JPS5874594A - Growing method for crystal - Google Patents

Growing method for crystal

Info

Publication number
JPS5874594A
JPS5874594A JP17120581A JP17120581A JPS5874594A JP S5874594 A JPS5874594 A JP S5874594A JP 17120581 A JP17120581 A JP 17120581A JP 17120581 A JP17120581 A JP 17120581A JP S5874594 A JPS5874594 A JP S5874594A
Authority
JP
Japan
Prior art keywords
crystal
container
magnetic field
vessel
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17120581A
Other languages
Japanese (ja)
Other versions
JPH0244799B2 (en
Inventor
Toshihiko Suzuki
利彦 鈴木
Tomio Sato
富雄 佐藤
Yasaburo Kato
加藤 弥三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17120581A priority Critical patent/JPH0244799B2/en
Priority to CA000414053A priority patent/CA1223798A/en
Priority to GB08230370A priority patent/GB2109267B/en
Priority to FR8217924A priority patent/FR2515216B1/en
Priority to NL8204133A priority patent/NL8204133A/en
Priority to DE19823239570 priority patent/DE3239570C2/en
Publication of JPS5874594A publication Critical patent/JPS5874594A/en
Publication of JPH0244799B2 publication Critical patent/JPH0244799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To control the concn. of the components constituting a vessel for containing of liquid for growing a crystal having electric conductivity contained in said crystal accurately over a wide range by changing the number of revolutions of said vessel in the stage of pulling up the crystal in a magnetic field. CONSTITUTION:A cooling jacket 6 is disposed on the outer side of a heating means 4 disposed in a cylindrical surface shape along the outside circumferential surface of a vessel 2, and, for example, a generating means for DC magnetic fields consisting of a permanent magnet or an electromagnet is disposed on the outer side thereof. While, for example, an Si single crystal seed 8 is rotated, said seed is pulled up in the magnetic field by the means 7 to grow an Si single crystal 10 from an Si melt 3. In this case, a vessel 2 contg. the melt 3 having electric conductivity of a certain degree, for example, a quartz crucible is rotated and the rotating speed thereof is controlled, whereby the concn. of the oxygen in the constituting components of the vessel 2 in the pulled up crystal 10 is changed.

Description

【発明の詳細な説明】 本発明は、半導体、誘電体、磁性体等の各種材料の結晶
成長方法に係わり、特にその結晶中における不純物例え
ば酸素の濃度を広範囲に且つ正確に制御する仁とができ
るようKするも?であ、る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing crystals of various materials such as semiconductors, dielectrics, and magnetic materials. I'll do it so I can do it? So, there it is.

単結晶、例えばシリコン単結晶を得る方法としてチョク
ラルスキー法(以下CZ法という。)がある、。さらK
このCZ法においてその単結晶の育成を行なう結晶成長
用液体に磁場を印加して単結晶を引上げていくという方
法が提案された。この方法によって育成された単結晶は
、スワール(svirl)状の欠陥や成長縞の発生が軽
減される。これ&!結晶成長用液体・が電気伝導性を有
する場合、これに磁場が掛けられることによってその実
効的粘性が高められ、その結晶成長用液体の熱対流と液
面の振動が抑制されることによると思われる。すなわち
磁場中で電気伝導性を有する流体、すなわち導体が運動
するとこの流体中に電位差が発生し電流が流れる。そし
てこ よってこの電流を担う流体が新しい力を受ける。
The Czochralski method (hereinafter referred to as CZ method) is a method for obtaining a single crystal, for example a silicon single crystal. Sara K
In the CZ method, a method has been proposed in which a magnetic field is applied to the crystal growth liquid used to grow the single crystal to pull the single crystal. In the single crystal grown by this method, the occurrence of swirl-like defects and growth stripes is reduced. this&! If the crystal growth liquid has electrical conductivity, applying a magnetic field to it increases its effective viscosity, which is thought to suppress thermal convection and liquid surface vibration of the crystal growth liquid. It will be done. That is, when a fluid having electrical conductivity, that is, a conductor, moves in a magnetic field, a potential difference is generated in the fluid, and a current flows. The fluid carrying this current then experiences a new force.

この力は流体が動く方向と反対の方向であるので流体の
動きは、鈍くなり見かけ上貼性が上がったことkなる。
Since this force is in the opposite direction to the direction in which the fluid moves, the movement of the fluid becomes slower and the adhesiveness appears to be improved.

こりは磁気粘性といわれる。そしてこのように磁気粘性
が生じたこと忙よって流体すなわち、結晶成長用液体に
対流が生じC<くなるものと思われる。尚、この単結晶
の育成を磁場中で行なうととにりい、ては、例えばジャ
ーナル・オブ・アプライド・フィツクx (Journ
al of Applied Physics)Vol
 、 37 、 No、5 、P、 2021(196
6)、及びジャーナル・オブ・マテリアルズーサイx 
yx (Journal of Matertals 
8ctence)5 (1970)P、822等によっ
て記赦さ、れている。
The stiffness is called magnetorheological. It is thought that due to the magnetic viscosity generated in this way, convection occurs in the fluid, that is, the crystal growth liquid, and C<. It should be noted that if this single crystal is grown in a magnetic field, for example, the Journal of Applied Fixtures
of Applied Physics) Vol.
, 37, No. 5, P., 2021 (196
6), and Journal of Materials Science x
yx (Journal of Materials
8ctence) 5 (1970) P, 822, etc.

本発明は、このような磁場中忙おいて結晶の引上げを行
なう結晶成長方法において、その育成された結晶中の不
純物の濃度、例えば酸素濃度を前述したよう忙広範囲に
且つ正確忙制御できるよさにするものである。すなわち
、C2法による場合、その結晶成長用液体が収容される
容器、例えば石英容器の構成成分の例えば酸素が、その
育成された結晶中に混入することが認められたものであ
るが、従来一般の、磁場が与えられない状態で結晶育成
がなされるCZ法忙よる場合においても、引上げる結晶
の回転数や、るつぼの回転数やその相対的回転方向やさ
らにるつほの温度を制御することによって結晶中の酸素
濃度の制御は可能であるが、このような磁場が与えられ
ないCZ法では、前述したようにその結晶成長用液体の
粘性が低くこれに対流が生じやすいq、、、めに、この
液体と石英るつほとの相対的移WJJFcよる擦れ合い
が大きく、これがため液体中への酸素の取込み童が大と
なって育成された結晶中の酸素#度は高#度での範囲、
訪 すなわちおよそ1〜2x1;01tOR′II/Cm 
というせまい範囲のものである。
The present invention is based on the ability to accurately control the concentration of impurities, such as oxygen concentration, in the grown crystal over a wide range as described above in a crystal growth method in which the crystal is pulled in a magnetic field. It is something to do. In other words, when using the C2 method, it has been recognized that oxygen, which is a component of the container in which the crystal growth liquid is stored, such as a quartz container, is mixed into the grown crystal. Even when using the CZ method, in which crystal growth is performed without a magnetic field, the number of rotations of the crystal to be pulled, the number of rotations of the crucible, the relative direction of rotation, and the temperature of the crucible can be controlled. However, in the CZ method where such a magnetic field is not applied, the viscosity of the crystal growth liquid is low and convection is likely to occur in it, as described above. Therefore, there is a large friction between the liquid and the quartz crystal due to the relative movement WJJFc, and this causes a large amount of oxygen to be taken into the liquid, resulting in a high oxygen concentration in the grown crystal. range in,
i.e. approximately 1~2x1;01tOR'II/Cm
This is a narrow range.

一方、半導体単結晶、例えばシリコン単結晶中の酸素は
、その濃度と分布忙応じてこれより得る半導体装置の特
性、或いはこれを製造する過程での熱処理において様々
な効果をもたらす。例えばこの酸素濃度が比較的高い場
合は、熱処理によって積層欠陥や酸素の析出物を発生さ
せ、半導体装置の特性に悪影響を及はす。ところがこの
ような欠陥を半導体装置の活性領域以外に設けて熱処理
を行なうときは、逆忙有害不純物例えばFe 、 Ou
 。
On the other hand, oxygen in a semiconductor single crystal, such as a silicon single crystal, has various effects depending on its concentration and distribution on the characteristics of the semiconductor device obtained therefrom or on the heat treatment during the manufacturing process. For example, when this oxygen concentration is relatively high, stacking faults and oxygen precipitates are generated by heat treatment, which adversely affects the characteristics of the semiconductor device. However, when such defects are formed outside the active region of a semiconductor device and heat treatment is performed, harmful impurities such as Fe, Ou, etc.
.

AU等の金属不純物をゲッタリングするいわゆるイント
リンシック・ゲッタリング作用をなし、半導体装置の特
性を向上させる効果がある。また酸素の析出物が発生し
ない程度に高い酸素′濃度では、酸素クラスタニによる
転位の発生と増加を抑制する効果をもつ=すなわち、半
導体装置の製造時の熱処理中の転位の発生と増加を抑制
し得る。さらに結晶中の酸素濃度が高い場合に所要の温
度例えば450℃の熱処理でシリコン中の酸素はサーマ
ルドナーを発生し、n型化する効果を有するが、低い酸
素濃度ではこのサーマルドナーの発生を低くでき、従来
フローティングジーン法(FZ法)によって得ていた高
抵抗率の結晶を得ることができ、高耐圧、高出力半導体
装置の製造も可能となる。
It performs a so-called intrinsic gettering action to getter metal impurities such as AU, and has the effect of improving the characteristics of a semiconductor device. In addition, at a high oxygen concentration that does not generate oxygen precipitates, it has the effect of suppressing the generation and increase of dislocations due to oxygen clustering. In other words, it suppresses the generation and increase of dislocations during heat treatment during the manufacture of semiconductor devices. obtain. Furthermore, when the oxygen concentration in the crystal is high, the oxygen in the silicon generates thermal donors by heat treatment at the required temperature, e.g. 450°C, and has the effect of converting it to n-type. However, at low oxygen concentrations, the generation of thermal donors is reduced. Thus, it is possible to obtain a crystal with high resistivity, which was conventionally obtained by the floating gene method (FZ method), and it also becomes possible to manufacture high-voltage, high-output semiconductor devices.

品み<FZ法による結晶は、大直径化が困難であり、C
Z法による場合、その大直径化が比較的容易であるので
酸素濃度の制御がCZ法によってなされることは、各種
半導体装置を廉価に得る一Fにおいて有利なものとなる
Product quality < It is difficult to increase the diameter of crystals produced by the FZ method, and C
When using the Z method, it is relatively easy to increase the diameter, so controlling the oxygen concentration using the CZ method is advantageous in producing various semiconductor devices at low cost.

本発明においては、このような各種の効果を得るために
広範囲忙亘る酸素濃度の選定を行うことのできる結晶、
例えばシリコン単結晶を得ることができるようkした結
晶成長装置提供するものである。
In the present invention, in order to obtain such various effects, a crystal which can select oxygen concentration over a wide range,
For example, a crystal growth apparatus capable of obtaining silicon single crystals is provided.

以下本発明の詳細な説明する。第1図を参照して本発明
方法を実施する結晶成長装置1について説明するに、図
中(1]はその装置を全体として示す。
The present invention will be explained in detail below. A crystal growth apparatus 1 for carrying out the method of the present invention will be described with reference to FIG. 1. In the figure, (1) indicates the apparatus as a whole.

+2)は成る程度の電気伝導性を有する結晶成長用の融
液又は溶液による液体例えばSi融液(3)が収容され
た容器、例えば石英るつぼで、この容器+21はその中
心軸に関して回転するようになされ、更にその回転数が
選定されるようになされている。この容器+21の外周
忙は、加熱手段(4)が配置される。
+2) is a container, such as a quartz crucible, containing a liquid such as a Si melt (3) for crystal growth having a certain degree of electrical conductivity, and this container +21 is rotated about its central axis. The number of revolutions is selected. A heating means (4) is arranged around the outer periphery of this container 21.

この加熱手段(4)は、通電ヒーター(5)が、例えば
ジグザグパターン忙容器(21の外周面に沿う円筒面状
をなすように配置□される。この加熱手段(4)の外側
には必要に応1て例えば円筒状め熱遮蔽体、或いは水冷
等ピよって冷却されるジャケット(6)が配置され、そ
の外側に永久磁石、或いは電磁石より成る例えば直流磁
場発生手段(7)が配置される。(8)は単結晶シード
、例えば81単結晶シードで、(9)はその引上げチキ
ン)である。そして、この引上げ゛チャックによるで単
結晶シードが容器+21の回転中心軸上で、−これに沿
って回転しつつ引上げられるようKなされている。
In this heating means (4), an energized heater (5) is arranged, for example, in a cylindrical shape along the outer circumferential surface of the zigzag pattern container (21). Accordingly, for example, a cylindrical heat shield or a jacket (6) cooled by water cooling, etc., is arranged, and a DC magnetic field generating means (7) made of a permanent magnet or an electromagnet, for example, is arranged outside the jacket (6). (8) is a single crystal seed, for example 81 single crystal seed, and (9) is its pulled chicken). The single crystal seed is pulled up by this pulling chuck while rotating along the central axis of rotation of the container 21.

加熱手段(4)の通電ヒーター(5)への通電は、リッ
プル分が゛4%以下に抑えられたほぼ直流の電流、或い
は1 kHz以上の交流又i脈流とする。このような通
電電流とするときは、加熱手段(4)がm*との作用で
生ずる不要の一動を回避できることを確めた。
Electricity is supplied to the energizing heater (5) of the heating means (4) using a substantially direct current with ripple content suppressed to 4% or less, or an alternating current or pulsating current of 1 kHz or more. It has been confirmed that when such a current is applied, unnecessary movements caused by the action of the heating means (4) with m* can be avoided.

このようにして、SIシード(8)を、“Sl融液面か
ら所要の速度で引上げることkよってSi結晶(IIの
成長を行う。この場合、上述したようにシード18)、
L、たがってこれより引上育成される単結晶(IIを回
転させながら、その引上げ成長を行うものであるが、I
f!IK本発明においては、容器f2jの回転速度を制
御してその引上げを行う。
In this way, the Si crystal (II) is grown by pulling the SI seed (8) from the Sl melt surface at a required speed. In this case, as described above, the seed 18),
L, therefore, the single crystal that is pulled and grown from this (pulling and growing is performed while rotating II, but I
f! IK In the present invention, the rotational speed of the container f2j is controlled to pull it up.

すなわち、本発明においては、このように容器(2)を
回転させ、且つその回転速度を制御することKよって引
上げられた結晶αO中の、上述した容器(21の構成成
分の酸素の濃度が変化する仁とを艶出したことに基いて
なされた結晶成長法である。・そして、このように、磁
場中の結晶引上げにおいては容器(21の回転によって
結晶ae中の例えば酸素の濃度が変化するのは、容器(
2)の−転忙よって容器(2)と、これの中に収容され
、磁−の印加圧よって実効的粘性が高められた結晶成長
用液体(3)とが相対的に回転移行してこの液体(3)
と容器+2)の内壁面との間に所要の擦れ合いを生じさ
せ、これによりて容器+21の構成成分例えば石英の構
成成分の酸素が液体(3)中に溶は込み、その擦れ合い
が大となるほどすなわち容器(2)の液体(3)K対す
る相対的回転数が増大するほど液体(3)への溶は込み
量が大となってこれより引上げられた結晶aI中の酸素
濃度が増す。そしてこの結晶中の酸素濃度は、磁場を与
えない場合より電磁場を与えた状11においてその容器
の回転数を十分大にすればより高濃度になし゛ 得るこ
とが確認された。
That is, in the present invention, by rotating the container (2) in this way and controlling its rotation speed, the concentration of oxygen, which is a component of the container (21), in the crystal αO pulled is changed. This is a crystal growth method based on the polishing of the grains.・In this way, when pulling a crystal in a magnetic field, the concentration of, for example, oxygen in the crystal ae changes due to the rotation of the container (21). The container (
As a result of the 2) transition, the container (2) and the crystal growth liquid (3) housed therein whose effective viscosity has been increased by the applied magnetic pressure are rotated relative to each other. liquid (3)
and the inner wall surface of the container +2), and as a result, oxygen from the constituent components of the container +21, such as quartz, dissolves into the liquid (3) and the rubbing becomes large. In other words, as the relative rotational speed of the container (2) to the liquid (3) K increases, the amount of infiltration into the liquid (3) increases, and the oxygen concentration in the crystal aI pulled from this increases. . It was also confirmed that the oxygen concentration in this crystal can be made higher than that in the case where no magnetic field is applied by increasing the rotation speed of the container sufficiently in state 11 when an electromagnetic field is applied.

尚、引上げる単結晶cllは、高温部の熱中心や熱対称
性の上からこれが回転されることが望まれるが、この結
晶の回転による強制対流が液体(3)の容器(2)の内
壁面との接触部に及ぶようなことがあればこれが酸素#
度に影響が生じるが、と−のような強制対流が容器(2
)の内壁面に及ぶことがないように結晶と容器(2)の
内壁面との距離を選定すれば、容器(21の回転によつ
1て酸素濃度の制御を行なうことができること忙なる。
It is desirable that the single crystal cll to be pulled be rotated from the perspective of the thermal center of the high temperature part and thermal symmetry, but the forced convection caused by the rotation of the crystal will cause the liquid (3) to flow inside the container (2). If there is any contact with the wall, this is oxygen #
However, forced convection such as
If the distance between the crystal and the inner wall of the container (2) is selected so that the crystal does not reach the inner wall of the container (21), the oxygen concentration can be controlled by the rotation of the container (21).

第2図はこの結晶と容器(210内螢面間の距離を56
鱈に選定し、結晶回転数を3 Or pmに、また石英
るつぼよりなる容器+27の回転数を、これとは逆方向
に0.1rpmで回転−させた場合において、液体(3
)すなわち8M融液に4える磁場の強さを変化させた場
合の、その育成された結晶ae中の酸素#度を測定した
結果を示すものである。これより明らかなように、印加
磁場が1500ガウス以上においては、容器(2ンの回
転数が一定であれば、その酸素濃度にほとんど変化が生
じないことがわかる。
Figure 2 shows the distance between this crystal and the vessel (210 inner firefly surface).
When cod was selected and the crystal rotation speed was set to 3 Or pm, and the rotation speed of a container made of a quartz crucible was rotated at 0.1 rpm in the opposite direction, the liquid (3
) That is, it shows the results of measuring the degree of oxygen in the grown crystal ae when the strength of the magnetic field applied to the 8M melt was varied. As is clear from this, when the applied magnetic field is 1500 Gauss or more, there is almost no change in the oxygen concentration of the container (2) as long as the rotation speed is constant.

また第3図は、結晶α・の回転数を変化させた場合の結
晶ao中の酸素濃度を測定したものであって、この場合
蓉器121の回転数は0.1rpmとした場合である。
Further, FIG. 3 shows the measurement of the oxygen concentration in the crystal ao when the rotation speed of the crystal α was changed, and in this case, the rotation speed of the rotor 121 was set to 0.1 rpm.

そして第3図中曲線Qυ及びQzは、夫々結晶00と容
器(2)の内壁面との距離を56111に:is定した
場合における磁場印加を行なわない場合及び3500ガ
ウスの磁場印加を行なった場合の46111定曲線で、
曲ff1j123は3500カウスの磁場印加において
結晶と容器+21の内壁面との距離を691に選定した
場合である。曲線Qυと曲線@及び(ハ)とを1較して
明らかなように容器121の回転数が一定の状態では、
磁場印加を行なった場合、磁場印加を行なわない場合に
比して酸素濃度が低下するとともに結晶回転数の依存性
が小となることがわかる。また、曲線のとのとを比較す
ること虻よって明らかなように結晶a1と容器(21の
内壁面との距離が大となるほど結晶中の酸素a度の結晶
回転数の変化による影響が小となることがわかる。
Curves Qυ and Qz in Fig. 3 represent the case where no magnetic field is applied and the case where a magnetic field of 3500 Gauss is applied when the distance between the crystal 00 and the inner wall surface of the container (2) is set to 56111:is, respectively. 46111 constant curve of
The curve ff1j123 is a case where the distance between the crystal and the inner wall surface of the container +21 is selected to be 691 when a magnetic field of 3500 caus is applied. As is clear by comparing the curve Qυ with the curves @ and (c), when the rotation speed of the container 121 is constant,
It can be seen that when a magnetic field is applied, the oxygen concentration is lower and the dependence on the crystal rotation speed is smaller than when no magnetic field is applied. In addition, as is clear from comparing the curves, the larger the distance between the crystal a1 and the inner wall of the container (21), the smaller the influence of the change in the crystal rotation speed on the oxygen a degree in the crystal. I know what will happen.

また、@4図は容器(2:の回転数を0.1rpmに選
定した状態における結晶回転数の変化に対する結なるほ
ど結晶中の酸素濃度分布が一様化されることがわかる。
In addition, Figure @4 shows that the oxygen concentration distribution in the crystal becomes more uniform as the rotation speed of the container (2:) is determined to be 0.1 rpm and the rotation speed of the crystal changes.

          。       .

第5図は、引上げ結晶の回転数を5 Orpmとし、容
器(2)の回転数を2Orpmとした状態で、結晶の引
上げをその各部A、B、Cで夫々印加磁場を3500ガ
ウス、0ガウス、3500ガウスと変化させたときの各
部A、 B%CKおける酸素#度を測定した結果を示し
、これより明らかなよう忙育成される結晶において磁場
が印加されるかされないかkよって1[の異る部分を形
成し得ることがわかる。
Figure 5 shows the pulling of the crystal under the condition that the rotational speed of the pulled crystal is 5 Orpm and the rotational speed of the container (2) is 2Orpm, and the magnetic field applied to each part A, B, and C is 3500 Gauss and 0 Gauss, respectively. , 3500 Gauss, and the oxygen concentration in each part A and B%CK is shown.As is clear from this, the difference between 1[ and It can be seen that different parts can be formed.

更に%第6図は、容器+23の回転数を変えたときの結
晶(!〔中の酸素11度を測定したもので、第6図中O
印は、結晶1it)の回転数を5Orpmとした場合、
Δ印は30rpmとした場合の各測定値を示す。この場
合、磁場の強さは3500ガウスとしたが、この@6図
より明らかなように1磁場が印加された場合においても
、容器12Jの回転数を大とすれば、むしろ従前の磁場
の印加がなされないcz法にふ・けるよりも高いS度が
得られることがわかる。そして、この容器12+の回転
数の選定により、結晶伯中の酸素濃度は2.5 X I
 O” atoms/cm3にも及はすことができ、容
器(21の回転数0.1z20rpmの範囲で、結晶a
e中の酸素濃度を約1桁も変化させることができること
がわかる。:。
Furthermore, %Figure 6 shows the measurement of 11 degrees of oxygen in the crystal (!) when the rotation speed of the container +23 was changed;
The mark is when the rotation speed of 1 it of crystal is 5 Orpm,
The Δ mark indicates each measured value at 30 rpm. In this case, the strength of the magnetic field was set to 3500 Gauss, but as is clear from Fig. It can be seen that a higher degree of S can be obtained than by indulging in the cz method in which no By selecting the rotation speed of this container 12+, the oxygen concentration in the crystal is 2.5
O” atoms/cm3, the crystal a
It can be seen that the oxygen concentration in e can be changed by about an order of magnitude. :.

上述したところから明ら・かなように、容器121の回
転によって、結晶αω中の酸素濃度な低a度から高磯度
に1で変化させることができるものであり、この場合に
、第2図で説明したところから明らがなよ5&C,印加
磁場を1500ガウス以上に岸定すれば、磁場の変動に
よる酸素a度への影響を回避でき、また第3図で説明し
たように、結晶u1と容器121の内壁面との距離を十
分大に、例えば69閣に選定するときは、結晶αGの回
転速度が結晶QIJ中の酸素′a度に与える影響を回避
できるので、容器(21の回転数の制御のみで結晶αω
中の例えば酸素濃度を制御できるのでこの濃度の設足を
正確紀行うことができる。そして、この−呟の選定範囲
は、I X ] O” 〜2.5 X 10”atom
s/ am3という広範囲のものである。そして、上述
したよう忙結晶Qlと容器12)の内壁面との距離を大
に選定することによって結晶(IIの回転数を任意に選
ぶことができるので、この結晶回転数を、第4図で示さ
れるように、結晶中の半径方向忙関して均一なa度分布
を得ることのできる回転数の約3Orpm以上に選定す
ることができる。 ・′1 上述したように、本発明によれば、酸素濃度を結晶tl
lの半径方向、すなわち横断面忙関して各部均一にする
ことができ、しかもその濃度゛を、広範囲に亘って制御
することができるので、冒頭に述べたよう釦、インドリ
′ンシツク・ゲッタリンヒ効果を得る程度の濃度に選定
するとか、サーマルドナー効果を得る濃度忙するとか、
或いはこれ、らの効果が生じないような濃度にするとか
の選定ができ、目的に応じた酸素濃度の選定ができるの
で実用上の利益は極めて大である。
As is clear from the above, by rotating the container 121, the oxygen concentration in the crystal αω can be changed from a low a degree to a high a degree, and in this case, as shown in FIG. It is not clear from what I explained in 5 & C. If the applied magnetic field is set at 1500 gauss or higher, it is possible to avoid the influence of magnetic field fluctuations on the oxygen a degree, and as explained in Fig. 3, the crystal u1 When selecting a sufficiently large distance between the inner wall surface of the container 121 and the inner wall surface of the container 121, for example, 69 degrees, it is possible to avoid the influence of the rotation speed of the crystal αG on the oxygen degree in the crystal QIJ. Crystal αω only by controlling the number
For example, since the concentration of oxygen in the reactor can be controlled, this concentration can be set accurately. And, the selection range of this -mutter is I
It has a wide range of s/am3. As mentioned above, by selecting a large distance between the busy crystal Ql and the inner wall surface of the container 12), the rotation speed of the crystal (II) can be arbitrarily selected. As shown, the rotation speed can be selected to be about 3 Orpm or more, which is the speed at which a uniform a-degree distribution can be obtained in the radial direction in the crystal. ・'1 As described above, according to the present invention, Oxygen concentration in crystal tl
The radial direction, that is, the cross-sectional area of l, can be made uniform in each part, and the concentration can be controlled over a wide range, so as mentioned at the beginning, it is possible to suppress The concentration must be selected to obtain the thermal donor effect, or the concentration must be selected to obtain the thermal donor effect.
Alternatively, it is possible to select a concentration that does not cause these effects, and the oxygen concentration can be selected according to the purpose, which is of great practical benefit.

また、本発明方法によるときは、結晶(IIの横断面に
おける濃度分布は一様にし、引上げ方向に関する一度を
、その結晶αωの引上げ育成位置に応じて容器(2]の
回転数を変化させることkよって#I#′#度の異る層
を形成することができるので、例えば第7図に示すよう
忙、結晶α・の引上げ方向に関して、酸素濃度が1倒木
ば2 X I Q17atoms/ cm3程度に低い
層0υと、その濃度が例えば2.5X1018a t 
oms/ cm程度に高い層(2)とを順次形成し、こ
の結晶uIからウェファを切り出すことによって、例え
ばw48図に示すように、半導体装置の活性領域となる
部分を低濃度層6υによって形成し、その裏面を高濃度
層c&211/cよって構成し、熱処理することkよっ
て、層0邊の高濃度に存在する酸素によって生ずる欠陥
を活性領域の裏面に形成し、これ忙より活性領域に存在
する有害不純物、欠陥発生核のゲッタリングを行うよう
にすることができる。
Furthermore, when using the method of the present invention, the concentration distribution in the cross section of the crystal (II) is made uniform, and the rotation speed of the container (2) is changed once in the pulling direction depending on the pulling and growing position of the crystal αω. Therefore, it is possible to form layers with different #I#'# degrees, so for example, as shown in Figure 7, with respect to the pulling direction of the crystal α, the oxygen concentration is about 2 X I Q17 atoms/cm3. with a low layer 0υ and its concentration is, for example, 2.5X1018a t
By sequentially forming layers (2) with a height of about 100 ms/cm and cutting out a wafer from this crystal uI, for example, as shown in figure W48, the part that will become the active region of the semiconductor device can be formed with a low concentration layer 6υ. , the back surface thereof is constituted by a high concentration layer c & 211/c, and by heat treatment, defects caused by the high concentration of oxygen present near the layer 0 are formed on the back surface of the active region, and due to this defect existing in the active region. Gettering of harmful impurities and defect-generating nuclei can be performed.

また、或いは結晶aG自体忙その引上げに際しp型不純
物のドーピングを行っておき、引上げ位置に応じて、容
器(2Hの回転数を変化させて結晶a1の引上げ方向に
関して酸素濃度の高い層と、低い1−とが繰返えし積層
された結晶を形成し、その後の熱処理によって、サーマ
ルドナーを発生させて酸素meの高い部分をn型化し、
酸**度の低い部分忙よるp型層との繰返えし積層によ
ってスクッキングダイオードを得ることもできる。
Alternatively, the crystal aG itself may be doped with a p-type impurity when it is pulled, and depending on the pulling position, the number of revolutions of the container (2H) may be changed to create a layer with a high oxygen concentration and a layer with a low oxygen concentration in the direction of pulling the crystal a1. 1- and are repeatedly stacked to form a crystal, and through subsequent heat treatment, a thermal donor is generated and the portion with high oxygen me becomes n-type,
A cooking diode can also be obtained by repeated lamination with p-type layers of low acidity.

上述したように本発明によれば、結晶中の例えば酸素濃
度の選定を広範囲に亘って行うことができること虻よっ
て6檜の特性の良い半導体装置を廉価KIiI造でき、
その工業的利益は甚大である。
As described above, according to the present invention, for example, the oxygen concentration in the crystal can be selected over a wide range, so that a semiconductor device with good characteristics can be manufactured at a low cost.
Its industrial benefits are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による結晶成長法を実施する装置の一例
の構成図、第2図ないし第6図は本発明の説明忙供する
測定曲線図、第7図は本発明による結晶成長装置よって
得る結晶の一例断面図、第8図はこれより得たウェファ
の拡大断面図である。 (11は結晶成長装置、+21は結晶材料液(3)の収
容容器、(4)は加熱手段、(5)はそのヒーター、(
7)は磁場発生手段、(8)は単結晶シード、(1(I
は育成された結晶である。
FIG. 1 is a block diagram of an example of an apparatus for carrying out the crystal growth method according to the present invention, FIGS. 2 to 6 are measurement curve diagrams for explaining the present invention, and FIG. 7 is a diagram showing measurement curves obtained by the crystal growth apparatus according to the present invention. An example cross-sectional view of the crystal, and FIG. 8 is an enlarged cross-sectional view of a wafer obtained from this. (11 is a crystal growth device, +21 is a storage container for the crystal material liquid (3), (4) is a heating means, (5) is its heater, (
7) is a magnetic field generating means, (8) is a single crystal seed, (1(I)
is a grown crystal.

Claims (1)

【特許請求の範囲】[Claims] 電気伝導性を有する結晶成長用液体が収容された容器と
、上記液体から結晶を引き上げる手段と、上記液体に磁
場を印加する手段と、上記容器を回転させる手段とを設
け、上記容器の回転数を変化させて結晶中の容器構成成
分の含有濃度を制御することを特徴とする結晶成長方法
A container containing a crystal growth liquid having electrical conductivity, a means for pulling the crystal from the liquid, a means for applying a magnetic field to the liquid, and a means for rotating the container are provided, and the number of rotations of the container is adjusted. 1. A crystal growth method characterized by controlling the concentration of container constituents in the crystal by changing.
JP17120581A 1981-10-26 1981-10-26 KETSUSHOSEICHOHOHO Expired - Lifetime JPH0244799B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17120581A JPH0244799B2 (en) 1981-10-26 1981-10-26 KETSUSHOSEICHOHOHO
CA000414053A CA1223798A (en) 1981-10-26 1982-10-22 Process for solidification of materials
GB08230370A GB2109267B (en) 1981-10-26 1982-10-25 Processes for solidifying liquid materials
FR8217924A FR2515216B1 (en) 1981-10-26 1982-10-26 METHOD FOR SOLIDIFYING MATERIALS SUCH AS SEMICONDUCTORS, DIELECTRICS OR MAGNETIC MATERIALS
NL8204133A NL8204133A (en) 1981-10-26 1982-10-26 METHOD FOR MAKING CRYSTALS
DE19823239570 DE3239570C2 (en) 1981-10-26 1982-10-26 Process for controlling the oxygen concentration of silicon single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17120581A JPH0244799B2 (en) 1981-10-26 1981-10-26 KETSUSHOSEICHOHOHO

Publications (2)

Publication Number Publication Date
JPS5874594A true JPS5874594A (en) 1983-05-06
JPH0244799B2 JPH0244799B2 (en) 1990-10-05

Family

ID=15918967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17120581A Expired - Lifetime JPH0244799B2 (en) 1981-10-26 1981-10-26 KETSUSHOSEICHOHOHO

Country Status (6)

Country Link
JP (1) JPH0244799B2 (en)
CA (1) CA1223798A (en)
DE (1) DE3239570C2 (en)
FR (1) FR2515216B1 (en)
GB (1) GB2109267B (en)
NL (1) NL8204133A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605096A (en) * 1983-06-22 1985-01-11 Shin Etsu Handotai Co Ltd Method and apparatus for producing single crystal
JPS6033296A (en) * 1983-07-29 1985-02-20 Toshiba Ceramics Co Ltd Pulling device for single crystal semiconductor
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS62202528A (en) * 1986-03-03 1987-09-07 Toshiba Corp Manufacture of semiconductor substrate
JPS645992A (en) * 1987-06-29 1989-01-10 Sony Corp Method for growing crystal
JPH01282185A (en) * 1988-05-09 1989-11-14 Nippon Telegr & Teleph Corp <Ntt> Method for growing crystal
JPH0431386A (en) * 1990-05-25 1992-02-03 Shin Etsu Handotai Co Ltd Pulling up semiconductor single crystal
JPH0442894A (en) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd Growth of silicon single crystal
JPH0474789A (en) * 1990-07-13 1992-03-10 Shin Etsu Handotai Co Ltd Method for pulling up semiconductor single crystal
JPH08239292A (en) * 1996-04-16 1996-09-17 Sony Corp Growth of crystal
US7147711B2 (en) 2000-09-20 2006-12-12 Shin-Etsu Handotai Co., Ltd. Method of producing silicon wafer and silicon wafer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565671A (en) * 1983-08-05 1986-01-21 Kabushiki Kaisha Toshiba Single crystal manufacturing apparatus
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal
DE3480721D1 (en) * 1984-08-31 1990-01-18 Gakei Denki Seisakusho METHOD AND DEVICE FOR PRODUCING SINGLE CRYSTALS.
JPS62105998A (en) * 1985-10-31 1987-05-16 Sony Corp Production of silicon substrate
US4836788A (en) * 1985-11-12 1989-06-06 Sony Corporation Production of solid-state image pick-up device with uniform distribution of dopants
US4659423A (en) * 1986-04-28 1987-04-21 International Business Machines Corporation Semiconductor crystal growth via variable melt rotation
JP2556966B2 (en) * 1986-04-30 1996-11-27 東芝セラミツクス株式会社 Single crystal growing equipment
JP2561072B2 (en) * 1986-04-30 1996-12-04 東芝セラミツクス株式会社 Single crystal growth method and apparatus
JP2651481B2 (en) * 1987-09-21 1997-09-10 株式会社 半導体エネルギー研究所 How to make superconducting materials
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
JP6680108B2 (en) 2016-06-28 2020-04-15 株式会社Sumco Method for producing silicon single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607139A (en) * 1968-05-02 1971-09-21 Air Reduction Single crystal growth and diameter control by magnetic melt agitation
GB2059932B (en) * 1979-09-20 1983-10-12 Sony Corp Solidification processes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605096A (en) * 1983-06-22 1985-01-11 Shin Etsu Handotai Co Ltd Method and apparatus for producing single crystal
JPS6033296A (en) * 1983-07-29 1985-02-20 Toshiba Ceramics Co Ltd Pulling device for single crystal semiconductor
JPS60137892A (en) * 1983-12-26 1985-07-22 Toshiba Ceramics Co Ltd Quartz glass crucible
JPS62202528A (en) * 1986-03-03 1987-09-07 Toshiba Corp Manufacture of semiconductor substrate
JPH0523494B2 (en) * 1986-03-03 1993-04-02 Tokyo Shibaura Electric Co
JPS645992A (en) * 1987-06-29 1989-01-10 Sony Corp Method for growing crystal
JPH01282185A (en) * 1988-05-09 1989-11-14 Nippon Telegr & Teleph Corp <Ntt> Method for growing crystal
JPH0431386A (en) * 1990-05-25 1992-02-03 Shin Etsu Handotai Co Ltd Pulling up semiconductor single crystal
JPH0442894A (en) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd Growth of silicon single crystal
JPH0474789A (en) * 1990-07-13 1992-03-10 Shin Etsu Handotai Co Ltd Method for pulling up semiconductor single crystal
JPH08239292A (en) * 1996-04-16 1996-09-17 Sony Corp Growth of crystal
US7147711B2 (en) 2000-09-20 2006-12-12 Shin-Etsu Handotai Co., Ltd. Method of producing silicon wafer and silicon wafer

Also Published As

Publication number Publication date
DE3239570A1 (en) 1983-05-05
FR2515216B1 (en) 1985-09-13
NL8204133A (en) 1983-05-16
DE3239570C2 (en) 1993-11-18
FR2515216A1 (en) 1983-04-29
GB2109267B (en) 1984-12-05
JPH0244799B2 (en) 1990-10-05
GB2109267A (en) 1983-06-02
CA1223798A (en) 1987-07-07

Similar Documents

Publication Publication Date Title
JPS5874594A (en) Growing method for crystal
JP5485136B2 (en) Method and apparatus for producing a single crystal
US4659423A (en) Semiconductor crystal growth via variable melt rotation
JP4095975B2 (en) Method and apparatus for producing silicon single crystal, silicon single crystal and semiconductor wafer cut from the same
US6702892B2 (en) Production device for high-quality silicon single crystals
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
US7335256B2 (en) Silicon single crystal, and process for producing it
US2768914A (en) Process for producing semiconductive crystals of uniform resistivity
CA1336061C (en) High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor
JP2005330147A (en) Apparatus and method for manufacturing single crystal and silicon single crystal
JPH01282185A (en) Method for growing crystal
JP2003055092A (en) Method of pulling silicon single crystal
KR20170088120A (en) Single crystal ingot growth apparatus and the growing method of it
JP4510948B2 (en) Manufacturing method of silicon single crystal wafer
JPS6036392A (en) Apparatus for pulling single crystal
JPH10120485A (en) Single crystal production apparatus
JP2007210820A (en) Method of manufacturing silicon single crystal
JPS6360189A (en) Production of semiconductor single crystal
KR100639177B1 (en) Method for fabricating silicon single crystal
US3268301A (en) Method of pulling a semiconductor crystal from a melt
JPH0822797B2 (en) Crystal growth method
JPS6236097A (en) Production of single crystal and device therefor
JPS6270286A (en) Apparatus for producting single crystal
JPS6360193A (en) Crystal growth method
JPH10167875A (en) Device for producing single crystal