min
で流して円筒管2内等を不活性気体で置換し、次に試料
を高周波加熱した時点で3〜51/minの一定流量で
流して蒸発微粒子15を搬送管16へ送り込んで搬送し
、数分間以内で行われるプラズマ発光強度の測定終了直
後に10〜201/minの高速で流して円筒管2.搬
送情・16゜分配装置?’# 17などの内部の浮性微
粒子及び付着残留微粒子全糸外に排除するなどの方法を
とった。
又、搬送管16内壁への微粒子の付着は、第31図に示
すように管外壁にヒーター32等を取り付けて加熱して
おく、あるすは管内全流れる搬送気体全乱流とするため
に搬送管16全ら線状とするか、乱流が起るように管内
面に加工を施す工夫によって更に防止できた。搬送管1
6の材質はステンレス綱や銅などの金属2石英ガラスあ
るV−はフッ素樹脂などの耐熱合成樹脂が適当である。
すように管外壁にヒーター32等を取り付けて加熱して
おく、あるすは管内全流れる搬送気体全乱流とするため
に搬送管16全ら線状とするか、乱流が起るように管内
面に加工を施す工夫によって更に防止できた。搬送管1
6の材質はステンレス綱や銅などの金属2石英ガラスあ
るV−はフッ素樹脂などの耐熱合成樹脂が適当である。
搬送気体分配装置17は、搬送管16より送られてきた
搬送気体と微わγ子とを一担空間部分で拡散させ更に均
一化する、プラズマ部25へ導入する搬送気体の最適流
量を得るためにある一定部分を系外に排出して搬送気体
の分配を行う及び搬送されてくる間に凝集が進んで特・
VC粗大化した粒子全系外に排出し、微粒子のみ全プラ
ズマ部25へ送り込む分粒全行つなどのt!11!lき
を有するものである。分配装置iy 17は第1図ある
いは第3図に示すような構造のものが適当であり、小径
の円筒形状で微粒子搬送管16.微粒子導入管20及び
通常底部に流量調節弁18′が付いた搬送気体排出管1
8が取り付けられている。この3本の管はいずれも10
m+n以下の小径であるが、これらの互の位置関係は第
1図、第3図に例を示した。第1図の場合は、搬送管1
6の外側に導入管20を入れた二重管として分配装置1
7の円筒管の上部から下向きに垂直に取りつけ、搬送管
16を導入管20よりも長くしである。第3図の場合は
、搬送管16を円筒管の側面から挿入して管の末端を上
向きに、また導入@−20は円筒管の上部より管16末
端部と相対するように一定間隔全もって垂直に取りつけ
である。いずれの場合も粗大粒子及び微粉子の一部分は
余剰の搬送気体と共に底部排出管18より排除され、残
りの微粒子は一定流量の搬送気体と共に導入管20へ導
入される。分配装置内での微粒子の壁面等への付着残留
を防止するために第3図に図示するようにヒーター32
などを取りつけるのが望ましい。流量調節弁18′の作
動は、上述の搬送気体供給装置8の流量調節弁10の作
動と連動させることは当然である。
搬送気体と微わγ子とを一担空間部分で拡散させ更に均
一化する、プラズマ部25へ導入する搬送気体の最適流
量を得るためにある一定部分を系外に排出して搬送気体
の分配を行う及び搬送されてくる間に凝集が進んで特・
VC粗大化した粒子全系外に排出し、微粒子のみ全プラ
ズマ部25へ送り込む分粒全行つなどのt!11!lき
を有するものである。分配装置iy 17は第1図ある
いは第3図に示すような構造のものが適当であり、小径
の円筒形状で微粒子搬送管16.微粒子導入管20及び
通常底部に流量調節弁18′が付いた搬送気体排出管1
8が取り付けられている。この3本の管はいずれも10
m+n以下の小径であるが、これらの互の位置関係は第
1図、第3図に例を示した。第1図の場合は、搬送管1
6の外側に導入管20を入れた二重管として分配装置1
7の円筒管の上部から下向きに垂直に取りつけ、搬送管
16を導入管20よりも長くしである。第3図の場合は
、搬送管16を円筒管の側面から挿入して管の末端を上
向きに、また導入@−20は円筒管の上部より管16末
端部と相対するように一定間隔全もって垂直に取りつけ
である。いずれの場合も粗大粒子及び微粉子の一部分は
余剰の搬送気体と共に底部排出管18より排除され、残
りの微粒子は一定流量の搬送気体と共に導入管20へ導
入される。分配装置内での微粒子の壁面等への付着残留
を防止するために第3図に図示するようにヒーター32
などを取りつけるのが望ましい。流量調節弁18′の作
動は、上述の搬送気体供給装置8の流量調節弁10の作
動と連動させることは当然である。
微粒子導入管20から導入された微粒子は、第1図に示
す如く導入管20.プラズマガス供給管21及び冷却ガ
ス供給管22からなる三重管のプラズマトーチ23に運
び込まれ、高周波発生装ftft24によってつくられ
ている高温のプラズマ部に達し、励起発光される。プラ
ズマガス及び冷却ガスはArガスを用い、本実施例では
微粒子搬送にもArガスを用い、各々の流量はプラズマ
ガス1〜1.51/min 、冷却ガス10〜15 A
/min 、微粒子搬送ガス0.5〜IA!/min
が適当であった。励起された微粒子の発光ス波りトルは
前述した構成からなるプラズマ発光分光分相装置19に
よって、スペクトル線強度が測定され、分析試料中の各
成分の含有率が迅速に求められる。搬送された微粒子を
励起発光させて含まれる各成分量全測定する分析装置に
は高周波誘導結合型発光分光分析装置が最も適していた
が、そのほか各種のアーク放電。
す如く導入管20.プラズマガス供給管21及び冷却ガ
ス供給管22からなる三重管のプラズマトーチ23に運
び込まれ、高周波発生装ftft24によってつくられ
ている高温のプラズマ部に達し、励起発光される。プラ
ズマガス及び冷却ガスはArガスを用い、本実施例では
微粒子搬送にもArガスを用い、各々の流量はプラズマ
ガス1〜1.51/min 、冷却ガス10〜15 A
/min 、微粒子搬送ガス0.5〜IA!/min
が適当であった。励起された微粒子の発光ス波りトルは
前述した構成からなるプラズマ発光分光分相装置19に
よって、スペクトル線強度が測定され、分析試料中の各
成分の含有率が迅速に求められる。搬送された微粒子を
励起発光させて含まれる各成分量全測定する分析装置に
は高周波誘導結合型発光分光分析装置が最も適していた
が、そのほか各種のアーク放電。
グロー放電あるいはレーザーを励起源とした発光分光分
析装置が適用でき、あるいは原子吸光分析装置などを用
いることもできる。
析装置が適用でき、あるいは原子吸光分析装置などを用
いることもできる。
本発明によれば、分析試料の微粒子発生装置への挿入か
ら微粒子を発生させて試料中の各成分の含有率を求める
までの分析所要時間は約5分以内の短時間で、はとんど
人手音用いずに簡単に分析できた。定量精度についても
、試料を鉱酸で溶解して、操作が煩雑で長時間を要する
吸光光度法などの化学分析法による場合に比べて、遜色
のない良好な精度が得られた。以上説明したように、本
発明方法及び装置によれば、これまで直接発光分光分析
が困難であった小形状金属試料に対して簡単、迅速に直
接発光分光分析が可能になった。また、これまでの一定
形状のブロック試料を対象としていたスノや−ク、アー
クあるいはグロー放電による発光分光分析で対象分相試
料の形状制限以外に問題となっていた分析試料の熱処理
膣歴による金属組織や試料内の各成分の偏析に基づく定
量精度の低下などの問題解決も達成された。本発明は、
金属製造業における工程管理あるいは品質管理のために
重要な金属材料中に含有される各成分を試料形状及び金
属組織や成分偏析の影響を受けずに簡単、迅速に高精度
で分析する新規分析方法及び装置を提供したものであり
、この分野において多大な貢献をするものである。
ら微粒子を発生させて試料中の各成分の含有率を求める
までの分析所要時間は約5分以内の短時間で、はとんど
人手音用いずに簡単に分析できた。定量精度についても
、試料を鉱酸で溶解して、操作が煩雑で長時間を要する
吸光光度法などの化学分析法による場合に比べて、遜色
のない良好な精度が得られた。以上説明したように、本
発明方法及び装置によれば、これまで直接発光分光分析
が困難であった小形状金属試料に対して簡単、迅速に直
接発光分光分析が可能になった。また、これまでの一定
形状のブロック試料を対象としていたスノや−ク、アー
クあるいはグロー放電による発光分光分析で対象分相試
料の形状制限以外に問題となっていた分析試料の熱処理
膣歴による金属組織や試料内の各成分の偏析に基づく定
量精度の低下などの問題解決も達成された。本発明は、
金属製造業における工程管理あるいは品質管理のために
重要な金属材料中に含有される各成分を試料形状及び金
属組織や成分偏析の影響を受けずに簡単、迅速に高精度
で分析する新規分析方法及び装置を提供したものであり
、この分野において多大な貢献をするものである。
第1図は本発明実施例の全体構成を示す説明図、第2図
は本発明の微粒子発生装置部分の実施例の説明図、第3
図は本発明の搬送気体分配装置部分の実施例の説明図で
ある。 1・・・微粒子発生装置 2・・・微粒子発生用円筒管
3・・・分析試料 4・・・耐火ルツボ5・・・
ルツボ設定装置 6・・・高周波誘導加熱装置8・・・
搬送気体供給装置 15・・・蒸発微粒子 16・・・微粒子搬送管17
・・・搬送気体分配装置 19・・・プラズマ励起腕を有する発光分光分析装置1
lt 20・・・微粒子導入管 23・・・プラズマトーチ2
5・・・プラズマ部 27・・・分光器。 (19) 〜 312
は本発明の微粒子発生装置部分の実施例の説明図、第3
図は本発明の搬送気体分配装置部分の実施例の説明図で
ある。 1・・・微粒子発生装置 2・・・微粒子発生用円筒管
3・・・分析試料 4・・・耐火ルツボ5・・・
ルツボ設定装置 6・・・高周波誘導加熱装置8・・・
搬送気体供給装置 15・・・蒸発微粒子 16・・・微粒子搬送管17
・・・搬送気体分配装置 19・・・プラズマ励起腕を有する発光分光分析装置1
lt 20・・・微粒子導入管 23・・・プラズマトーチ2
5・・・プラズマ部 27・・・分光器。 (19) 〜 312
Claims (3)
- (1) 小容積の密閉状容器中に設置した耐火ルツボ
中で、小形状の金属試料片又は粉末状金属試料を高周波
誘導加熱によって溶解し、蒸発した金属微粒子の全量な
いしは一定量を、溶湯表面直上より常時一定流速で搬送
気体によって、搬送管全弁して高周波誘導結合プラズマ
等の励起源を冶する発光装置に送り込み、発生した励起
光を分光分析装置に導入して分光し、各成分のスペクト
ル線強度から分析試料中に含まれる各成分計’?!:測
定することを特徴とする小形状金属試料の直接発光分光
分析方法。 - (2)■分析試オ・(中に含寸れる各成分量を?ll定
したあと、血ちに搬送気体を測定時よりも更に高流速で
吹き込み、搬送管内槽にわずかに残留する微粒子を系外
に排出してから、次の分析試料の測定操作に移ること全
量r;☆とする特許Ni’J求の範囲第(1)項記載の
小形状金属試料の直接発光分析方法。 - (3)分析試料全入れる小型耐火ルッが、この耐火ルツ
ボの外周を直近にとりまく小径でたて長の密閉状円筒管
、前記耐火ルツボの高さに見合い、かつこの円筒管の外
周にV置した高周波誘導加熱装置、流量調fei器を備
えて円筒管の下部ないしは上部に吹込み管を設置したi
粒子搬送気体供給装置、円筒管の底部に設置してルツボ
の出し入れが可能で、かつ円筒管の密閉状態を保持でき
るルツボ設定装揖、及び一端がルツボ直上部に垂直に開
口し他端頂部か微粒子搬送管と接続する微粒子搬送口か
ら成る微粒子発生装置、一端が微粒子搬送口に他端が搬
送ガス分配装置に接続する小径の微粒子搬送管、この搬
送管末端部2発光装置への微粒子導入管及び排出流量調
節器を備えた余剰の搬送気体の排出’f2(’から成る
搬送気体分配装置6、微粒子導入管、高周波誘導結合プ
ラズマ等の励起源を有する発光装fi# 、分光器、検
出器、成分含有率演算装置H等から成る発光分光分析装
Mk主体として構成されることを特徴とする小形状金属
試料の直接発光分光分析装置fJ 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18886681A JPS5890152A (ja) | 1981-11-25 | 1981-11-25 | 小形状金属試料の直接発光分光分析方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18886681A JPS5890152A (ja) | 1981-11-25 | 1981-11-25 | 小形状金属試料の直接発光分光分析方法及び装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5890152A true JPS5890152A (ja) | 1983-05-28 |
JPS6220498B2 JPS6220498B2 (ja) | 1987-05-07 |
Family
ID=16231233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18886681A Granted JPS5890152A (ja) | 1981-11-25 | 1981-11-25 | 小形状金属試料の直接発光分光分析方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5890152A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162943A (ja) * | 1984-02-03 | 1985-08-24 | Nippon Steel Corp | 蒸発微粒子回収溶融金属分析方法および装置 |
US6113669A (en) * | 1999-02-01 | 2000-09-05 | Seltet Llc | Method and apparatus for process and quality control in the production of metal |
RU206533U1 (ru) * | 2021-03-09 | 2021-09-15 | Александр Михайлович Панин | Фотометр для спектрального анализа |
-
1981
- 1981-11-25 JP JP18886681A patent/JPS5890152A/ja active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162943A (ja) * | 1984-02-03 | 1985-08-24 | Nippon Steel Corp | 蒸発微粒子回収溶融金属分析方法および装置 |
JPH0238901B2 (ja) * | 1984-02-03 | 1990-09-03 | Nippon Steel Corp | |
US6113669A (en) * | 1999-02-01 | 2000-09-05 | Seltet Llc | Method and apparatus for process and quality control in the production of metal |
RU206533U1 (ru) * | 2021-03-09 | 2021-09-15 | Александр Михайлович Панин | Фотометр для спектрального анализа |
Also Published As
Publication number | Publication date |
---|---|
JPS6220498B2 (ja) | 1987-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5671045A (en) | Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams | |
US6429935B1 (en) | Microwave plasma monitoring system for real-time elemental analysis | |
JPH0367153A (ja) | 水銀についての固体物質分析方法および装置 | |
JPS5890152A (ja) | 小形状金属試料の直接発光分光分析方法及び装置 | |
JPS5890150A (ja) | 小形状金属試料のプラズマア−ク直接溶解発光分光分析方法及び装置 | |
JPH04216440A (ja) | 誘導結合型アルゴンプラズマ発光分光分析用プラズマ内に化合物を噴射させる装置及び方法 | |
JPH0151939B2 (ja) | ||
JPS61181946A (ja) | 溶融金属のレ−ザ直接発光分光分析装置 | |
JPS5890149A (ja) | 小形状金属試料の直接溶解発光分光分析方法及び装置 | |
JPS60219538A (ja) | 不活性ガス吹き込み微粒子回収溶融金属分析方法および装置 | |
JPS6214773B2 (ja) | ||
JPS60162945A (ja) | 蒸発微粒子回収溶融金属分析方法 | |
JPS59157541A (ja) | 微粒子生成プラズマ発光分光法による溶融金属の直接分析装置 | |
JPH0238901B2 (ja) | ||
JPH0215816B2 (ja) | ||
JPS6220499B2 (ja) | ||
JPS58102137A (ja) | 微粒子蒸発搬送法による溶融金属の直接発光分光分析装置 | |
JPS59157539A (ja) | 微粒子生成プラズマ発光分光法による深層部溶融金属の直接分析装置 | |
JPS59157542A (ja) | 微粒子生成プラズマ発光分光法による溶融金属の直接分析装置 | |
JPS63243872A (ja) | 超音波振動微粒子生成による溶融金属の直接分析方法及び装置 | |
JP2898433B2 (ja) | 金属試料中の微量炭素の分析方法 | |
WO2001065244A9 (en) | Microwave plasma monitoring system for real-time elemental analysis | |
JPS63186131A (ja) | 原子吸光法による溶融金属中のマンガンの直接分析装置 | |
JPH0367168A (ja) | 金属試料中の微量炭素,硫黄,燐の分析方法およびその装置 | |
JPS63243871A (ja) | 上下可動式超音波振動微粒子生成による溶融金属の直接分析方法及び装置 |