JPS61222984A - Unit for single crystal production - Google Patents

Unit for single crystal production

Info

Publication number
JPS61222984A
JPS61222984A JP6442985A JP6442985A JPS61222984A JP S61222984 A JPS61222984 A JP S61222984A JP 6442985 A JP6442985 A JP 6442985A JP 6442985 A JP6442985 A JP 6442985A JP S61222984 A JPS61222984 A JP S61222984A
Authority
JP
Japan
Prior art keywords
magnetic field
crucible
single crystal
magnets
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6442985A
Other languages
Japanese (ja)
Inventor
Kazutaka Terajima
一高 寺嶋
Shoichi Washitsuka
鷲塚 章一
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6442985A priority Critical patent/JPS61222984A/en
Publication of JPS61222984A publication Critical patent/JPS61222984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:The magnetic field to be applied to the starting melt is made variable in the crucible to optimize the temperature distribution and convection inhibition of the melt to produce a large size of single crystal of high uniformity and high quality with low dislocation. CONSTITUTION:The starting melt 12, a liquid capsule layer 13 are charged in a pyrotic BN crucible 11. The upper magnet 21 which is composed of normally conductive coils and slidably set to the guide 23 parallel to the crucible axis and driven in parallel with the crucible axis by means of a driving mechanism and the lower magnet 22 which is composed of superconductive coils and fixed at the bottom end are arranged so that the same poles opposed to each other. The magnet 21 is allowed to move so that a cusped magnetic field is applied at the same state between the crystal and the liquid surface and the single crystal is pulled up.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、導電性を有する原料融液からチョクラルスキ
ー法により単結晶を引上げ製造する単結晶の製造装置に
係わり、特にルツボ内の原料融液に直流磁界を印加する
単結晶の製造装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a single crystal manufacturing apparatus for pulling and manufacturing a single crystal from a conductive raw material melt by the Czochralski method, and particularly relates to a single crystal manufacturing apparatus for pulling and manufacturing a single crystal from a conductive raw material melt, and in particular, This invention relates to a single crystal manufacturing device that applies a DC magnetic field to a liquid.

(発明の技術的背景とその問題点〕 従来、原料融液から半導体単結晶を製造する方法として
は、チョクラルスキー法が広く用いられている。また、
この方法では、導電性の原料融液から単結晶を引上げる
際に、原料融液に外部から磁界を印加することにより、
融液内の熱対流を抑止し、ルツボ材からの汚染を減少し
、さらに成長縞や固有欠陥の制御を行うことが可能とな
っている。そして、高品質な単結晶を作成できることが
、SlやGaAs等の単結晶で確認されている。
(Technical background of the invention and its problems) Conventionally, the Czochralski method has been widely used as a method for producing semiconductor single crystals from a raw material melt.
In this method, when pulling a single crystal from a conductive raw material melt, by applying an external magnetic field to the raw material melt,
It is possible to suppress thermal convection within the melt, reduce contamination from the crucible material, and further control growth streaks and inherent defects. It has been confirmed that high-quality single crystals can be produced using single crystals such as Sl and GaAs.

従来の磁界印加法では、第3図(a)に示す如く水平方
向に磁界を印加するものや、同図(b)に示す如く垂直
方向に磁界を印加するものがある。
In conventional magnetic field application methods, there are methods for applying a magnetic field in the horizontal direction as shown in FIG. 3(a), and methods for applying a magnetic field in the vertical direction as shown in FIG. 3(b).

なお、図中31はルツボ、32は原料融液、33は引上
げ結晶、34は加熱ヒータ、35,351゜352は磁
石をそれぞれ示している。しかし、第3図(a)に示す
如く水平磁界36を印加するものでは、第4図に示す如
く温度分布37が軸対称とならず、不均一な分布を示し
、結晶回転による成長縞が明白になる等の欠点がある。
In the figure, 31 is a crucible, 32 is a raw material melt, 33 is a pulled crystal, 34 is a heater, and 35, 351° and 352 are magnets, respectively. However, in the case where a horizontal magnetic field 36 is applied as shown in FIG. 3(a), the temperature distribution 37 is not axially symmetrical as shown in FIG. There are disadvantages such as becoming

また、第3図(1))に示す如く垂直磁界38を印加す
るものでは、水平方向の融液の流れを強力に抑止するた
め、横方向の温度分布が大きくなり、特にルツボ壁の温
度が上がりルツボがらの汚染が大きくなり、結果として
残留不純物の濃度が減少しない等の現象が現れてくる。
Furthermore, in the case of applying a vertical magnetic field 38 as shown in Fig. 3 (1)), since the flow of the melt in the horizontal direction is strongly suppressed, the temperature distribution in the lateral direction becomes large, and the temperature of the crucible wall in particular increases. The contamination of the crucible becomes greater, and as a result, phenomena such as the concentration of residual impurities not being reduced occur.

これらの欠点を改良する磁石配置として、最近第5図に
示す如くルツボ31の上下に同極対向磁石351.35
2を対向配置し、カスプ磁場を印加する方法が提案され
ている。このタイプの磁場は、ルツボ内融液に軸対称な
水平磁界を発生させ、高品質な単結晶を引上げるに最適
な磁石配置である。
Recently, as a magnet arrangement to improve these drawbacks, as shown in FIG.
A method has been proposed in which two magnets are placed facing each other and a cusp magnetic field is applied. This type of magnetic field generates an axially symmetrical horizontal magnetic field in the melt inside the crucible, and is the optimal magnet arrangement for pulling high-quality single crystals.

しかしながら、この種の装置にあっても次のような問題
があった。即ち、原料の仕込み量の違い、結晶作成中に
発生する残留融液の量により磁界分布の最適条件が異な
ったものとなる。このため、最初は最適な磁界分布であ
ったものが結晶作成に伴い最適磁界分布からズしてくる
等の問題を生じ、大容量、大口径、長尺の単結晶を高品
質、高収率−で作成することは困難であった。
However, even this type of device has the following problems. That is, the optimum conditions for the magnetic field distribution vary depending on the amount of raw materials charged and the amount of residual melt generated during crystal formation. As a result, problems such as initially having an optimal magnetic field distribution deviate from the optimal magnetic field distribution occur as crystals are created. - It was difficult to create it.

(発明の目的) 本発明は上記事情を考慮してなされたもので、その目的
とするところは、ルツボ内の原料融液に印加するカスプ
磁場を常に最適に保持することができ、高品質の単結晶
を引上げ製造することのできる単結晶の製造装置を提供
することにある。
(Object of the Invention) The present invention has been made in consideration of the above circumstances, and its purpose is to maintain an optimal cusp magnetic field applied to the raw material melt in the crucible at all times, and to achieve high quality. An object of the present invention is to provide a single crystal manufacturing apparatus capable of pulling and manufacturing a single crystal.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ルツボ内の原料融液の温度分布及び対
流抑制を最適化するために、原料融液に印加する磁界を
可変可能にすることにある。
The gist of the present invention is to make the magnetic field applied to the raw material melt variable in order to optimize the temperature distribution and convection suppression of the raw material melt in the crucible.

磁界による原料融液への運動抑止力の大きさは、伝導流
体の速度及び磁界の強さに比例し、しかも流体の流れの
方向と磁界の方向が垂直の時に最大の抑止力となる。水
平方向の磁界を印加した場合には、磁界方向と平行な方
向の流れは存在し続ける。そのため、ルツボ壁との熱交
換が良好で、横方向の温度差が少なく、成長時での熱歪
みが少なく、低転位密度結晶が作成できることになる。
The magnitude of the motion restraining force on the raw material melt due to the magnetic field is proportional to the velocity of the conduction fluid and the strength of the magnetic field, and the restraining force is maximum when the direction of the fluid flow and the direction of the magnetic field are perpendicular. When a horizontal magnetic field is applied, a flow parallel to the direction of the magnetic field continues to exist. Therefore, heat exchange with the crucible wall is good, there is little lateral temperature difference, there is little thermal strain during growth, and a low dislocation density crystal can be created.

しかしながら、単純な水平磁界では、ルツボ面上で軸対
称ではなく、磁界に平行な流線、垂直な流線とで不均一
が生じている。
However, in a simple horizontal magnetic field, there is no axial symmetry on the crucible surface, and non-uniformity occurs between streamlines parallel to the magnetic field and streamlines perpendicular to the magnetic field.

そこで、同極対向磁石を用いたカスプ磁界を形成するこ
とにより、ルツボ面上で軸対称な磁界を形成することが
でき、上記問題を解決することが可能となる。しかし、
このカスプ磁界を利用する場合にあっては、結晶引上げ
に伴い融液面の低下及び融液量の減少が生じ、これに伴
い最適磁界分布も代わることになる。従って、結晶引上
げに伴い磁界分布を可変する必要が生じる。この磁界分
布を可変するために本発明では、磁石を移動或いは磁石
の励磁電流を可変するようにしている。
Therefore, by forming a cusp magnetic field using magnets facing the same polarity, an axially symmetrical magnetic field can be formed on the crucible surface, making it possible to solve the above problem. but,
When this cusp magnetic field is used, the melt surface lowers and the melt amount decreases as the crystal is pulled, and the optimum magnetic field distribution changes accordingly. Therefore, it is necessary to vary the magnetic field distribution as the crystal is pulled. In order to vary this magnetic field distribution, the present invention moves the magnet or varies the excitation current of the magnet.

即ち本発明は、ルツボ内に収容した原料融液に直流磁界
を印加してチョクラルスキー法により単結晶を引上げ製
造する単結晶の製造装置において、前記ルツボの上下に
対向配置され、ルツボ軸に対し等軸対称的且つ放射状の
カスプ磁界を印加する同極対向磁石と、これらの磁石の
少なくとも一方を上下方向に移動、或いは少なくとも一
方の励磁電流を可変してルツボ内の原料融液の温度分布
及び対流抑制を最適化する手段とを設けるようにしたも
のである。
That is, the present invention provides a single crystal manufacturing apparatus that applies a direct current magnetic field to a raw material melt housed in a crucible to pull and manufacture a single crystal using the Czochralski method. The temperature distribution of the raw material melt in the crucible is achieved by moving at least one of these magnets in the vertical direction or by varying the excitation current of at least one of the magnets, which apply an equiaxially symmetric and radial cusp magnetic field. and means for optimizing convection suppression.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、カスプ磁界を最適に印加することがで
きるので、ルツボ壁からの熱交換が最適に行われ、しか
も熱振動を効果的に抑止することができる。さらに、結
晶成長に伴いルツボ内の原料融液が減少しても、磁石の
移動或いは励磁電流の可変により、常に最適なカスプ磁
場を与えることができる。このため、大型で、低転位、
高均一。
According to the present invention, since the cusp magnetic field can be applied optimally, heat exchange from the crucible wall can be performed optimally, and thermal vibration can be effectively suppressed. Furthermore, even if the raw material melt in the crucible decreases due to crystal growth, an optimum cusp magnetic field can always be provided by moving the magnet or varying the excitation current. For this reason, it is large, has low dislocation,
High uniformity.

高品質な単結晶を作成できることになる。This makes it possible to create high-quality single crystals.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる半導体単結晶の製造
装置を示す概略構成図である。図中11はパイロティッ
クBN (PBN)ルツボであり、このルツボ11内に
は原料融液12及び液体カプセル層13がそれぞれ収容
される。ルツボ11の上方には上部磁石21が配置され
、ルツボ11の下方には下部磁石22が配置されている
。そして、これらの磁石21.22は相互に同極同志が
対向するように対向配置されている。ここで、上部磁石
21は常電導コイルからなるもので、ルツボ軸と平行に
設置されたガイド体23に摺動自在に取付けられている
。そして、この磁石21は図示しない駆動機構により、
ルツボ軸と平行に移動されるものとなっている。また、
下部磁石22は超電導コイルからなるもので、固定端に
固定されている。
FIG. 1 is a schematic diagram showing a semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention. In the figure, reference numeral 11 denotes a pyrotic BN (PBN) crucible, and a raw material melt 12 and a liquid capsule layer 13 are accommodated in this crucible 11, respectively. An upper magnet 21 is arranged above the crucible 11, and a lower magnet 22 is arranged below the crucible 11. These magnets 21 and 22 are arranged to face each other so that the same polarity faces each other. Here, the upper magnet 21 is made of a normally conducting coil, and is slidably attached to a guide body 23 installed parallel to the crucible axis. This magnet 21 is driven by a drive mechanism (not shown).
It is designed to be moved parallel to the crucible axis. Also,
The lower magnet 22 is made of a superconducting coil and is fixed to the fixed end.

なお、図中14は引上げ単結晶、15は種結晶、24は
磁界分布をそれぞれ示している。また、図には示さない
が、ルツボ11の周囲には加熱ヒータが配置されている
。さらに、ルツボ11及び上記加熱ヒータ等は図示しな
い引上げ炉内に収容されるものとなっている。また、磁
石21.22による磁界は垂直方向に関しては第1図に
示す如くなり、水平方向に対しては第2図に示す如く等
軸対称となっている。
In the figure, 14 indicates a pulled single crystal, 15 indicates a seed crystal, and 24 indicates a magnetic field distribution. Further, although not shown in the figure, a heater is arranged around the crucible 11. Furthermore, the crucible 11, the heater, etc. are housed in a pulling furnace (not shown). Further, the magnetic fields generated by the magnets 21 and 22 are equiaxially symmetrical in the vertical direction as shown in FIG. 1, and in the horizontal direction as shown in FIG.

次に、上記装置を用いた単結晶製造方法について説明す
る。
Next, a method for producing a single crystal using the above apparatus will be explained.

まず、原料としてQaを4.5[N91、ASを5[K
g]ルツボ11内にチャージし、その上にAsの飛散を
防ぐ酸化ボロンを配し、Ar雰囲気中70[atl]で
、GaASを合成した。その後、圧力を10[at++
]に減じた。しかるのち、GaAS融液表面に前記第1
図に示した磁界分布を得るべくカスプ磁界を形成し、印
加磁場強度がGaAS融液表面(中心から10511+
程度の位置)で2000 [Oe!]で単結晶の作成を
開始した。
First, as raw materials Qa was 4.5[N91, AS was 5[K
g] The crucible 11 was charged, boron oxide was placed on top of the crucible to prevent scattering of As, and GaAS was synthesized at 70 [atl] in an Ar atmosphere. After that, the pressure was increased to 10 [at++
]. After that, the first layer is placed on the surface of the GaAS melt.
To obtain the magnetic field distribution shown in the figure, a cusp magnetic field was formed, and the applied magnetic field strength was adjusted to the surface of the GaAS melt (10511+ from the center).
position) at 2000 [Oe! ] The production of single crystals was started.

この条件では、ルツボ内融液の深さが約100[am]
もあり、結晶と液面に常に同じ状態で磁界を印加するた
めに、引上げ結晶の直径が、例えば75[s+]になっ
た時点から上部磁石21を徐々に液面の降下速度、例え
ば毎時12[am]で降下させた。
Under these conditions, the depth of the melt in the crucible is approximately 100 [am]
In order to always apply a magnetic field in the same state to the crystal and the liquid surface, from the time when the diameter of the pulled crystal reaches, for example, 75 [s+], the upper magnet 21 is gradually adjusted to the lowering rate of the liquid level, for example, 12/hour. It was lowered at [am].

以上のような条件で直径75[am+]、重さ9[K9
]のGaAS単結晶の作成に成功した。この単結晶のエ
ッチビット密度を測定した結果、無添加であるにも拘ら
ず、1.5〜3x103 [cIR” ]の低転位密度
を示していた。通常の引上げ結晶では、エッチビット密
度は5X104〜2X10’[α4]であるが、引上げ
軸と対称な水平磁界(カスプ磁界)を印加したことによ
り、GaAS融液表面において温度分布の均一な条件が
得られ、低転位化の傾向を示したものと考えられる。
Under the above conditions, the diameter is 75 [am+] and the weight is 9 [K9].
] We succeeded in creating a GaAS single crystal. As a result of measuring the etch bit density of this single crystal, it was found that it had a low dislocation density of 1.5 to 3x103 [cIR''] even though it was additive-free.In a normal pulled crystal, the etch bit density was 5x104. ~2X10'[α4], but by applying a horizontal magnetic field (cusp magnetic field) symmetrical to the pulling axis, a uniform temperature distribution condition was obtained on the surface of the GaAS melt, which showed a tendency to lower dislocations. considered to be a thing.

また、成長縞もなく、磁石を最適に移動する二′とによ
り、結晶の頭部より尾部まで均一で、固液界面の形状も
制御された大型、大口径の単結晶を作成することができ
た。また、カスプ磁界を用いて、作成結晶内の残留不純
物濃度を調べた結果、ルツボ材からのボロンの混入は1
o1a [al”3]のオーダであり、磁力線がルツボ
壁に垂直に入っているため、GaAS融液−BN間の反
応が少なくなったものと考えられる。これにより、高純
度の効果も得られる。
In addition, there are no growth streaks, and by optimally moving the magnet, it is possible to create large, large-diameter single crystals that are uniform from the head to the tail of the crystal, and the shape of the solid-liquid interface is controlled. Ta. In addition, as a result of investigating the residual impurity concentration in the produced crystal using a cusp magnetic field, it was found that the amount of boron mixed in from the crucible material was 1.
It is believed that the reaction between the GaAS melt and BN is reduced because the magnetic field lines are perpendicular to the crucible wall.This also results in a high purity effect. .

このように本実施例によれば、同極対向磁石21.22
によりカスプ磁界を形成すると共に、上部磁石21を上
下方向に移動可能にしているので、ルツボ11内の原料
融液の液面低下及び液量減少に拘らず、原料融液に対し
常に最適なカスプ磁界を印加することができる。このた
め、高品質のGaAS単結晶を引上げ製造することが可
能となる。
In this way, according to this embodiment, the same-polarity opposing magnets 21, 22
Since the upper magnet 21 is movable in the vertical direction and the cusp magnetic field is formed by the upper magnet 21, the optimal cusp is always maintained for the raw material melt regardless of the lowering of the liquid level and the decrease in the liquid volume of the raw material melt in the crucible 11. A magnetic field can be applied. Therefore, it becomes possible to pull and manufacture a high quality GaAS single crystal.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記同極対向磁石は一方が常電導コイルで
他方が超電導コイルである必要はなく、これらの双方共
常電導コイル或いは超電導コイルにしてもよい。さらに
、移動すべき磁石は上部磁石に何等限定されるものでは
なく、下部磁石であってもよいし、両方を移動可能にし
てもよい。但し、超電導コイルは強磁場を得るには適し
ているがそれを移動させることは容易でないので、前記
実施例のように一方を常電導コイルで構成しこれを移動
可能にし、他方を超電導コイルで構成しこれを固定とす
るのが実用的である。また、上記の磁石を移動させる代
りに、磁石の励磁電流を可変するようにしてもよい。こ
の場合も、同極対向磁石の少なくとも一方の励磁電流を
可変可能にすればよい。また、GaASの単結晶引上げ
に限らず、GaP、InPその他の単結晶の引上げ製造
に適用できるのは、勿論のことである。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
Note that the present invention is not limited to the embodiments described above. For example, it is not necessary that one of the same polarity opposing magnets be a normal conducting coil and the other a superconducting coil, and both may be normal conducting coils or superconducting coils. Furthermore, the magnet to be moved is not limited to the upper magnet, but may be the lower magnet, or both may be movable. However, although superconducting coils are suitable for obtaining a strong magnetic field, it is not easy to move them. Therefore, as in the above embodiment, one is made up of a normal conducting coil to make it movable, and the other is made of a superconducting coil. It is practical to configure and fix this. Furthermore, instead of moving the magnet, the excitation current of the magnet may be varied. Also in this case, the excitation current of at least one of the same-polarity opposing magnets may be made variable. Furthermore, it goes without saying that the present invention can be applied not only to the pulling of GaAS single crystals but also to the pulling and manufacturing of GaP, InP, and other single crystals. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】 第1図は本発明の一実施例に係わる半導体単結晶の製造
装置を示す概略構成図、第2図は上記装置を用いた場合
の水平方向磁場分布及び温度分布を示す模式図、第3図
(a)(b)は従来装置を示す概略構成図、第4図は上
記装置の問題点を説明するための模式図、第5図はカス
プ磁場を用いた従来装置を示す概略構成図である。 11・・・ルツボ、12・・・原料融液、13・・・液
体カプセル層、14・・・引上げ単結晶、15・・・種
結晶、21・・・上部磁石、22・・・下部磁石、23
・・・ガイド体、24・・・磁界分布、27・・・温度
分布。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 (a) (b)
[Brief Description of the Drawings] Fig. 1 is a schematic configuration diagram showing a semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention, and Fig. 2 shows the horizontal magnetic field distribution and temperature distribution when the above-mentioned apparatus is used. 3(a) and 3(b) are schematic diagrams showing a conventional device, FIG. 4 is a schematic diagram for explaining the problems of the above device, and FIG. 5 is a conventional device using a cusp magnetic field. FIG. 11... Crucible, 12... Raw material melt, 13... Liquid capsule layer, 14... Pulled single crystal, 15... Seed crystal, 21... Upper magnet, 22... Lower magnet , 23
... Guide body, 24 ... Magnetic field distribution, 27 ... Temperature distribution. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 (a) (b)

Claims (5)

【特許請求の範囲】[Claims] (1)ルツボ内に収容した原料融液に直流磁界を印加し
てチョクラルスキー法により単結晶を引上げ製造する単
結晶の製造装置において、前記ルツボの上下に対向配置
され、ルツボ軸に対し等軸対称的且つ放射状のカスプ磁
界を印加する同極対向磁石と、これらの磁石の少なくと
も一方を上下方向に移動、或いは少なくとも一方の励磁
電流を可変してルツボ内の原料融液の温度分布及び対流
抑制を最適化する手段とを具備してなることを特徴とす
る単結晶の製造装置。
(1) In a single crystal production device that applies a direct current magnetic field to a raw material melt housed in a crucible to pull and produce a single crystal using the Czochralski method, the devices are arranged oppositely above and below the crucible, and are arranged equilaterally with respect to the crucible axis. Opposed magnets with the same polarity that apply an axisymmetric and radial cusp magnetic field, and moving at least one of these magnets in the vertical direction or varying the excitation current of at least one of them to control the temperature distribution and convection of the raw material melt in the crucible. 1. A single-crystal production apparatus characterized by comprising means for optimizing suppression.
(2)前記磁石のうち一方は常電導コイルからなり上下
方向に移動自在に設けられ、且つ他方は超電導コイルか
らなり固定されたものであることを特徴とする特許請求
の範囲第1項記載の単結晶の製造装置。
(2) One of the magnets is made of a normal conducting coil and is provided to be movable in the vertical direction, and the other is made of a superconducting coil and is fixed. Single crystal production equipment.
(3)前記磁石のうち一方は常電導コイルからなりその
励磁電流が可変可能であり、且つ他方は超電導コイルか
らなりその励磁電流は一定であることを特徴とする特許
請求の範囲第1項記載の単結晶の製造装置。
(3) One of the magnets is made of a normal conducting coil and its excitation current is variable, and the other is made of a superconducting coil and its exciting current is constant. single crystal production equipment.
(4)前記磁石のうち一方は常電導コイルからなり上下
方向に移動自在に設けられると共に、その励磁電流が可
変可能であり、且つ他方は超電導コイルからなり固定さ
れその励磁電流は一定であることを特徴とする特許請求
の範囲第1項記載の単結晶の製造装置。
(4) One of the magnets is made of a normal-conducting coil and is provided so as to be movable in the vertical direction, and its excitation current is variable, and the other is made of a superconducting coil and is fixed and its excitation current is constant. An apparatus for producing a single crystal according to claim 1, characterized in that:
(5)前記最適化する手段は、前記ルツボ内の原料融液
の表面で垂直磁界印加に比べて横方向温度勾配が小さい
軸対称な水平磁界を形成することである特許請求の範囲
第1項記載の単結晶の製造装置。
(5) The optimization means is to form an axially symmetrical horizontal magnetic field with a smaller lateral temperature gradient on the surface of the raw material melt in the crucible than when applying a vertical magnetic field. The apparatus for producing the single crystal described above.
JP6442985A 1985-03-28 1985-03-28 Unit for single crystal production Pending JPS61222984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6442985A JPS61222984A (en) 1985-03-28 1985-03-28 Unit for single crystal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6442985A JPS61222984A (en) 1985-03-28 1985-03-28 Unit for single crystal production

Publications (1)

Publication Number Publication Date
JPS61222984A true JPS61222984A (en) 1986-10-03

Family

ID=13258020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6442985A Pending JPS61222984A (en) 1985-03-28 1985-03-28 Unit for single crystal production

Country Status (1)

Country Link
JP (1) JPS61222984A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360191A (en) * 1986-08-29 1988-03-16 Sumitomo Metal Ind Ltd Crystal growth method
JPS63248793A (en) * 1987-04-03 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for growing uniform crystal
US4847052A (en) * 1986-04-30 1989-07-11 Toshiba Ceramics Co., Ltd. Device for growing single crystals
JPH01246192A (en) * 1988-03-29 1989-10-02 Toshiba Corp Device for pulling up single crystal
JPH01282185A (en) * 1988-05-09 1989-11-14 Nippon Telegr & Teleph Corp <Ntt> Method for growing crystal
JPH0255284A (en) * 1988-08-22 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> Method for controlling concentration of contaminating impurity
US5137077A (en) * 1989-06-09 1992-08-11 Nippon Steel Corporation Method of controlling flow of molten steel in mold
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
US5779792A (en) * 1996-01-12 1998-07-14 Mitsubishi Materials Silicon Corporation Single crystal pulling apparatus
KR100239864B1 (en) * 1995-06-01 2000-01-15 와다 다다시 Manufacturing method of single crystal and apparatus therefor
US6258163B1 (en) 1998-09-08 2001-07-10 Sumitomo Metal Industries, Ltd. Method for producing silicon single crystal
US8172941B2 (en) 2006-12-20 2012-05-08 Siltronic Ag Method and device for producing semiconductor wafers of silicon

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847052A (en) * 1986-04-30 1989-07-11 Toshiba Ceramics Co., Ltd. Device for growing single crystals
JPS6360191A (en) * 1986-08-29 1988-03-16 Sumitomo Metal Ind Ltd Crystal growth method
JPS63248793A (en) * 1987-04-03 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for growing uniform crystal
JP2592244B2 (en) * 1987-04-03 1997-03-19 日本電信電話株式会社 Equipment for growing uniform crystals
JPH01246192A (en) * 1988-03-29 1989-10-02 Toshiba Corp Device for pulling up single crystal
JPH01282185A (en) * 1988-05-09 1989-11-14 Nippon Telegr & Teleph Corp <Ntt> Method for growing crystal
JPH0255284A (en) * 1988-08-22 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> Method for controlling concentration of contaminating impurity
US5137077A (en) * 1989-06-09 1992-08-11 Nippon Steel Corporation Method of controlling flow of molten steel in mold
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
KR100239864B1 (en) * 1995-06-01 2000-01-15 와다 다다시 Manufacturing method of single crystal and apparatus therefor
US5779792A (en) * 1996-01-12 1998-07-14 Mitsubishi Materials Silicon Corporation Single crystal pulling apparatus
KR100438628B1 (en) * 1996-01-12 2004-09-16 미쓰비시 마테리알 가부시키가이샤 Single crystal pulling device
DE19700403B4 (en) * 1996-01-12 2013-04-11 Mitsubishi Materials Silicon Corp. single crystal
US6258163B1 (en) 1998-09-08 2001-07-10 Sumitomo Metal Industries, Ltd. Method for producing silicon single crystal
US8172941B2 (en) 2006-12-20 2012-05-08 Siltronic Ag Method and device for producing semiconductor wafers of silicon

Similar Documents

Publication Publication Date Title
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
CN101133193B (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JPS61222984A (en) Unit for single crystal production
JPH09188590A (en) Production of single crystal and apparatus therefor
US5925185A (en) Magnetic field-applied fabrication method for a semiconductor single crystal and an apparatus therefor
Watanabe et al. Silicon crystal growth by the electromagnetic Czochralski (EMCZ) method
US20220205136A1 (en) Crystal growth method and crystal growth apparatus
JPH0212920B2 (en)
JPS5850953B2 (en) crystal growth method
JPH05155682A (en) Method for pulling up silicon single crystal
JP2004315289A (en) Method for manufacturing single crystal
JP2004189559A (en) Single crystal growth method
JP2000086392A (en) Production of silicon single crystal
JPH11278993A (en) Growth of single crystal
JP2003095788A (en) Silicon single crystal pulling method
GB2198966A (en) Method of growing silicon dendritic-web crystals
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
JP3840683B2 (en) Single crystal pulling method
JP2021080112A (en) Apparatus and method for pulling single crystal
JP2000239096A (en) Production of silicon single crystal
JP3521862B2 (en) Single crystal growth method
JP2001089289A (en) Method of pulling single crystal
JP3449096B2 (en) Material input method in single crystal pulling apparatus
KR100221087B1 (en) Silicon single crystal and its growing method
JPH055796B2 (en)