JPS6270286A - Apparatus for producting single crystal - Google Patents
Apparatus for producting single crystalInfo
- Publication number
- JPS6270286A JPS6270286A JP21058285A JP21058285A JPS6270286A JP S6270286 A JPS6270286 A JP S6270286A JP 21058285 A JP21058285 A JP 21058285A JP 21058285 A JP21058285 A JP 21058285A JP S6270286 A JPS6270286 A JP S6270286A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- single crystal
- raw material
- magnetic field
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明はシリコンや砒化ガリウムなどの単結晶を、磁場
を印加することによって製造する単結晶製造装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a single crystal manufacturing apparatus for manufacturing a single crystal of silicon, gallium arsenide, or the like by applying a magnetic field.
現在よく用いられている単結晶の製造方法の一つとして
チョクラルスキー法(CZ法)と呼ばれる方法がある。One of the methods for producing single crystals that is commonly used at present is a method called the Czochralski method (CZ method).
これは高温に加熱されたルツボ内の原料融液を結晶化し
、生成する単結晶とルツボを互いに逆方向にまたは同方
向に回転させつつ前記単結晶を徐々に引き上げ成長させ
るようにした方法である。この方法は、結晶育成に当り
結晶の材料となる原料融液の入ったルツボを使用する点
が特徴であり、大きな直径の結晶が得られる等の多くの
利点がある。This is a method in which a raw material melt in a crucible heated to a high temperature is crystallized, and the resulting single crystal and the crucible are rotated in opposite directions or in the same direction, and the single crystal is gradually pulled up and grown. . This method is characterized by the use of a crucible containing a raw material melt, which is the material for crystals, during crystal growth, and has many advantages, such as the ability to obtain crystals with large diameters.
しかし、このCZ法による単結晶においては、ルツボの
外から熱を加えるので、僅かの入熱変動や外乱により、
ルツボ内の融液の自然対流による上野流は乱されて温度
変動を生ずるという問題がある。However, in the single crystal produced by the CZ method, heat is applied from outside the crucible, so slight fluctuations in heat input or disturbances may cause
There is a problem in that the Ueno flow due to natural convection of the melt in the crucible is disturbed and causes temperature fluctuations.
この温度変動を抑制し、単結晶を生成する原料融液の安
定化を図り併せて、ルツボによる汚染を防止して単結晶
の品質の向上を図るため、ルツボに垂直な方向または水
平方向に磁場を印加して融液の実効粘性を高めることが
提案されている(特公昭58−50951号公報)。そ
の結果、温度変動は抑υjされたが、垂直方向のIa場
、すなわち縦磁場を印加した場合、ルツボの内周壁面の
温度と単結晶の界面温度との間に大きな温度差が生じる
ため、単結晶生成のためにはルツボ自体の温度を高温度
にすることを余儀なくされ、これに起因して上記ルツボ
が融解するおそれがある。In order to suppress this temperature fluctuation and stabilize the raw material melt that produces single crystals, as well as prevent contamination from the crucible and improve the quality of the single crystals, magnetic field is applied in the direction perpendicular or horizontal to the crucible. It has been proposed to increase the effective viscosity of the melt by applying (Japanese Patent Publication No. 58-50951). As a result, temperature fluctuations were suppressed, but when applying a vertical Ia field, that is, a longitudinal magnetic field, a large temperature difference occurs between the temperature of the inner peripheral wall of the crucible and the interface temperature of the single crystal. In order to produce a single crystal, it is necessary to raise the temperature of the crucible itself to a high temperature, which may cause the crucible to melt.
これに対処するために等軸対象的かつ放射状のカスブ磁
場を印加して融液面に対して水平方向の磁力線を作るこ
とが提案されている(特開昭58−217493号公報
)。In order to cope with this problem, it has been proposed to apply an equiaxially symmetrical and radial cusp magnetic field to create lines of magnetic force in the horizontal direction with respect to the melt surface (Japanese Patent Laid-Open No. 58-217493).
ところがこの方法は、マグネットが上下に2個必要なた
め、高さ方向に充分なスペースが必要となる。しかも、
ルツボ融液面の低下に伴い磁場中心を移動させるべくマ
グネットを移動しなければならない。さらに融液面に対
して垂直方向上部のマグネットによって発生する磁力線
は炉の下方または上方まで洩れて磁束を発生され、これ
が炉の下部または上部に設けたセンサー類やコントロー
ル礪能を有する機器に悪影響を与えるおそれがある。ま
たマグネットが2段になるため、S4造コストが増大す
るという問題もある。However, this method requires two magnets, one above the other, and thus requires sufficient space in the height direction. Moreover,
The magnet must be moved to move the center of the magnetic field as the melt level in the crucible decreases. Furthermore, the lines of magnetic force generated by the upper magnet perpendicular to the melt surface leak to the bottom or top of the furnace and generate magnetic flux, which has an adverse effect on sensors and control equipment installed at the bottom or top of the furnace. There is a risk of giving. Furthermore, since the magnets are in two stages, there is also the problem that the S4 manufacturing cost increases.
さらにまた、従来の横磁場印加の場合には、ルツボの周
方向の磁界が不均一になるという欠点がある。Furthermore, in the case of applying a conventional transverse magnetic field, there is a drawback that the magnetic field in the circumferential direction of the crucible becomes non-uniform.
本発明は、上述した点に鑑みてなされたものであり、ル
ツボの外側部に磁気シールドを設けることにより原料融
液の結晶界面とルツボの内壁面との温度勾配を緩やかに
して、大口径かつ純度の高い単結晶の製造に好適な単結
晶製造装■を提供することを目的とする。The present invention has been made in view of the above-mentioned points, and by providing a magnetic shield on the outside of the crucible, the temperature gradient between the crystal interface of the raw material melt and the inner wall surface of the crucible is made gentler, and a large-diameter and An object of the present invention is to provide a single crystal manufacturing apparatus suitable for manufacturing a single crystal with high purity.
本発明者は、ルツボの外側部に設けられた磁界発生用コ
イルによって生成される磁界内に磁気シールドを配設す
ることによって、磁力線の向きを原料融液面と略水平方
向に屈曲させ、これによりルツボ内の原料融液の温度分
布を結晶成長にとつて最適の状態にすることができるこ
とを見出した。The inventor of the present invention bends the direction of the magnetic lines of force in a direction substantially horizontal to the surface of the raw material melt by arranging a magnetic shield in the magnetic field generated by a magnetic field generating coil provided on the outside of the crucible. It has been found that the temperature distribution of the raw material melt in the crucible can be brought into the optimum state for crystal growth.
本発明は、上記知見に基いてなされたものであり、より
詳しくは、高温に加熱されるルツボ内の原料融液を結晶
化し、該結晶を成長させつつ徐々にルツボから引き上げ
るようにした単結晶製造装置において、前記ルツボの外
側部に、該ルツボ内に磁界を発生させる磁界発生用コイ
ルと、該磁界発生用コイルから発生する磁力線の方向が
少なくともルツボ内の原料@液表面近傍において該液面
に対して略水平方向に向くように該磁力線を屈曲させる
磁気シールドとが配設されてなることを特徴とするしの
である。The present invention has been made based on the above findings, and more specifically, a single crystal is produced in which a raw material melt in a crucible that is heated to a high temperature is crystallized, and the crystal is gradually pulled out of the crucible while growing. In the manufacturing apparatus, a magnetic field generating coil that generates a magnetic field in the crucible is provided on the outside of the crucible, and the direction of the magnetic field lines generated from the magnetic field generating coil is at least at the raw material in the crucible @ near the liquid surface. This sign is characterized by being provided with a magnetic shield that bends the lines of magnetic force so as to be oriented in a substantially horizontal direction.
以下、本発明を図面に示す一実施例に基いて詳細に説明
する。Hereinafter, the present invention will be explained in detail based on an embodiment shown in the drawings.
第1図において、符号1は、加熱ヒータ2によって加熱
されるルツボであって、これらは炉3内に内包されてい
る。またルツボ1内には、例えば、シリコン融液からな
る原料融液4が容れられている。単結晶体(単に単結晶
ともいう)5を引き上げる回転軸6ならびにルツボ1を
回転させる回転軸7を軸中心として磁気シールド8が設
けられ、磁気シールドの形状は、円筒状、柵状あるいは
網状のいずれであってもよく、磁力線の方向を屈曲させ
るのに有効な形状、材質が選ばれる。また、磁気シール
ドの位置は、磁界発生用コイル9によって発生する磁力
線9aの方向が原料融液4の液表面近傍で液面と略平行
となるように配設される。In FIG. 1, reference numeral 1 denotes a crucible heated by a heater 2, which is housed in a furnace 3. Further, the crucible 1 contains a raw material melt 4 made of, for example, a silicon melt. A magnetic shield 8 is provided around a rotating shaft 6 for pulling up a single crystal (also simply referred to as a single crystal) 5 and a rotating shaft 7 for rotating the crucible 1, and the shape of the magnetic shield is cylindrical, fence-like, or net-like. Either shape and material are selected that are effective in bending the direction of the lines of magnetic force. Moreover, the position of the magnetic shield is arranged so that the direction of the magnetic lines of force 9a generated by the magnetic field generating coil 9 is near the liquid surface of the raw material melt 4 and is substantially parallel to the liquid surface.
磁力線の方向が最適の態様になるように、ルツボ1もし
くは磁気シールド8および(または)コイル9は上下左
右に移動できるように形成されていることが好ましい。It is preferable that the crucible 1 or the magnetic shield 8 and/or the coil 9 be formed so as to be movable vertically and horizontally so that the direction of the magnetic lines of force is optimized.
磁界が第1図に示すような態様の場合、ルツボ1および
(または)単結晶5を回転軸7および(または)6をお
互いに両方向または逆方向に回転することにより、ルツ
ボ1内の原料融液4内には、第2図に示す矢示方向に循
環流が生成する。When the magnetic field is in the form shown in FIG. 1, the raw material melt in the crucible 1 is caused by rotating the crucible 1 and/or the single crystal 5 with the rotating shafts 7 and/or 6 in both directions or in opposite directions. A circulating flow is generated in the liquid 4 in the direction of the arrow shown in FIG.
つまり、上記ルツボ1の底面1aの近傍あるいは小結晶
5の界面5aの近傍ではルツボ1ないし単結晶5の回転
による遠心力により半径方向外側の流れを生じ、また、
ルツボ1の側壁面1bの近傍では加熱ヒータ2により鉛
直上向きの自然対流が生じる。このような流れに対して
、磁場発生用コイル9の磁力線9aが上記流れに対して
略直角方向の場合、融液の流れに制動がかかり、流速が
小さくなる。That is, in the vicinity of the bottom surface 1a of the crucible 1 or in the vicinity of the interface 5a of the small crystal 5, a radially outward flow is generated due to centrifugal force due to the rotation of the crucible 1 or the single crystal 5, and
In the vicinity of the side wall surface 1b of the crucible 1, vertically upward natural convection is generated by the heater 2. With respect to such a flow, when the magnetic lines of force 9a of the magnetic field generating coil 9 are substantially perpendicular to the flow, the flow of the melt is braked and the flow velocity is reduced.
これを数式で表すと下記の通りになる。This can be expressed numerically as follows.
F−一σ■B2 F:電磁力 σ:電気伝導率。F-1σ■B2 F: Electromagnetic force σ: Electrical conductivity.
■:融液の流速 Beta束密度
このように、本発明によると、融液界面での流れはさほ
ど電磁力の影響を受けず、上記加熱ヒータ2により加熱
された融液界面は、従来の縦磁場による単結晶の引上げ
手段に比べて円滑に流れ、大きな温度勾配を作らない方
向に作用する。また、上記ルツボ1の側壁面1bは高温
にさらされているため、ルツボ壁面かにのコンタミネー
ションが横磁場を印加しない限り問題となるが、本発明
によると、上記側壁面1b近傍の原料融液4は減速され
、これによりコンタミネーションを低減することができ
る。■: Melt flow velocity Beta flux density As described above, according to the present invention, the flow at the melt interface is not so affected by electromagnetic force, and the melt interface heated by the heater 2 is different from the conventional vertical Compared to single crystal pulling means using a magnetic field, it flows more smoothly and acts in a direction that does not create a large temperature gradient. Furthermore, since the side wall surface 1b of the crucible 1 is exposed to high temperatures, contamination of the crucible wall surface becomes a problem unless a transverse magnetic field is applied. The liquid 4 is decelerated, thereby reducing contamination.
第3図に示される図は、本発明の装置によって生ずる原
料融液4内の!It!型的な等温度分布曲線を示したも
のであり、この等温度分布曲線10aは、上記ルツボ1
の原料融液4の界面での温度勾配が小さく、加熱ヒータ
2からむやみに加熱する必要が無いことを示している。The diagram shown in FIG. 3 shows the inside of the raw material melt 4 produced by the apparatus of the invention! It! This is a typical isotemperature distribution curve 10a, and this isotemperature distribution curve 10a is similar to that of the crucible 1.
The temperature gradient at the interface of the raw material melt 4 is small, indicating that there is no need for unnecessary heating from the heater 2.
また、本発明によれば一1単結晶5の海面下の温度が上
記原料融液4中のいずれの位−置でも略同じになるため
、結晶化が一層促進されるという効果がある。Further, according to the present invention, the temperature below the sea surface of the single crystal 5 is approximately the same at any position in the raw material melt 4, so that crystallization is further promoted.
ところで、第1図に示す本発明の実施例は、磁束密度を
略均−にするような磁束分布になるように形成されてい
るが、第4図に示す別の実施例は、加熱ヒータ2と磁気
シールド8の配置を上下逆に構成した場合の例である。By the way, the embodiment of the present invention shown in FIG. 1 is formed to have a magnetic flux distribution that makes the magnetic flux density approximately uniform, but in another embodiment shown in FIG. This is an example in which the magnetic shield 8 is arranged upside down.
この例の場合、ルツボ1の回転中心部では縦磁場効果が
、またルツボ1の周辺部では横磁場効果が得られるとい
う特長がある。This example has the advantage that a vertical magnetic field effect can be obtained at the center of rotation of the crucible 1, and a transverse magnetic field effect can be obtained at the periphery of the crucible 1.
本発明の磁気シールド8は交番磁界内では渦電流損によ
り、一種の熱源となり得るため、加熱ヒータ2の代わり
、またはその補助ヒータとして適用できる。なお、図中
には示されていないが、上記磁気シールドを炉内に置く
方がいい場合もある。Since the magnetic shield 8 of the present invention can act as a kind of heat source due to eddy current loss in an alternating magnetic field, it can be applied in place of the heater 2 or as an auxiliary heater thereof. Although not shown in the figure, there are cases where it is better to place the magnetic shield inside the furnace.
さらに、底部のある磁気シールドも他の一実施例であり
、この場合、磁束を略直角に横切る面で発熱作用が大と
なり、熱源として有用である。Furthermore, a magnetic shield with a bottom is another example, and in this case, the heat generating effect is large on a plane that crosses the magnetic flux at a substantially right angle, and is useful as a heat source.
磁場発生用コイル9は常電導の他、超Ti導あるいは永
久磁石によっても代用することができる。The magnetic field generating coil 9 can be replaced by a super Ti conductor or a permanent magnet as well as a normal conductor.
ざらに磁力線9aの改良のため積層鉄心を上記コイル9
の近傍に設けることもできる。In order to roughly improve the magnetic field lines 9a, the laminated iron core is
It can also be provided near.
本発明の単結晶製造装置は、磁界発生用コイルから発生
する磁力線の方向を、原料融液表面近傍において該液面
に対して略水平方向に屈曲させる磁気シールドを有して
いるので、ルツボ内の原料融液の温分布を結晶成長にと
って最適の状態にすることができ、ルツボからのコンタ
ミネーションを防止して均質にして高III Iffで
しかも大口径の単結晶を製造することができる。The single crystal manufacturing apparatus of the present invention has a magnetic shield that bends the direction of the magnetic lines of force generated from the magnetic field generating coil in a direction substantially horizontal to the raw material melt surface near the surface of the raw material melt, so that The temperature distribution of the raw material melt can be optimized for crystal growth, and it is possible to prevent contamination from the crucible, make it homogeneous, and produce a single crystal with a high III Iff and a large diameter.
第1図は、本発明に係る単結晶製造装置の断面図、第2
図は、本発明のルツボ内の原料融液の流れ分布と磁力線
分布を示す図、第3図は、本発明の原料融液の等温線分
布を示す図、第4図は、本発明の他の実施例に係る単結
晶製造装置の断面図である。
1・・・ルツボ、1a・・・ルツボ底部、1b・・・ル
ツボ側壁部、2・・・加熱ヒータ、3・・・炉、4・・
・原料融液、5・・・単結晶体、6・・・単結晶引き上
げ回転軸、7・・・ルツボ回転軸、8・・・磁気シール
ド、9・・・!11中生用コイル、9a・・・磁力線、
10a・・・等混線。
出願人代理人 佐 藤 −雄
第3図
第4図FIG. 1 is a sectional view of a single crystal manufacturing apparatus according to the present invention, and FIG.
The figure shows the flow distribution and magnetic field line distribution of the raw material melt in the crucible of the present invention, FIG. 3 shows the isothermal line distribution of the raw material melt of the present invention, and FIG. 1 is a sectional view of a single crystal manufacturing apparatus according to an example. DESCRIPTION OF SYMBOLS 1... Crucible, 1a... Crucible bottom, 1b... Crucible side wall, 2... Heater, 3... Furnace, 4...
- Raw material melt, 5... Single crystal, 6... Single crystal pulling rotation axis, 7... Crucible rotation axis, 8... Magnetic shield, 9...! 11 Medium coil, 9a... lines of magnetic force,
10a...equal crosstalk. Applicant's agent Mr. Sato Figure 3 Figure 4
Claims (1)
晶を成長させつつ徐々にルツボから引き上げるようにし
た単結晶製造装置において、前記ルツボの外側部に、該
ルツボ内に磁界を発生させる磁界発生用コイルと、該磁
界発生用コイルから発生する磁力線の方向が少なくとも
ルツボ内の原料融液表面近傍において該液面に対して略
水平方向に向くように該磁力線を屈曲させる磁気シール
ドとが配設されてなることを特徴とする、単結晶製造装
置。In a single crystal manufacturing apparatus in which a raw material melt in a crucible that is heated to a high temperature is crystallized and the crystal is gradually pulled out of the crucible while growing, a magnetic field is generated in the crucible at the outside of the crucible. A magnetic field generating coil, and a magnetic shield that bends the magnetic lines of force generated from the magnetic field generating coil so that the direction of the magnetic lines of force generated from the magnetic field generating coil is oriented substantially horizontally to the liquid surface at least in the vicinity of the surface of the raw material melt in the crucible. 1. A single crystal manufacturing device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21058285A JPS6270286A (en) | 1985-09-24 | 1985-09-24 | Apparatus for producting single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21058285A JPS6270286A (en) | 1985-09-24 | 1985-09-24 | Apparatus for producting single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6270286A true JPS6270286A (en) | 1987-03-31 |
JPH055796B2 JPH055796B2 (en) | 1993-01-25 |
Family
ID=16591699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21058285A Granted JPS6270286A (en) | 1985-09-24 | 1985-09-24 | Apparatus for producting single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6270286A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6424090A (en) * | 1987-07-20 | 1989-01-26 | Toshiba Ceramics Co | Method and apparatus for producing single crystal |
US6086671A (en) * | 1997-04-25 | 2000-07-11 | Sumitomo Sitix Corporation | Method for growing a silicon single crystal |
US7771530B2 (en) * | 2001-01-18 | 2010-08-10 | Siltronic Ag | Process and apparatus for producing a silicon single crystal |
JP2021046342A (en) * | 2019-09-19 | 2021-03-25 | 信越半導体株式会社 | Apparatus and method for pulling single crystal |
-
1985
- 1985-09-24 JP JP21058285A patent/JPS6270286A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6424090A (en) * | 1987-07-20 | 1989-01-26 | Toshiba Ceramics Co | Method and apparatus for producing single crystal |
US6086671A (en) * | 1997-04-25 | 2000-07-11 | Sumitomo Sitix Corporation | Method for growing a silicon single crystal |
US7771530B2 (en) * | 2001-01-18 | 2010-08-10 | Siltronic Ag | Process and apparatus for producing a silicon single crystal |
JP2021046342A (en) * | 2019-09-19 | 2021-03-25 | 信越半導体株式会社 | Apparatus and method for pulling single crystal |
Also Published As
Publication number | Publication date |
---|---|
JPH055796B2 (en) | 1993-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6144797A (en) | Apparatus for growing single crystal and method for controlling same | |
TW463224B (en) | Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method | |
JP2017057127A (en) | Single crystal pulling-up device and single crystal pulling-up method | |
US6607594B2 (en) | Method for producing silicon single crystal | |
JP2561072B2 (en) | Single crystal growth method and apparatus | |
US6001170A (en) | Process and apparatus for the growth of single crystals | |
JPS61222984A (en) | Unit for single crystal production | |
JPS6270286A (en) | Apparatus for producting single crystal | |
JPS5850953B2 (en) | crystal growth method | |
JP2567539B2 (en) | FZ method silicon single crystal ingot growth method and apparatus | |
JP2572070B2 (en) | Single crystal manufacturing method | |
JPS6036392A (en) | Apparatus for pulling single crystal | |
JPS6027684A (en) | Apparatus for producing single crystal | |
JP2021046342A (en) | Apparatus and method for pulling single crystal | |
JP2021080112A (en) | Apparatus and method for pulling single crystal | |
US5935327A (en) | Apparatus for growing silicon crystals | |
WO2022163091A1 (en) | Single crystal pulling device and single crystal pulling method | |
JPS6360189A (en) | Production of semiconductor single crystal | |
JPS6278184A (en) | Single crystal growth apparatus | |
JPS63215587A (en) | Production of single crystal | |
JPH10167875A (en) | Device for producing single crystal | |
JPH0297479A (en) | Single crystal pulling up device | |
JP2623390B2 (en) | Silicon single crystal rod growth method | |
JP2803606B2 (en) | Crystal growing method and crystal growing apparatus | |
JPS6033297A (en) | Pulling device for single crystal semiconductor |