JPH10120485A - Single crystal production apparatus - Google Patents

Single crystal production apparatus

Info

Publication number
JPH10120485A
JPH10120485A JP27610596A JP27610596A JPH10120485A JP H10120485 A JPH10120485 A JP H10120485A JP 27610596 A JP27610596 A JP 27610596A JP 27610596 A JP27610596 A JP 27610596A JP H10120485 A JPH10120485 A JP H10120485A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
crucible
pair
field device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27610596A
Other languages
Japanese (ja)
Inventor
Kinji Hoshi
金治 星
Atsuo Ohigata
厚夫 大日方
Tokuichi Kiji
徳一 木地
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO DENKI KOGYO KK
Mitsubishi Steel Mfg Co Ltd
Original Assignee
TECHNO DENKI KOGYO KK
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO DENKI KOGYO KK, Mitsubishi Steel Mfg Co Ltd filed Critical TECHNO DENKI KOGYO KK
Priority to JP27610596A priority Critical patent/JPH10120485A/en
Publication of JPH10120485A publication Critical patent/JPH10120485A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high-quality semiconductor single crystal in low power consumption by reducing size of a magnetic field generator unit of a single crystal pulling-up apparatus. SOLUTION: This apparatus for producing a high-quality semiconductor single crystal pulls up a single crystal from a crucible while carrying out control of convection of molten semiconductor materials accommodated in the crucible by a horizontal magnetic field formed with an electromagnet excited by a peripheral direct current in a radial magnetic exciter unit in which the electromagnet has a pair of counterposed saddle-type exciter coils and another pair of magnetic pole pieces in such a condition that the two magnetic pole pieces have a dimension in direction parallel with the crystal pull-up axis (height) which is one half or less of the initial height of the molten semiconductor material or one half or less of the diameter of the cavity between the poles, being 100mm or more and 600mm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体材料を加熱
して得られた溶融体からチョクラルスキー法によって単
結晶を引上げる際、溶融体に磁場を加えて単結晶の品質
を改善し得る単結晶の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can improve the quality of a single crystal by applying a magnetic field to the melt when pulling a single crystal from a melt obtained by heating a semiconductor material by the Czochralski method. The present invention relates to an apparatus for producing a single crystal.

【0002】特に半導体超LSIの基板材料であるシリ
コン単結晶引上げ装置に有効な技術に関する。
In particular, the present invention relates to a technique effective for a silicon single crystal pulling apparatus which is a substrate material of a semiconductor VLSI.

【0003】[0003]

【従来の技術】先に本発明者の一人を含むグループは、
チョクラルスキー法によって単結晶を引上げる際に、ル
ツボ内の融液に静磁界を印加し、熱対流を制御すること
により融液の温度が安定し、またルツボからの汚染が減
少して単結晶の品質を改善することを見出し、かつ実証
した(例えば日経マイクロエレクトロニクス1980年
9月15日号、特公昭58−50951号)。この方法
は本発明の発明者らによってMagnetic−Fie
ld Applied Czochralski(MC
Z)法と命名された。
2. Description of the Related Art A group including one of the present inventors has
When pulling a single crystal by the Czochralski method, a static magnetic field is applied to the melt in the crucible, and the temperature of the melt is stabilized by controlling the heat convection, and the contamination from the crucible is reduced. It has been found and demonstrated that the quality of the crystal is improved (for example, Nikkei Microelectronics, September 15, 1980, Japanese Patent Publication No. 58-50951). This method has been described by the inventors of the present invention as a Magnetic-Fie.
ld Applied Czochralski (MC
Z) method.

【0004】従来の磁界印加引上装置は、図1に断面図
を示すごとく、常電導コイル1a,1bと1a,1b間
をつなぐ磁路を構成する鉄心2よりなる直流電磁石とに
より構成され、引上機のチャンバー3の内部にあるルツ
ボ4内の原料融液5に直流磁界を加えるものである。な
お、図1中において、単結晶6、ヒーター7である。
As shown in the sectional view of FIG. 1, the conventional magnetic field applying and pulling apparatus is composed of a DC electromagnet composed of an iron core 2 constituting a magnetic path connecting the normal conducting coils 1a, 1b and 1a, 1b. A DC magnetic field is applied to the raw material melt 5 in the crucible 4 inside the chamber 3 of the pulling machine. In FIG. 1, a single crystal 6 and a heater 7 are shown.

【0005】この装置において、コイル1a,1bを直
流励磁することにより鉄心2の両端にはNとSの磁極が
生じ融液を横断する磁場8が形成される。一方磁場の無
い状態においては、図2に示すように、石英ルツボ4内
の融液5内には通常乱流状態の熱対流9が発生してい
る。特にルツボ壁付近でこの熱対流が融液内、固液界面
10での温度変動をもたらし、成長結晶中の微視的再溶
解が顕著となる。この結果、成長した結晶中には転位ル
ープ、空孔、格子間原子などの欠陥が発生し、かつ酸素
などの不純物原子が縞状に偏析する。
In this apparatus, when the coils 1a and 1b are DC-excited, N and S magnetic poles are generated at both ends of the iron core 2, and a magnetic field 8 crossing the melt is formed. On the other hand, in a state where there is no magnetic field, as shown in FIG. 2, heat convection 9 in a turbulent state is generated in the melt 5 in the quartz crucible 4. In particular, the heat convection near the crucible wall causes a temperature change in the melt and at the solid-liquid interface 10, and microscopic re-dissolution in the grown crystal becomes remarkable. As a result, defects such as dislocation loops, vacancies, and interstitial atoms are generated in the grown crystal, and impurity atoms such as oxygen are segregated in stripes.

【0006】一般に、単結晶の融液は電気伝導度σの導
伝体であり、磁界に直角方向に運動している流体には下
記式(1)で表わされる単位面積当りfなる制動力が働
く。
In general, a melt of a single crystal is a conductor having an electric conductivity σ, and a fluid moving in a direction perpendicular to a magnetic field has a braking force f per unit area represented by the following equation (1). work.

【0007】 f=κ・σ・VR・BZ 2 (1) ここで、κは定数、σは融液の電気伝導度、VRは磁束
と直角方向の流速成分、BZは磁束密度を示す。
[0007] f = κ · σ · V R · B Z 2 (1) where, kappa is a constant, sigma is electrical conductivity of the melt, V R is the magnetic flux and the direction perpendicular velocity component, B Z magnetic flux density Is shown.

【0008】磁界による制動力は流速VRに比例するた
め、図2のようなルツボ壁に沿った比較的ゆっくりした
流れを抑制するためには数千ガウスの比較的大きな磁界
をルツボ内の融液全体に均一に加えることが要求され
た。
[0008] Since the braking force by the magnetic field is proportional to the flow velocity V R, fusion in a crucible a relatively large magnetic field thousands Gauss in order to suppress the relatively slow flow along the crucible wall as shown in FIG. 2 It was required to be added uniformly to the whole liquid.

【0009】このように均一な磁界を得るための電磁石
は、寸法が大きく、重量の大きいものとなり、引上機へ
の取付や操作性に問題があった。特に、大口径のシリコ
ン単結晶では磁極間距離が1000mm以上を必要とす
る場合もあり、必要磁束密度を3000〜4000ガウ
スとすると、これを実現する電磁石は重量50トンを超
す巨大なものとなり、必要電力も300kW以上とな
り、単結晶製造コストに占める電力の比率も無視できな
くなっていた。
The electromagnet for obtaining such a uniform magnetic field has a large size and a large weight, and has a problem in attachment to a pulling machine and operability. In particular, in the case of a large-diameter silicon single crystal, the distance between magnetic poles may be required to be 1000 mm or more, and if the required magnetic flux density is 3000 to 4000 gauss, the electromagnet that realizes this becomes a huge one exceeding 50 tons in weight, The required power has become 300 kW or more, and the ratio of the power to the single crystal manufacturing cost cannot be ignored.

【0010】上述の問題を解決するための一つの方法と
して図3に示すように、空芯コイル12を液体ヘリウム
槽11の中に浸漬した超電導磁石を用いた単結晶引上用
磁界発生装置が実用化されている。この場合、磁石の重
量は3〜4トンと約一桁軽くなり、超電導のため電力コ
ストは無視できるようになった。しかし、この超電導磁
石には効率上冷凍機付多段熱遮蔽クライオスタットを用
いることが多く、このため設備コストが高くなり、メン
テナンス費用も必要となる。またヘリウムの蒸発による
消費もコスト上無視し得ない。
As one method for solving the above-mentioned problem, as shown in FIG. 3, a magnetic field generator for pulling a single crystal using a superconducting magnet in which an air-core coil 12 is immersed in a liquid helium tank 11 is used. Has been put to practical use. In this case, the weight of the magnet was reduced by about an order of magnitude to 3 to 4 tons, and power cost became negligible due to superconductivity. However, a multi-stage heat shield cryostat with a refrigerator is often used as the superconducting magnet for efficiency, which increases the equipment cost and maintenance cost. In addition, consumption due to evaporation of helium cannot be ignored in terms of cost.

【0011】融液に磁界を加えることによる効果は前述
のようにルツボに沿ったゆっくりした流れの対流を抑制
し、石英ルツボなどの溶解を防ぎ、これからの汚染を少
くすることと、固液界面付近の熱擾乱を抑制することに
よって欠陥の発生を防ぐことである。熱擾乱を抑制する
には1000ガウス程度の比較的低い磁束密度でよい
が、ゆっくりした流れとなる対流を抑制するには300
0〜4000ガウスの比較的大きくかつ、均一な磁束密
度をもった磁界を印加する必要ある。このような均一に
近い磁界分布を達成するために磁極片の高さ又は直径は
少なくとも磁極間距離程度が必要であり、例えば磁極間
距離が1000mmの場合は磁極片の高さ又は直径は1
000mm程度となり、コイル巻線の長さも増して前述
のように巨大な重量となる。
The effect of applying a magnetic field to the melt is to suppress the convection of the slow flow along the crucible as described above, to prevent the melting of quartz crucibles and the like, and to reduce contamination from the solid and liquid interfaces. The purpose is to prevent the occurrence of defects by suppressing thermal disturbance in the vicinity. A relatively low magnetic flux density of about 1000 gauss is sufficient to suppress thermal disturbance, but 300 gauss is used to suppress slow convection.
It is necessary to apply a relatively large magnetic field of 0 to 4000 Gauss and a uniform magnetic flux density. In order to achieve such a nearly uniform magnetic field distribution, the height or diameter of the pole piece needs to be at least about the distance between the poles. For example, when the distance between the poles is 1000 mm, the height or diameter of the pole piece is 1
000 mm, and the length of the coil winding increases, resulting in a huge weight as described above.

【0012】一方、単結晶引き上げ装置に適した円筒状
態を有する直径方位励磁用磁場装置が特公平3−158
09号に記載されている。これは一対の鞍型磁石を励磁
コイルとして用いたものであり、図4にその全体図を示
し、図5にその分解斜視図を示し、図6にその断面図を
示す。この2極対向構造型式を有する円筒状形態を有す
る直径方位励磁用磁場装置は、1対の半円筒形の外筒継
鉄13,14と、各外筒継鉄の内径面上にそれぞれ組み
付けられるようになされた1対の磁極片15,16と、
各外筒継鉄の内径面空間内に、それぞれ、収容されると
共に磁極片15,16をその内部にはめ込むように形成
された1対の鞍型励磁コイル17,18とから成り立っ
ており、各外筒継鉄がそれらの内部に内蔵されている磁
極片及び鞍型励磁コイルと共に電磁石半体19,20を
形成し、これらの電磁石半体が相互に直径面において接
合されて一体となるようになっている。このように、各
電磁石半体19,20は、図4に示すように、各外筒継
鉄13,14の直径面において相互に接合され、それら
の外部において、適宜な締結具21を介して相互に強固
に連結すると、内部に円柱状の空間部を有する円筒形状
を呈するようになり、それぞれの内部に取り付けられた
鞍型励磁コイル17,18は、あたかも、1個のコイル
のように密着し、各鞍型励磁コイル17,18に通電す
る時は、そのコイルの軸心は、円筒状の励磁空間の直径
方向と一致する方向に磁束を発生するようになる。
On the other hand, a magnetic field device for diameter direction excitation having a cylindrical state suitable for a single crystal pulling device is disclosed in Japanese Patent Publication No. 3-158.
No. 09. FIG. 4 shows an overall view, FIG. 5 shows an exploded perspective view thereof, and FIG. 6 shows a cross-sectional view thereof. The magnetic field device for diametrical excitation having a cylindrical shape having the two-pole facing structure type is assembled on a pair of semi-cylindrical outer cylinder yokes 13 and 14 and on the inner surface of each outer cylinder yoke. And a pair of pole pieces 15, 16
Each of the pair of saddle-type exciting coils 17, 18 is accommodated in the inner diameter surface space of each outer cylinder yoke and formed so as to fit the magnetic pole pieces 15, 16 therein. The outer cylinder yoke forms the electromagnet halves 19, 20 together with the pole pieces and saddle type excitation coils contained therein so that these electromagnet halves are joined together in a diametrical plane to become integral. Has become. Thus, as shown in FIG. 4, the electromagnet halves 19 and 20 are joined to each other on the diametrical surface of each of the outer cylinder yokes 13 and 14, and outside of them via appropriate fasteners 21. When they are firmly connected to each other, they come to have a cylindrical shape having a columnar space inside, and the saddle-type exciting coils 17 and 18 attached to each inside are in close contact as if they were one coil. When the saddle-type excitation coils 17 and 18 are energized, the axis of the coil generates a magnetic flux in a direction coinciding with the diameter direction of the cylindrical excitation space.

【0013】上記励磁用磁場装置を用いた単結晶は有効
なものではあるが、重量及び消費電力の点で改良の余地
があった。
Although a single crystal using the above-mentioned magnetic field device for excitation is effective, there is room for improvement in weight and power consumption.

【0014】[0014]

【発明が解決しようとする課題】本発明は前述の諸問題
を解決するもので、超電導を使用することなく、かつ小
型軽量化した磁界印加装置を用いた単結晶引上げ用装置
を提供する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides a single crystal pulling apparatus using a magnetic field applying apparatus which is reduced in size and weight without using superconductivity.

【0015】[0015]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、前述のルツボ壁に沿ったゆっくりした流れの対
流は融液全体に均一な磁束を加えなくとも、流路の一部
を止めることによって全体の流れを止めることができる
とともに、驚くべきことに従来のものと比べて高品質の
半導体単結晶が得られることを見出し本発明に至った。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that the above-mentioned slow convection along the crucible wall can form a part of the flow path without applying a uniform magnetic flux to the entire melt. By stopping the flow, the entire flow can be stopped, and surprisingly, the present inventors have found that a higher quality semiconductor single crystal can be obtained as compared with the conventional one, and have reached the present invention.

【0016】即ち、本発明は以下の(1)〜(4)であ
る。
That is, the present invention provides the following (1) to (4).

【0017】(1)ルツボ内に収容した半導体材料融液
の対流の制御を、外周部から直流励磁した電磁石により
形成された水平磁界によって行いつつ、ルツボから単結
晶の引き上げを行う装置において、該電磁石が対向する
一対の鞍型励磁コイルと対向する一対の磁極片を有する
直径方位励磁用磁場装置であり、かつ該2つの磁極片の
結晶引上げ軸に平行な寸法(高さ)が半導体材料融液の
初期高さの1/2以下または磁極間空胴部の直径の1/
2以下または100mm以上600mm以下であること
を特徴とする単結晶製造装置。
(1) An apparatus for pulling a single crystal from a crucible while controlling the convection of a semiconductor material melt contained in the crucible by a horizontal magnetic field formed by an electromagnet excited from the outer periphery by a direct current. A magnetic field device for diametrical excitation having a pair of saddle-type exciting coils facing an electromagnet and a pair of pole pieces facing each other, and a dimension (height) parallel to a crystal pulling axis of the two pole pieces is a semiconductor material melting point. 1/2 or less of the initial height of the liquid or 1 / of the diameter of the cavity between the magnetic poles
An apparatus for producing a single crystal, which is 2 or less or 100 mm or more and 600 mm or less.

【0018】(2)該対向する一対の鞍型励磁コイルが
相互に分割されており、使用時に各外筒継鉄の直径面に
おいて接合され、締結具を介して相互に連結されて磁場
装置を構成するとともに、ルツボ及び多結晶半導体材料
の装填時、並びに成長した単結晶の取り出し時には、結
晶引上げ軸に沿って上下方向に移動自在としたことを特
徴とする前記(1)記載の単結晶製造装置。
(2) The pair of opposing saddle-type exciting coils are divided from each other, are joined at the diameter surface of each outer cylinder yoke at the time of use, and are connected to each other via fasteners to form a magnetic field device. (1) The single crystal production according to (1), wherein the single crystal is freely movable in a vertical direction along a crystal pulling axis when the crucible and the polycrystalline semiconductor material are loaded and when the grown single crystal is taken out. apparatus.

【0019】(3)該対向する一対の鞍型励磁コイルが
相互に分割されており、使用時に各外筒継鉄の直径面に
おいて接合され、締結具を介して相互に連結されて磁場
装置を構成するとともに、ルツボ及び多結晶半導体材料
の装填時、並びに成長した単結晶の取り出し時には、該
締結部を取り外して磁場装置を一対の鞍型磁石コイルに
分割しガイドを介して左右に移動自在としたことを特徴
とする前記(1)記載の単結晶製造装置。
(3) The pair of opposing saddle-type exciting coils are divided from each other, are joined at the diameter surface of each outer cylinder yoke at the time of use, and are connected to each other via fasteners to form a magnetic field device. With the configuration, when loading the crucible and the polycrystalline semiconductor material, and when removing the grown single crystal, the fastening portion is removed, the magnetic field device is divided into a pair of saddle type magnet coils, and the magnetic device can be moved left and right through a guide. The apparatus for producing a single crystal according to the above (1), wherein:

【0020】(4)該対向する一対の鞍型磁石コイルが
相互に分割されており、使用時に各外筒継鉄の直径面に
おいて接合され、締結具を介して相互に連結されて磁場
装置を構成するとともに、ルツボ及び多結晶半導体材料
の装填時、並びに成長した単結晶の取り出し時には、該
締結部の片側を支点として左右に開放する構造としたこ
とを特徴とする前記(1)記載の単結晶製造装置。
(4) The pair of opposing saddle-shaped magnet coils are divided from each other, and are joined at the diameter surface of each outer cylinder yoke at the time of use, and are connected to each other via fasteners to form a magnetic field device. The single unit according to (1), wherein the unit is configured to open left and right with one side of the fastening part as a fulcrum when the crucible and the polycrystalline semiconductor material are loaded and when the grown single crystal is taken out. Crystal manufacturing equipment.

【0021】本発明によれば、シリコン単結晶の引上げ
の場合において石英ルツボの溶解量が均一磁界印加とく
らべて大差の無い結果が得られることが引上げた単結晶
内の酸素濃度測定から実証された。さらに単結晶の面内
酸素濃度のミクロな分布が改善されることが分かった。
According to the present invention, it has been proved from the measurement of the oxygen concentration in the pulled single crystal that the amount of dissolution of the quartz crucible in the case of pulling a silicon single crystal is not much different from that obtained by applying a uniform magnetic field. Was. Furthermore, it was found that the microscopic distribution of the in-plane oxygen concentration of the single crystal was improved.

【0022】従来型の磁石のように磁石コイルが大きい
場合には融液の高さ方向の磁束密度分布はほぼ均一とな
る。これに対し引上方向の寸法の小さい、すなわち縦巾
の狭い磁石コイルの場合には、二つの磁石コイルの空間
位置によって縦方向の磁束密度は変化する。
When the magnet coil is large like a conventional magnet, the magnetic flux density distribution in the height direction of the melt becomes substantially uniform. On the other hand, in the case of a magnet coil having a small pull-up dimension, that is, a narrow vertical width, the magnetic flux density in the vertical direction changes depending on the spatial position of the two magnet coils.

【0023】磁束密度BZは磁石コイルの中心から上方
(Z軸)にいくほど小さくなり、上記(1)式に示すよ
うに対流の制動力fはBZの自乗に比例して減少する。
そしてBZとfの液面下の分布は磁石コイルと融液の相
対位置によって変化する。したがって、上記の相対位置
はルツボの高さ方向の位置を変えることによってもっと
も適当な位置、すなわち最良の単結晶品質が得られる位
置を選ぶことができる。
The magnetic flux density B Z decreases from the center of the magnet coil toward upward (Z-axis), the braking force f convection as shown in equation (1) decreases in proportion to the square of B Z.
The distribution of the liquid surface of a B Z and f varies with the relative position of the magnet coil and the melt. Therefore, by changing the relative position in the height direction of the crucible, the most appropriate position, that is, the position where the best single crystal quality can be obtained, can be selected.

【0024】チョクラルスキー法で結晶を引上げる場
合、通常結晶を毎分10〜30回の速度で回転しながら
行う。この回転に伴う撹拌効果によって融液表面近傍の
円周方向の温度分布が均一化され、不純物分布の結晶面
内分布が改良される。しかしながら、一般にチョクラル
スキー法で引上げた結晶には成長縞とよばれる固液界面
に沿った方向の不純物の濃度ムラが引上方向に対して縞
状に形成され、結晶断面ではリング状に観測される。成
長軸方向の成長縞の間隔dは下記式(2)の関係にあ
る。
When a crystal is pulled by the Czochralski method, the crystal is usually rotated at a speed of 10 to 30 times per minute. Due to the stirring effect accompanying this rotation, the temperature distribution in the circumferential direction near the melt surface is made uniform, and the distribution of impurity distribution in the crystal plane is improved. However, in general, crystals grown by the Czochralski method have impurity concentration irregularities in the direction along the solid-liquid interface called growth fringes, which are formed in stripes in the pulling direction, and are observed in a ring shape in the crystal cross section. Is done. The distance d between the growth stripes in the growth axis direction has a relationship represented by the following equation (2).

【0025】 d=引上速度(毎分)/回転数(毎分) (2) よって、成長縞の発生原因は結晶回転方向、すなわち融
液円周方向の温度ムラによる成長速度の回転周期毎の変
動によるものといわれている。
D = pulling speed (per minute) / rotational speed (per minute) (2) Therefore, the cause of the generation of the growth fringes is the crystal rotation direction, that is, each rotation period of the growth speed due to temperature unevenness in the circumferential direction of the melt. It is said that this is due to fluctuations.

【0026】水平磁界下の引上げではこの回転に伴う成
長縞に伴う不純物濃度変動が無磁界下の引上げのそれに
くらべて大きいことが一般に知られている。
It is generally known that in the pulling under a horizontal magnetic field, the fluctuation of the impurity concentration accompanying the growth fringes due to the rotation is larger than that in the pulling under no magnetic field.

【0027】図7は、ルツボ4内の半導体融液に水平磁
界8を加えた場合の、融液表面近傍の回転流22を示
す。この時、図2に示されるような融液内部の磁束方向
を直交する成分の上下方向の流れ9は抑制されている。
図7に示されるように、結晶回転による融液の撹拌は同
心円状の多くの帯状の流れを形成し、個々の流れの帯に
は速度に違いがあるために、ルツボ壁から供給される熱
は直径方向の流れがなくとも、各帯ごとに良好な熱交換
が行われ中央部にまで伝わり、安定な熱勾配を形成す
る。しかし回転流は磁束と直交する成分と平行する成分
とがあり、前者には制動力が加わり、後者には加わらな
いという位置上不平衡性を生じる。融液には慣性がある
ために融液の円心状の流れは保たれにくくなり、この結
果、全体として同心円状の流れを保っているが、円周方
向には温度差が生ずることが知られている。例えばルツ
ボ直径20cm、融液高さ10cm、結晶回転速度10
rpm、磁界強度3700ガウスの条件において、ルツ
ボ中心から30mm離れた融液表面下20mmの深さで
は、磁束と平行な位置と直角な位置とでは約2.5℃の
温度差が生じており、後者の方が高い。一方、無磁界の
場合、生ずる温度差は0.5℃程度である。
FIG. 7 shows a rotating flow 22 near the melt surface when a horizontal magnetic field 8 is applied to the semiconductor melt in the crucible 4. At this time, the vertical flow 9 of the component orthogonal to the magnetic flux direction inside the melt as shown in FIG. 2 is suppressed.
As shown in FIG. 7, the agitation of the melt by the rotation of the crystal forms many concentric belt-like flows, and the speed of each flow band is different, so that the heat supplied from the crucible wall is different. Even if there is no flow in the diametric direction, good heat exchange is performed in each zone and the heat is transmitted to the center, forming a stable heat gradient. However, the rotational flow has a component that is orthogonal to the magnetic flux and a component that is parallel to the magnetic flux, and a positional imbalance occurs in which the braking force is applied to the former and not applied to the latter. Because of the inertia of the melt, it is difficult to maintain the concentric flow of the melt. As a result, although the concentric flow is maintained as a whole, it is known that a temperature difference occurs in the circumferential direction. Have been. For example, crucible diameter 20 cm, melt height 10 cm, crystal rotation speed 10
At a depth of 20 mm below the surface of the melt at a distance of 30 mm from the center of the crucible under a condition of rpm and a magnetic field strength of 3700 gauss, a temperature difference of about 2.5 ° C. is generated between a position parallel to the magnetic flux and a position perpendicular thereto, The latter is higher. On the other hand, when there is no magnetic field, the generated temperature difference is about 0.5 ° C.

【0028】上記の通り、水平磁界中の結晶成長に適し
た磁束密度分布は融液中心部においてはルツボ壁に沿っ
たゆっくりした流れを止める程度に密度が大きく、表面
近傍では結晶回転による撹拌効果を大きく妨げない程度
に密度が小さい方が良い。即ち、本発明者らの解析によ
って、融液の深さ方向に磁束密度の差を持たせた方がよ
いことが判明した。
As described above, the magnetic flux density distribution suitable for crystal growth in a horizontal magnetic field is large enough to stop the slow flow along the crucible wall at the center of the melt, and the stirring effect due to the crystal rotation near the surface. It is better that the density is small enough not to hinder the effect. That is, analysis by the present inventors has revealed that it is better to have a difference in magnetic flux density in the depth direction of the melt.

【0029】本発明では、融液の高さ方向に対して厚さ
の薄い磁極片を用いることによって上述の磁束密度分布
を実現し、磁場装置全体の小型軽量化と単結晶品質の向
上の二つを同時に達成できる常電導電磁石を備えた単結
晶引上用装置を提供するものである。
According to the present invention, the above-described magnetic flux density distribution is realized by using a pole piece having a small thickness in the height direction of the melt, and the magnetic field device as a whole can be reduced in size and weight and improved in single crystal quality. An object of the present invention is to provide a single crystal pulling apparatus provided with a normal electroconductive magnet capable of simultaneously achieving the two.

【0030】[0030]

【発明の実施の形態】以下に示した実施例等により本発
明を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described with reference to the following embodiments.

【0031】実施例 図5及び6に示された一対の鞍型励磁コイルと一対の磁
石片を備えた磁場装置を用いた。本実施例の磁場装置の
高さは500mmであり、その内磁極片の高さhは20
0mmであった。磁場装置の外径は2100mm、内部
の空胴部の直径は1000mmとし、重量は7000k
gであった。さらに継鉄部外筒の表面に沿って漏洩磁界
防止用コイルが捲かれ、かつ、磁場装置を上下方向に移
動させるための装置が付加された。石英ルツボの直径は
500mm、シリコン融液70kgであり、融液の高さ
は約250mmであった。
EXAMPLE A magnetic field device provided with a pair of saddle type exciting coils and a pair of magnet pieces shown in FIGS. 5 and 6 was used. The height of the magnetic field device of this embodiment is 500 mm, and the height h of the inner pole piece is 20 mm.
It was 0 mm. The outer diameter of the magnetic field device is 2100 mm, the diameter of the internal cavity is 1000 mm, and the weight is 7000 k
g. Further, a leakage magnetic field preventing coil is wound along the surface of the yoke outer cylinder, and a device for moving the magnetic field device in the vertical direction is added. The diameter of the quartz crucible was 500 mm, the silicon melt was 70 kg, and the height of the melt was about 250 mm.

【0032】磁石コイルに750A、176Vの直流を
流し、3500ガウスの磁束を発生させながら、直径8
インチのシリコン単結晶を引き上げた。
A DC current of 750 A and 176 V is passed through the magnet coil to generate a magnetic flux of 3500 gauss while generating a magnetic flux of 8 mm in diameter.
An inch silicon single crystal was pulled up.

【0033】比較例1 磁場装置のみ図8に示される従来型のものを用いて実施
例を繰り返した。磁場装置中の磁極片の高さは1000
mm、内部の空胴部の直径は1000mm、磁場装置の
重量は50000kgであった。
Comparative Example 1 The embodiment was repeated using only the conventional magnetic field device shown in FIG. The pole piece height in the magnetic field device is 1000
mm, the diameter of the internal cavity was 1000 mm, and the weight of the magnetic field device was 50,000 kg.

【0034】磁石コイルに967A、200Vの直流を
流し、直径8インチのシリコン単結晶を引き上げた。
A DC current of 967 A and 200 V was passed through the magnet coil to pull up an 8-inch diameter silicon single crystal.

【0035】比較例2 従来設計の鞍型励磁コイルを備えた磁場装置を用いて実
施例を繰り返した。磁場装置の高さは1400mmであ
り、その内磁極片の高さは1000mmであった。鞍型
コイルを用いた設計では空胴部の外径は1000mmと
し、重量は16000kgであった。
Comparative Example 2 The example was repeated using a magnetic field device provided with a saddle type exciting coil of a conventional design. The height of the magnetic field device was 1400 mm, of which the height of the pole pieces was 1000 mm. In the design using the saddle coil, the outer diameter of the cavity was 1000 mm and the weight was 16000 kg.

【0036】磁石コイルに967A、156Vの直流を
流し、3500ガウスの磁束を発生させながら、直径8
インチのシリコン単結晶を引き上げた。
A DC current of 967 A and 156 V is applied to the magnet coil to generate a magnetic flux of 3500 gauss.
An inch silicon single crystal was pulled up.

【0037】上記実施例及び比較例から明らかによう
に、本発明の磁場装置は重量及び電力を大幅に減少させ
ることができた。
As apparent from the above Examples and Comparative Examples, the magnetic field device of the present invention was able to greatly reduce weight and power.

【0038】図9に、実施例及び比較例で用いた磁極片
の高さの異なる場合の鞍型磁界発生装置の引上げ方向
(Z軸、融液高さ方向)の磁束密度分布をそれぞれ示し
た。
FIG. 9 shows the magnetic flux density distribution in the pulling direction (Z axis, melt height direction) of the saddle type magnetic field generator when the pole pieces used in the example and the comparative example have different heights. .

【0039】これから分かるように、本発明のように磁
極片の高さ(h)が小さい場合はZ軸に沿って引上げ方
向の位置が上昇するとともに磁束密度が減少する割合が
磁極片の高さ(h)が大きい場合に比べて大きい。この
ことにより、ルツボの中心部付近では融液のルツボ壁に
沿ったゆっくりした回転流を阻止する力が強く、流れを
防げるが、融液界面付近では融液の回転流を阻止する力
が弱く働くことがわかる。
As can be seen, when the height (h) of the pole piece is small as in the present invention, the rate at which the position in the pulling direction rises along the Z axis and the magnetic flux density decreases is the height of the pole piece. (H) is larger than when it is large. As a result, near the center of the crucible, the force for inhibiting the slow rotational flow of the melt along the crucible wall is strong, and the flow can be prevented. However, the force for inhibiting the rotational flow of the melt near the melt interface is weak. I know it works.

【0040】本発明の磁場装置(軽量鞍型、磁極片高さ
200mm)及び従来型の磁場装置(非鞍型)を用い
て、前者は磁極片中心の位置を融液表面から200m
m、後者は125mm(融液高さの1/2)と各々して
直径200mmのリンドープしたシリコン単結晶を引上
げて、固化率(単結晶の成長重量の全融解量に対する割
合)と酸素濃度の関係を調べたが、両者とも良好な酸素
濃度分布を示した。
Using the magnetic field device of the present invention (lightweight saddle type, pole piece height 200 mm) and a conventional magnetic field device (non-saddle type), the former position the center of the pole piece 200 m from the melt surface.
m, the latter is 125 mm (1 / of the melt height), and a 200 mm diameter phosphorus-doped silicon single crystal is pulled up, and the solidification rate (the ratio of the growth weight of the single crystal to the total amount of melting) and the oxygen concentration are increased. The relationship was examined, and both showed a favorable oxygen concentration distribution.

【0041】図10及び図11は、上記結晶を1mmの
厚さのウェーハに加工して仕上げた後、窒素ガス気流中
で450℃、3時間の加熱処理を行い、酸素ドナーを発
生させてから拡がり抵抗測定機によってウェーハ表面内
のミクロな比抵抗分布を500μm間隔で測定したもの
である。これは酸素濃度分布を表わすものとみなすこと
ができる。ミクロな比抵抗分布変動幅は図11に示す従
来型の6.0%にくらべ図10に示す本発明の場合は
3.3%と小さく、均一性の良好な分布が得られること
を示している。
FIGS. 10 and 11 show that the above crystal was processed into a wafer having a thickness of 1 mm and finished, and then heat-treated at 450 ° C. for 3 hours in a nitrogen gas stream to generate an oxygen donor. The micro-resistivity distribution on the wafer surface was measured at 500 μm intervals by a spreading resistance measuring instrument. This can be regarded as representing the oxygen concentration distribution. The variation width of the micro-resistivity distribution is as small as 3.3% in the case of the present invention shown in FIG. 10 as compared with 6.0% of the conventional type shown in FIG. 11, indicating that a good uniformity distribution can be obtained. I have.

【0042】[0042]

【発明の効果】以上の通り、本発明に係る磁界発生装置
は従来のそれにくらべコンパクトで、取扱いが容易であ
り、消費電力を少なくすることができる。さらに、本発
明に係る磁界発生装置を用いて引上げを行うことによ
り、高品質の半導体単結晶を得ることができる。
As described above, the magnetic field generator according to the present invention is more compact, easier to handle, and consumes less power than conventional devices. Furthermore, by performing pulling using the magnetic field generator according to the present invention, a high-quality semiconductor single crystal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来型単結晶引上げ装置。FIG. 1 shows a conventional single crystal pulling apparatus.

【図2】磁場を印加しない単結晶引上げ装置。FIG. 2 shows a single crystal pulling apparatus without applying a magnetic field.

【図3】超電導磁石を用いた単結晶引上げ装置。FIG. 3 shows a single crystal pulling apparatus using a superconducting magnet.

【図4】磁場装置の全体図。FIG. 4 is an overall view of a magnetic field device.

【図5】磁場装置の分解斜視図。FIG. 5 is an exploded perspective view of the magnetic field device.

【図6】鞍型磁場装置の正面断面図及び平面断面図。FIG. 6 is a front sectional view and a plan sectional view of a saddle type magnetic field device.

【図7】ルツボ内融液表面近傍の回転流。FIG. 7 is a rotational flow near the surface of a melt in a crucible.

【図8】従来型の磁場装置の正面断面図及び平面断面
図。
FIG. 8 is a front sectional view and a plan sectional view of a conventional magnetic field device.

【図9】磁場装置の水平断面方向の磁束密度分布。FIG. 9 is a magnetic flux density distribution in a horizontal sectional direction of the magnetic field device.

【図10】本発明で得られた単結晶の抵抗率分布。FIG. 10 shows a resistivity distribution of a single crystal obtained by the present invention.

【図11】従来の単結晶の抵抗率分布。FIG. 11 shows a resistivity distribution of a conventional single crystal.

【符号の説明】[Explanation of symbols]

1 常電導コイル 2 鉄心 3 チャンバー 4 ルツボ 5 半導体融液 6 単結晶 7 ヒーター 8 磁束の流れ 9 対流 10 固液界面 11 液体ヘリウム槽 12 空芯コイル 13,14 外筒継鉄 15,16 磁極片 17,18 鞍型励磁コイル 19,20 電磁石半体 21 締結具 22 回転流 DESCRIPTION OF SYMBOLS 1 Normal conducting coil 2 Iron core 3 Chamber 4 Crucible 5 Semiconductor melt 6 Single crystal 7 Heater 8 Magnetic flux flow 9 Convection 10 Solid-liquid interface 11 Liquid helium tank 12 Air core coil 13,14 Outer cylinder yoke 15,16 Magnetic pole piece 17 , 18 Saddle-type excitation coil 19, 20 Electromagnet half 21 Fastener 22 Rotational flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木地 徳一 東京都江東区辰巳3丁目5番3号 三菱製 鋼株式会社環境エンジニアリング事業部内 (72)発明者 田中 豊彦 東京都江東区辰巳3丁目5番3号 三菱製 鋼株式会社環境エンジニアリング事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tokuichi Kiji 3-5-3 Tatsumi, Koto-ku, Tokyo Mitsubishi Steel Corporation Environmental Engineering Division (72) Inventor Toyohiko Tanaka 3-5-Tatsumi, Koto-ku, Tokyo No. 3 Mitsubishi Steel Corporation Environmental Engineering Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルツボ内に収容した半導体材料融液の対
流の制御を、外周部から直流励磁した電磁石により形成
された水平磁界によって行いつつ、ルツボから単結晶の
引き上げを行う装置において、該電磁石が対向する一対
の鞍型励磁コイルと対向する一対の磁極片を有する直径
方位励磁用磁場装置であり、かつ該2つの磁極片の結晶
引上げ軸に平行な寸法(高さ)が半導体材料融液の初期
高さの1/2以下または磁極間空胴部の直径の1/2以
下または100mm以上600mm以下であることを特
徴とする単結晶製造装置。
An apparatus for pulling a single crystal from a crucible while controlling a convection of a semiconductor material melt contained in the crucible by a horizontal magnetic field formed by an electromagnet which is DC-excited from the outer periphery. Is a magnetic field device for diametrical excitation having a pair of opposing saddle-type exciting coils and a pair of magnetic pole pieces facing each other, and a dimension (height) parallel to the crystal pulling axis of the two magnetic pole pieces is a semiconductor material melt. A single crystal manufacturing apparatus characterized in that the height is not more than 1/2 of the initial height or not more than 1/2 of the diameter of the cavity between the magnetic poles or not less than 100 mm and not more than 600 mm.
【請求項2】 該対向する一対の鞍型磁石コイルが相互
に分割されており、使用時に各外筒継鉄の直径面におい
て接合され、締結具を介して相互に連結されて磁場装置
を構成するとともに、ルツボ及び多結晶半導体材料の装
填時、並びに成長した単結晶の取り出し時には、結晶引
上げ軸に沿って上下方向に移動自在としたことを特徴と
する請求項1記載の単結晶製造装置。
2. A pair of opposed saddle-shaped magnet coils are divided from each other, are joined at the diameter surface of each outer cylinder yoke at the time of use, and are connected to each other via fasteners to constitute a magnetic field device. 2. The single crystal manufacturing apparatus according to claim 1, wherein the crucible and the polycrystalline semiconductor material are loaded and the grown single crystal is taken out, and the single crystal manufacturing apparatus is vertically movable along a crystal pulling axis.
【請求項3】 該対向する一対の鞍型励磁コイルが相互
に分割されており、使用時に各外筒継鉄の直径面におい
て接合され、締結具を介して相互に連結されて磁場装置
を構成するとともに、ルツボ及び多結晶半導体材料の装
填時、並びに成長した単結晶の取り出し時には、該締結
部を取り外して磁場装置を一対の鞍型磁石コイルに分割
し、ガイドを介して左右に移動自在としたことを特徴と
する請求項1記載の単結晶製造装置。
3. A pair of opposing saddle-type exciting coils are divided from each other, and are joined at the diameter surface of each outer cylinder yoke during use, and are connected to each other via fasteners to constitute a magnetic field device. At the same time, when loading the crucible and the polycrystalline semiconductor material, and when removing the grown single crystal, the fastening portion is removed, the magnetic field device is divided into a pair of saddle-shaped magnet coils, and the magnetic device can be moved left and right through a guide. The apparatus for producing a single crystal according to claim 1, wherein:
【請求項4】 該対向する一対の鞍型励磁コイルが相互
に分割されており、使用時に各外筒継鉄の直径面におい
て接合され、締結具を介して相互に連結されて磁場装置
を構成するとともに、ルツボ及び多結晶半導体材料の装
填時、並びに成長した単結晶の取り出し時には、該締結
部の片側を支点として左右に開放する構造としたことを
特徴とする請求項1記載の単結晶製造装置。
4. A pair of opposing saddle-type exciting coils are divided from each other, are joined at the diameter surface of each outer cylinder yoke at the time of use, and are connected to each other via fasteners to constitute a magnetic field device. 2. The single crystal manufacturing method according to claim 1, wherein the crucible and the polycrystalline semiconductor material are loaded and the grown single crystal is taken out, and the one side of the fastening portion is opened as a fulcrum. apparatus.
JP27610596A 1996-10-18 1996-10-18 Single crystal production apparatus Withdrawn JPH10120485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27610596A JPH10120485A (en) 1996-10-18 1996-10-18 Single crystal production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27610596A JPH10120485A (en) 1996-10-18 1996-10-18 Single crystal production apparatus

Publications (1)

Publication Number Publication Date
JPH10120485A true JPH10120485A (en) 1998-05-12

Family

ID=17564874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27610596A Withdrawn JPH10120485A (en) 1996-10-18 1996-10-18 Single crystal production apparatus

Country Status (1)

Country Link
JP (1) JPH10120485A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025238A1 (en) * 2004-09-02 2006-03-09 Sumco Corporation Magnetic field application method of pulling silicon single crystal
JP2007210865A (en) * 2006-02-13 2007-08-23 Sumco Corp Silicon single crystal pulling device
EP2022876A1 (en) * 2007-05-30 2009-02-11 SUMCO Corporation Silicon single-crystal pullup apparatus
JP2009249232A (en) * 2008-04-07 2009-10-29 Shinshu Univ Method and apparatus for growing silicon crystal by applying magnetic field
WO2009145149A1 (en) * 2008-05-26 2009-12-03 株式会社東芝 Superconducting magnet device for single crystal puller
JP2011124578A (en) * 2009-12-09 2011-06-23 Siltronic Ag Method of producing semiconductor wafer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069841A (en) * 2004-09-02 2006-03-16 Sumco Corp Magnetic field application method for pulling silicon single crystal
WO2006025238A1 (en) * 2004-09-02 2006-03-09 Sumco Corporation Magnetic field application method of pulling silicon single crystal
JP2007210865A (en) * 2006-02-13 2007-08-23 Sumco Corp Silicon single crystal pulling device
JP5240191B2 (en) * 2007-05-30 2013-07-17 株式会社Sumco Silicon single crystal pulling device
EP2022876A1 (en) * 2007-05-30 2009-02-11 SUMCO Corporation Silicon single-crystal pullup apparatus
US8795432B2 (en) 2007-05-30 2014-08-05 Sumco Corporation Apparatus for pulling silicon single crystal
EP2022876A4 (en) * 2007-05-30 2010-05-05 Sumco Corp Silicon single-crystal pullup apparatus
JP2009249232A (en) * 2008-04-07 2009-10-29 Shinshu Univ Method and apparatus for growing silicon crystal by applying magnetic field
JP2010006687A (en) * 2008-05-26 2010-01-14 Toshiba Corp Superconductive magnet device for single crystal puller
US8280468B2 (en) 2008-05-26 2012-10-02 Kabushiki Kaisha Toshiba Superconducting magnet device for single crystal pulling apparatus
EP2287366A4 (en) * 2008-05-26 2012-11-21 Toshiba Kk Superconducting magnet device for single crystal puller
EP2287366A1 (en) * 2008-05-26 2011-02-23 Kabushiki Kaisha Toshiba Superconducting magnet device for single crystal puller
WO2009145149A1 (en) * 2008-05-26 2009-12-03 株式会社東芝 Superconducting magnet device for single crystal puller
JP2011124578A (en) * 2009-12-09 2011-06-23 Siltronic Ag Method of producing semiconductor wafer

Similar Documents

Publication Publication Date Title
CN108026660B (en) Single crystal pulling apparatus and single crystal pulling method
JPS5874594A (en) Growing method for crystal
US9617655B2 (en) Manufacturing apparatus of SiC single crystal and method for manufacturing SiC single crystal
WO2000055393A1 (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
Rudolph et al. Crystal growth from the melt under external force fields
JPH10120485A (en) Single crystal production apparatus
CN113811642A (en) Single crystal pulling apparatus and single crystal pulling method
JPS61222984A (en) Unit for single crystal production
JPS6051690A (en) Manufacturing apparatus of single crystal
TWI751726B (en) A semiconductor crystal growth apparatus
JP7160006B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
JPS61286294A (en) Pulling device for single crystal
JPH10167875A (en) Device for producing single crystal
JP2019196289A (en) Production method of single crystal, and draw-up device of single crystal
JP2623465B2 (en) Single crystal pulling device
JPH101388A (en) Device for pulling up single crystal having magnetic field applying function and pulling-up method
JPS63215587A (en) Production of single crystal
JPS6270286A (en) Apparatus for producting single crystal
JP2592244B2 (en) Equipment for growing uniform crystals
JP3132987B2 (en) Method for continuous casting of metal pieces and electromagnetic brake device for continuous casting of metal pieces
JPH0633221B2 (en) Single crystal manufacturing equipment
JPS6278184A (en) Single crystal growth apparatus
JPS6051691A (en) Growing apparatus of single crystal semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106