JPH0255284A - Method for controlling concentration of contaminating impurity - Google Patents

Method for controlling concentration of contaminating impurity

Info

Publication number
JPH0255284A
JPH0255284A JP20778688A JP20778688A JPH0255284A JP H0255284 A JPH0255284 A JP H0255284A JP 20778688 A JP20778688 A JP 20778688A JP 20778688 A JP20778688 A JP 20778688A JP H0255284 A JPH0255284 A JP H0255284A
Authority
JP
Japan
Prior art keywords
melt
magnetic field
component
concentration
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20778688A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirata
洋 平田
Keigo Hoshikawa
圭吾 干川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20778688A priority Critical patent/JPH0255284A/en
Publication of JPH0255284A publication Critical patent/JPH0255284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the concentration of contaminating impurities from a vessel in a crystal in a wide range by changing the magnitude ratio of a component of a magnetic field intersecting the surface on a melt of a crystal material at right angles to a component of a magnetic field intersecting the contact interface between the melt and the vessel at right angles. CONSTITUTION:A perpendicular component of a magnetic field intersecting the surface 16 on a melt 2 of a crystal material having electric conductivity in a molten state, a perpendicular component of a magnetic field intersecting the bottom of the melt 2 which is an interface where the melt 2 and a quartz crucible 1 contact and a horizontal component of a magnetic field intersecting the sides of the melt 2 at right angles are present. In the process, the magnitude ratio of the component of the magnetic field intersecting the surface 16 of the melt 2 at right angles to the component of the magnetic field intersecting the contact interface between the melt 2 and the crucible 1 at right angles is changed to vary the concentration of impurities, such as oxygen, in the melt 2. For example, if only convection near the wall of the crucible 1 is suppressed, the dissolved oxygen stays near the wall of the crucible 1. Thereby, decomposition of the guartz, i.e. dissolution of the oxygen hardly occurs and the oxygen concentration in the melt 2 is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体、金属など溶融状態において電気伝導
体である各種材料の、融液からの結晶成長時における混
入不純物の制御方法に係わシ、特に融液全収容する容器
から混入する不純物、例えば酸素の濃度を広範囲に且つ
容易に制御することができるようにした混入不純物濃度
の制御方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling impurities mixed in during crystal growth from a melt of various materials such as semiconductors and metals that are electrical conductors in a molten state. In particular, the present invention relates to a method for controlling the concentration of impurities, such as oxygen, which is introduced from a container containing all of the melt, in a wide range and easily.

〔従来の技術〕[Conventional technology]

容器内に収容した融液から結晶を成長させる結晶の成長
方法においては、容器構成材料の一部が融液中に溶は込
み、結晶中へ不純物として混入することが多い。このよ
うな混入不純物は結晶の品質として有益な場合も1反対
に有害な場合もある。
In a crystal growth method in which a crystal is grown from a melt contained in a container, a portion of the material constituting the container often dissolves into the melt and mixes into the crystal as an impurity. Such impurities may be beneficial to the quality of the crystal, or they may be harmful.

例えば結晶がシリコンである場合の酸素はこのような二
面性を持つ代表的な混入不純物である。この場合のゾυ
コン結晶は、石英るつぼと称する容器内にシリコンの融
液を収容し、この融液から結晶を引上げて成長させるい
わゆるCZ法により成長させられた結晶である。この成
長の際に、融液に接触する石英るつぼの壁面がシリコン
と酸素に分解して酸素が融液中に溶は込み、この酸素は
融液中を対流に乗って移動し、融液の表面から蒸発する
と同時に結晶の成長界面全通して結晶中に混入する。こ
のようくしてシリコン結晶中に混入した酸素は、結晶と
機械的に強くして転位の発生や伝搬を抑制し、また結晶
の内部で析出して鉄、ニッケル、クロム等の汚染金属全
吸収し、各種半導体装置の特性の向上に役立つ有益な側
面がある。
For example, when the crystal is silicon, oxygen is a typical mixed impurity that has such dual properties. In this case, zoυ
Con crystal is a crystal grown by the so-called CZ method, in which a silicon melt is placed in a container called a quartz crucible, and the crystal is grown by pulling it from the melt. During this growth, the wall of the quartz crucible that comes into contact with the melt decomposes into silicon and oxygen, and the oxygen dissolves into the melt.This oxygen moves through the melt by convection, and the melt At the same time as it evaporates from the surface, it mixes into the crystal through the entire growth interface of the crystal. Oxygen mixed into the silicon crystal in this way strengthens the crystal mechanically and suppresses the generation and propagation of dislocations, and also precipitates inside the crystal and absorbs all contaminant metals such as iron, nickel, and chromium. , there are beneficial aspects that help improve the characteristics of various semiconductor devices.

以下従来法1という。Hereinafter, this will be referred to as conventional method 1.

またシリコン単結晶中の酸素濃度の制御に係わは、第9
図に示すように、石英るつぼ1内に収容された融液2に
水平方向の磁界3t−印加することによって、融液2の
見掛は上の粘性を高めて対流の抑制を行ない、石英るつ
ぼlからの酸素の溶解縦断面図において、結晶4を引上
げ軸6に従って矢印7の如く回転させ、またるつぼ1を
支持軸8に従って矢印9の如く回転させ、るつぼの回転
数を変化させることによって融液2とるつ#′?:1の
間の擦れ合いの程度を変化させてるつぼ1の溶解を制御
し、酸素濃度上制御する技術が提案された。
Regarding the control of oxygen concentration in silicon single crystals, the 9th
As shown in the figure, by applying a horizontal magnetic field 3t to the melt 2 housed in the quartz crucible 1, the apparent viscosity of the melt 2 is increased and convection is suppressed. In the vertical cross-sectional view of the melting of oxygen from L, the crystal 4 is rotated as shown by the arrow 7 along the pulling shaft 6, the crucible 1 is rotated as shown by the arrow 9 along the support shaft 8, and the rotational speed of the crucible is changed. Liquid 2 and melt #'? A technique has been proposed to control the dissolution of the crucible 1 by changing the degree of friction between the molten metal and the oxygen concentration.

以下従来法3という。Hereinafter, this will be referred to as conventional method 3.

一方、軸対称的かつ放射状のカスプ磁界を融液に印加す
る技術が特開昭58−217493号公報によ)提案さ
れた。この提案では、例えば第10図に縦断面図を示す
ように、融液2中を矢印10の如く循環して流れる対流
の各部に直交するべく、磁力線の矢印11によって示さ
れるカスプ磁界を印加して、対流10全均一に抑制し、
それによって均一な円形断面および結晶性全有し、かつ
るつぼからの汚染の少ない結晶4t−製造することが目
的であった。そのため、カスプ磁界11の印加手段とし
ての互いに逆方向の周回電流12と13の流れるコイル
対14と15が、融液2を中央として上下にほぼ等間隔
に配置され、融液2の深さの1/2の位置に放射状の水
平磁界が形成された。この方法によれば、対流10の上
記抑制により、るつぼ1内面からの汚染が融液全体に広
がるの全防止でき、例えばG a A sである結晶4
の成長において残留(あるいは混入)不純物濃度が約1
/工0になったとされた。ところが、他の出願者による
特開昭61−222984号公報においては、第11図
Aに縦断面図を示すように、融液の表面16の位置に軸
対称な水平磁界を形成するようなコイル対14および1
5の配置が、横方向温度勾配が小さいと込う観点からカ
スプ磁界11の最適な印加状態であるとされた。またこ
の配置によ)、GaAsである結晶4の低転位化とるつ
ぼ材からの混入不純物の低減の効果が述べられた。従つ
て上記2件のカスプ磁界印加に関する公開特許公報の教
示するところにより、融液とカスブ磁界印加手段の間の
相対位置関係が2徨類異なった場合について公知とされ
た。しかし、これら2件の提案では、両者共それぞれの
理由から、混入不純物については減少するから有利であ
るということしか述べられていなかった。従って、カス
プ磁界を印加して混入不純物の濃度を様々に制御すると
いう概念は、従来全く存在しなかった。なお、特開昭6
1−222984号公報においては、例えば第11図人
のように、コイル対14と15ヲ支持具17に従って矢
印18のように上下方向に移動させる技術も提案された
。しかしこの技術は、例えば第11図人の状態から第1
1図Bの状態へと結晶4の成長の進行などによって融液
2の量が変化した場合に、融液の表面16とコイル対1
4および15の間の相対位置関係が最適状態からずれる
のを防止するだけが目的であって、融液量が一定である
場合には全く意味のないものであった。
On the other hand, a technique for applying an axially symmetrical and radial cusp magnetic field to the melt was proposed (Japanese Patent Laid-Open No. 58-217493). In this proposal, for example, as shown in a longitudinal cross-sectional view in FIG. 10, a cusp magnetic field indicated by arrows 11 of lines of magnetic force is applied to be perpendicular to each part of the convection that circulates as indicated by arrows 10 in the melt 2. to uniformly suppress all convection,
Thereby, the objective was to produce a crystal 4T having a uniform circular cross section and complete crystallinity, and with less contamination from the crucible. Therefore, a pair of coils 14 and 15 through which circulating currents 12 and 13 flow in mutually opposite directions as means for applying the cusp magnetic field 11 are arranged vertically at approximately equal intervals with the melt 2 at the center, and the depth of the melt 2 is A radial horizontal magnetic field was formed at the 1/2 position. According to this method, by suppressing the convection 10, it is possible to completely prevent contamination from the inner surface of the crucible 1 from spreading throughout the melt.
The concentration of residual (or mixed) impurities in the growth of
/ labor was said to be 0. However, in Japanese Unexamined Patent Application Publication No. 61-222984 by another applicant, as shown in a longitudinal cross-sectional view in FIG. versus 14 and 1
The arrangement No. 5 was considered to be the optimum application state of the cusp magnetic field 11 from the viewpoint of a small transverse temperature gradient. Furthermore, it was stated that this arrangement has the effect of lowering the dislocations of the crystal 4, which is GaAs, and reducing the amount of impurities mixed in from the crucible material. Therefore, based on the teachings of the above-mentioned two patent publications regarding the application of a cusp magnetic field, cases where the relative positional relationship between the melt and the cusp magnetic field applying means are different in two categories are known. However, in these two proposals, for their own reasons, they only stated that they are advantageous because they reduce the amount of mixed impurities. Therefore, the concept of applying a cusp magnetic field to variously control the concentration of mixed impurities has not existed in the past. In addition, Japanese Patent Publication No. 6
In Japanese Patent No. 1-222984, a technique was also proposed in which the coil pairs 14 and 15 are moved vertically in the direction of the arrow 18 according to the support 17, as shown in FIG. 11, for example. However, this technique is difficult to use, for example, from the human state in Figure 11 to the
When the amount of the melt 2 changes to the state shown in Figure 1B due to progress of growth of the crystal 4, etc., the surface 16 of the melt and the coil pair 1
The purpose of this method is only to prevent the relative positional relationship between No. 4 and No. 4 and No. 15 from deviating from the optimum state, and it is completely meaningless when the amount of melt is constant.

ところで本願発明者らは第10図等で示されたカスプ磁
界が軸対称磁界であること、磁界の強さや方向が場所に
よって異なフ垂直と水平の両成分を含むこと、磁界発生
手段が小形で軽量であること、外部への漏洩磁界が少な
いこと等の特徴を有することに着目し、種々具体的に実
験および考察を行ってきた。その結果、先に特願昭62
−83348 (特開昭 −)および特願昭63−11
2288(%開昭 −)で提案したように、第11図人
、Bと同様に分布するカスブ磁界11全印加し、コイル
対14と15に流す励磁電流12と13の大きさ全同時
に変化させる、即ちカスプ磁界の強さを変化させること
により石英るつぼ全周いるC3法シリコン結晶中への混
入不純物である酸素の濃度の制御ができること全初めて
見出した。この方法は、酸素濃度の制御に有効な一つの
方法であった。以下従来法4という。
By the way, the inventors of the present application have discovered that the cusp magnetic field shown in FIG. Focusing on the characteristics such as being lightweight and having little magnetic field leakage to the outside, we have conducted various specific experiments and discussions. As a result, the first patent application filed in 1986
-83348 (Japanese Unexamined Patent Application No. Sho 63-11) and Patent Application Sho 63-11
As proposed in 2288 (% Kaisho -), apply the entire cusp magnetic field 11 distributed similarly to Figure 11 and B, and change the magnitudes of the excitation currents 12 and 13 flowing through the coil pairs 14 and 15 at the same time. That is, we have discovered for the first time that by changing the strength of the cusp magnetic field, it is possible to control the concentration of oxygen, which is an impurity, mixed into the C3 method silicon crystal around the entire periphery of a quartz crucible. This method was an effective method for controlling oxygen concentration. Hereinafter, this will be referred to as conventional method 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来法1は、半導体装置の活性領域内で酸素が析出し欠
陥となった場合には、リーク電流を発生させるなど半導
体装置の特性1[化させることがある。また酸素はす〜
マルドナーと呼ばれる電気的に活性な準位を形成しやす
く、結晶の比抵抗を不安定にして高抵抗化の障害となる
。このような先に述べた利点とともに長短二面性のため
、シリコン結晶中の酸素の濃度には最適値と一概に言え
るものはなく、製造する半導体装置の種類や製造方法に
よって変化する様々な濃度の結晶が要求される。従って
、酸素濃度を広範囲に且つ容易に制御できる技術が強く
期待される。
In conventional method 1, when oxygen precipitates and becomes a defect in the active region of a semiconductor device, the characteristics of the semiconductor device may be changed, such as by generation of leakage current. There's oxygen again~
It tends to form an electrically active level called a maldonor, which destabilizes the specific resistance of the crystal and becomes an obstacle to increasing the resistance. In addition to the above-mentioned advantages, due to the dual nature of long and short, there is no single optimum value for the concentration of oxygen in silicon crystals, and there are various concentrations that vary depending on the type of semiconductor device being manufactured and the manufacturing method. crystals are required. Therefore, there are strong expectations for a technology that can easily control oxygen concentration over a wide range.

また従来法2は、融液2の全体に一定方向の磁界3を印
加するために、磁界印加手段として極めて巨大な電磁石
5が必要であった。ti十分な磁界の効果を得るためK
は4000エルステツド(tたは4000ガウス)とい
う強力な磁界が必要であシ、外部への漏洩磁界も膨大な
ものとなって周辺機器の特性を劣化させることがあるな
どの欠点があった。
Further, in the conventional method 2, in order to apply a magnetic field 3 in a fixed direction to the entire melt 2, an extremely large electromagnet 5 is required as a magnetic field applying means. tiK to obtain sufficient magnetic field effect
This requires a strong magnetic field of 4,000 Oersted (t or 4,000 Gauss), and has the disadvantage that a huge amount of magnetic field leaks to the outside, which can deteriorate the characteristics of peripheral equipment.

従来法3の技術においては、例えば1桁の範囲で酸素濃
度を制御するためには、るつぼ回転数を0.01 rp
mから10Orpmまで変化させなければならなかった
。その場合、るつぼ回転数音例えばlrpm以下と極端
に遅くすればるつぼ1の円周に沿った温度分布が非対称
になシ、反対に数1Orpm以上と極端に速くすれば融
液面の変化や振動が激しくなシ、何れの場合にも結晶の
成長そのものが困難になるため歩留シが下がるので、制
御し得る酸素濃度の範囲は実際には非常に狭いものとな
らざるを得ないという欠点があった。
In the technique of Conventional Method 3, for example, in order to control the oxygen concentration in a one-digit range, the crucible rotation speed is set to 0.01 rp.
m to 10 Orpm had to be varied. In that case, if the crucible rotation speed is extremely slow, for example less than 1 rpm, the temperature distribution along the circumference of the crucible 1 will not be asymmetrical, whereas if it is extremely fast, for example more than a few orpm, changes in the melt surface and vibrations will occur. In either case, the crystal growth itself becomes difficult and the yield decreases, so the range of oxygen concentration that can be controlled is actually very narrow. there were.

本発明は上記従来法4のカスプ磁界を印加する方法につ
いて、さらに実験と考察を重ねて初めて到達したもので
あシ、本発明の目的は、磁界印加手段の大形化、漏洩磁
界の増大、るつぼ回転数の広範囲にわたる変化の必要性
、などの従来技術の欠点を解決した混入不純物濃度の優
れた制御方法を提供することICある。
The present invention was achieved for the first time through further experiments and considerations regarding the method of applying a cusp magnetic field in Conventional Method 4.The purpose of the present invention is to increase the size of the magnetic field applying means, increase the leakage magnetic field, It is an object of the present invention to provide an improved method for controlling contamination impurity concentrations that overcomes the shortcomings of the prior art, such as the need to vary the crucible rotational speed over a wide range.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、半導体、金属など溶
融状態において電気伝導性を有する結晶材料の、融液か
らの結晶成長時における混入不純物濃度の制御方法にお
いて、電気伝導性を有する結晶材料の融液が収容された
容器と、前記融液から結晶を成長させる手段と、前記融
液に対して場所によって異なる垂直成分と水平成分とか
ら成る磁界を印加する手段とを設け、前記融液の表面に
直交する磁界の成分と前記融液の前記容器との接触界面
に直交する磁界の成分の大きさの比を変化させて混入不
純物濃度の制御を行うこと′!i−特徴としている。
To achieve the above object, the present invention provides a method for controlling the concentration of impurities mixed in during crystal growth of crystalline materials such as semiconductors and metals that have electrical conductivity in a molten state from a melt. A container containing a melt, a means for growing a crystal from the melt, and a means for applying a magnetic field having a vertical component and a horizontal component that differ depending on the location to the melt are provided, Controlling the concentration of mixed impurities by changing the ratio of the magnitude of the magnetic field component perpendicular to the surface and the magnetic field component perpendicular to the contact interface of the melt with the container'! i- Features.

また前記磁界を印加する手段は、逆方向の周回電流によ
り励磁された上下対向配置のコイル対からなり、前記融
液の表面に直交する磁界の成分と融液の容器との接触界
面に直交する磁界の成分の大きさの比を変化させる手段
は、前記融液の表面と前記コイル対の間の相対位置関係
を変化させることからなることを特徴とする。
Further, the means for applying the magnetic field is composed of a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions, and the means for applying the magnetic field is perpendicular to the contact interface between the component of the magnetic field perpendicular to the surface of the melt and the container of the melt. The means for changing the ratio of the magnitudes of the components of the magnetic field is characterized by changing the relative positional relationship between the surface of the melt and the pair of coils.

また前記磁界を印加する手段は、逆方向の周回電流によ
り励磁された上下対向配置のコイル対からな)、前記融
液の表面に直交する磁界の成分と融液の容器との接触界
面に直交する磁界の成分の大きさの比を変化させる手段
は、コイルの間のアンペアター/の比を変化させること
からなることを特徴とする。
Further, the means for applying the magnetic field is a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions), and the means for applying the magnetic field is perpendicular to the contact interface between the component of the magnetic field perpendicular to the surface of the melt and the container of the melt. The means for changing the ratio of the magnitudes of the components of the magnetic field are characterized in that they consist of changing the ratio of amperes between the coils.

さらにまた前記磁界を印加する手段は、逆方向の周回電
流により励磁された上下対向配置のコイル対からなり、
前記融液の表面に直交する磁界の成分と融液の容器との
接触界面に直交する磁界の成分の大きさの比を変化させ
る手段は、コイルの間の距離を変化させることからなる
ことを特徴とするものである。
Furthermore, the means for applying the magnetic field comprises a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions;
The means for changing the magnitude ratio of the component of the magnetic field perpendicular to the surface of the melt and the component of the magnetic field perpendicular to the contact interface of the melt container comprises changing the distance between the coils. This is a characteristic feature.

〔作用〕[Effect]

本発明は、融液の表面に直交する磁界の成分と融液の容
器との接触界面に直交する磁界の成分の大きさの比を変
化させることによ)結晶への混入不純物濃度の制御を行
うことを最も主要な特徴とするものであることから、本
発明によれば、るつぼ内に収容した電気伝導性全有する
結晶材料の融液に対して場所によって異なる垂直成分と
水平成分とから成る磁界全印加し、その際、融液の表面
に直交する磁界の成分と、融液とるつぼの接触界面に直
交する磁界の成分の大きさの比を変化させることKよっ
て、るつぼ材から結晶中に混入する混入不純物の濃度を
広範囲に正確に制御することができる。以下図面にもと
づき実施例について説明する。
The present invention aims to control the concentration of impurities mixed into the crystal by changing the ratio of the magnitude of the magnetic field component perpendicular to the surface of the melt and the magnetic field component perpendicular to the contact interface between the melt and the container. According to the present invention, the melt of a crystalline material having an electrical conductivity housed in a crucible is composed of a vertical component and a horizontal component that differ depending on the location. By applying a full magnetic field and changing the ratio of the magnetic field component perpendicular to the surface of the melt and the magnetic field component perpendicular to the contact interface between the melt and the crucible, the crystals are removed from the crucible material. The concentration of impurities mixed in can be accurately controlled over a wide range. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

実施例1; 第1図人、B、Cは本発明の第一の実施例の代表的な3
条件を示す主要部の縦断面図である。従来の第9図、第
10図、第11図A、Bと同一箇所には同一番号を付し
て重複する詳細説明は省略するが、コイル対14と15
には同一のアンペアターンである逆方向電流12と13
が上記3条件に共通に流れて込る。その結晶得られたカ
スプ磁界が融液2t−含む種々の場所における磁界の強
さと方向’に!すベクトルとして多数の矢印19によっ
て詳しく示されている。この状態において、石英るつぼ
lが支持軸8に従って矢印20の如く上下自在に構成さ
れておシ、石英るつぼ1を上下させることによりシリコ
ン融液の表面16とコイル対14および150間の相対
位置関係全自由に変化させることができる。これにより
、融液の表面16がコイル対14と15の中間位置に比
べて、第1図人は高い位置に配置された場合を示してお
シ、第1図Bは同じ高さに配置された場合を示しておシ
、第1図Cは低い位置に配置された場合を示している。
Embodiment 1; Figure 1, B, and C are representative 3 of the first embodiment of the present invention.
FIG. 3 is a vertical cross-sectional view of main parts showing conditions. The same parts as in the conventional FIGS. 9, 10, and 11 A and B are given the same numbers and redundant detailed explanations are omitted, but coil pairs 14 and 15
have the same ampere turns of reverse current 12 and 13.
flows into the above three conditions in common. The resulting cusp magnetic field of the crystal is the strength and direction of the magnetic field at various locations containing the melt 2t-! This vector is illustrated in detail by a number of arrows 19. In this state, the quartz crucible 1 is configured to be able to move up and down as shown by the arrow 20 along the support shaft 8, and by moving the quartz crucible 1 up and down, the relative positional relationship between the surface 16 of the silicon melt and the coil pairs 14 and 150 is established. It can be changed completely freely. As a result, compared to the intermediate position between the coil pairs 14 and 15, the surface 16 of the melt is placed at a higher position, and Figure 1B shows the case where the surface 16 of the melt is placed at a higher position, and the case where the surface 16 of the melt is placed at the same height. FIG. 1C shows the case where it is placed at a low position.

このようにして融液の表面とコイル対の間の相対位置関
係を変化させれば、融液の表面に直交する磁界成分と融
液が石英るつぼに接触する界面に直交する磁界成分の大
きさの比を変化させることができる。ここでこの比を 
1融液表面への直交磁界成分1/I融液とるつぼの界面
への直交磁界成分1で定義し、以後 「表面直交磁界比
」と称する。まず第1図人においては、融液の表面16
に直交する垂直な磁界成分が存在し、融液2と石英るつ
ぼ1が接触する界面である融液2の底面に直交する垂直
な磁界成分も、融液2の側面に直交する水平な磁界成分
も存在する。この場合、「表面直交磁界比」は約1であ
る。これに対して第1図Bでは、融液の表面16に直交
する垂直な磁界成分だけが存在しないので、「表面直交
磁界比」は0である。また第1図Cでは、「表面直交磁
界比」が約0.7である。
By changing the relative positional relationship between the melt surface and the coil pair in this way, the magnitude of the magnetic field component perpendicular to the melt surface and the magnetic field component perpendicular to the interface where the melt contacts the quartz crucible can be changed. The ratio of can be changed. Now this ratio
1 The orthogonal magnetic field component to the melt surface is defined as 1/I orthogonal magnetic field component to the interface between the melt and the crucible, and is hereinafter referred to as the "surface orthogonal magnetic field ratio." First, in Figure 1, in humans, the surface of the melt 16
There is also a vertical magnetic field component perpendicular to the bottom surface of the melt 2, which is the interface where the melt 2 and the quartz crucible 1 come into contact, and a horizontal magnetic field component perpendicular to the sides of the melt 2. also exists. In this case, the "surface orthogonal magnetic field ratio" is approximately 1. On the other hand, in FIG. 1B, only the perpendicular magnetic field component perpendicular to the surface 16 of the melt does not exist, so the "surface perpendicular magnetic field ratio" is zero. In addition, in FIG. 1C, the "surface orthogonal magnetic field ratio" is approximately 0.7.

さて、シリコン融液から見た場合K、酸素は石英るフ[
Jパが融液と接触する底面および側面から溶解して溶は
込み、融液の表面から蒸発するという性質を持っている
。このように溶解と蒸発が並行して起こる場合には、こ
れら両者の起こシ易さの如何によって融液中の酸素濃度
が変化すると考えられる。そしてこれらの起こシ易さは
融液内の対流の強さく依存して変化する。例えば磁界の
無いCZ法では対流が非常に強いので溶解も蒸発も非常
に起こシ易い状態で融液中濃度が一定値にバランスして
いる。これに対して仮に石英−4′7It’壁付近の対
流だけが抑制されれば、溶解した酸素が石英る)1す”
壁の近くに滞留するため更に石英の分解、即ち酸素の溶
解が起こシにくくなシ、融液中の酸素濃度が低くなる。
Now, when viewed from the silicon melt, K and oxygen are quartz fluoride.
JPA has the property of melting and penetrating from the bottom and side surfaces that come into contact with the melt, and evaporating from the surface of the melt. When dissolution and evaporation occur in parallel in this way, it is thought that the oxygen concentration in the melt changes depending on how easily they occur. The ease with which these events occur varies depending on the strength of convection within the melt. For example, in the CZ method without a magnetic field, convection is very strong, so dissolution and evaporation are very likely to occur, and the concentration in the melt is balanced at a constant value. On the other hand, if only the convection near the quartz wall is suppressed, dissolved oxygen will flow into the quartz)
Since the melt remains near the wall, decomposition of quartz, that is, dissolution of oxygen, is less likely to occur, and the oxygen concentration in the melt becomes low.

融液中の酸素濃度が低くなれば、融液から成長する結晶
中の酸素濃度も低くなる。一方、表面付近の対流だけが
抑制されれば、融液の内部から表面まで酸素が移動しに
くくなるため酸素の蒸発が起こシにくくなり、融液中の
酸素濃度が高くなる。融液中の酸素濃度が高くなれば、
融液から成長する結晶中の酸素濃度も高くなる。
When the oxygen concentration in the melt decreases, the oxygen concentration in the crystal grown from the melt also decreases. On the other hand, if only the convection near the surface is suppressed, it becomes difficult for oxygen to move from the inside of the melt to the surface, making it difficult for oxygen to evaporate and increasing the oxygen concentration in the melt. If the oxygen concentration in the melt increases,
The oxygen concentration in the crystal growing from the melt also increases.

ところで、融液内の対流は磁界が印加されると次のよう
な原理で抑制される。即ち、速度ベクトルVの対流に対
して強度ベクトルHの磁界が加えられると、電磁誘導に
よりこれらのベクトル積に比例したI=σB=σμv 
X Hのベクトルで表される電流が対流する融液部分に
流れる。さらにこの電流に磁界が作用してF=す2(v
XH)XHのベクトルで表される対流抑制力が働き対流
は抑制される。ここでμは融液の透磁率であシ、σは電
気伝導率である。このような磁界による対流抑制原理を
、酸素の移動に関して重要な融液と石英る″”;) I
f”壁の界面および融液の表面に適用すると次のように
なる。まずこれらの境界面においては、対流も電流も境
界面を突き抜けて流れることはできなりので、境界面に
直交する成分は存在し得ない。言い替えれば、境界面に
平行な2次元の流れしか許容されない。従って境界面に
おいては、境界面に平行な磁界が印加されても、上記の
ベクトル積の関係から対流抑制力がほとんど発生しない
ので対流はほとんど抑制されない。これに対して境界面
に直交する磁界が印加されると、境界面付近で境界面に
平行である対流が全てこの磁界に直交しかつ境界面に平
行に電流が流れて対流抑制力が発生するため対流が効果
的に抑制される。
By the way, convection within the melt is suppressed by the following principle when a magnetic field is applied. That is, when a magnetic field of intensity vector H is applied to convection of velocity vector V, I=σB=σμv proportional to the product of these vectors due to electromagnetic induction.
A current represented by a vector of XH flows through the convective melt portion. Furthermore, a magnetic field acts on this current, F=S2(v
The convection suppressing force represented by the vector of XH)XH acts and convection is suppressed. Here, μ is the magnetic permeability of the melt, and σ is the electrical conductivity. The principle of convection suppression by magnetic fields is explained by the melt and quartz crystals, which are important for the movement of oxygen.'';) I
When applied to the interface of the f'' wall and the surface of the melt, the following is obtained. First, at these interfaces, neither convection nor current can flow through the interface, so the component perpendicular to the interface is In other words, only a two-dimensional flow parallel to the boundary surface is allowed. Therefore, even if a magnetic field parallel to the boundary surface is applied at the boundary surface, there is no convection suppressing force from the above vector product relationship. Since almost no convection occurs, convection is hardly suppressed.On the other hand, when a magnetic field perpendicular to the interface is applied, all convection that is parallel to the interface near the interface becomes perpendicular to this magnetic field and parallel to the interface. Convection is effectively suppressed because a current flows and a convection suppressing force is generated.

上記酸素の混入機構と磁界による対流の抑制機構を組合
せると、「表面直交磁界比」が大きいほど、溶解に比べ
て蒸発が相対的に強く抑制されるため、融液中および結
晶中の酸素濃度が高くなる。
Combining the oxygen mixing mechanism described above and the convection suppression mechanism by magnetic field, the larger the "surface perpendicular magnetic field ratio", the more strongly evaporation is suppressed compared to melting, so oxygen in the melt and crystals is suppressed. Concentration increases.

従って1表面直交磁界比」を変化させることKよって、
酸素濃度が様々なレベルに制御できるものと考えられる
。本実施例の3条件で比較すれば、酸素濃度は「表面直
交磁界比」の最も大きい第1図人の場合に最も高く、「
表面直交磁界比」の最も小さい第1図B図の場合に最も
低く、第1図Cの場合にそれらの中間になると考えられ
る。
Therefore, by changing the surface orthogonal magnetic field ratio,
It is believed that the oxygen concentration can be controlled at various levels. Comparing the three conditions of this example, the oxygen concentration is highest in the case of the person in Figure 1, who has the highest "surface orthogonal magnetic field ratio";
It is considered that the case of FIG. 1B, where the surface orthogonal magnetic field ratio is the smallest, is the lowest, and the case of FIG. 1C is intermediate therebetween.

第2図は本実施例による酸素濃度の制御効果を具体的に
説明する実験結果である。この実験では石英るつぼの直
径は15cm、シリコン融液の深さは7.5cmであ)
、直径7.6cmのシリコン結晶を成長させた。回転数
としては、結晶t−3Orpm rるつほを一1Orp
mとした。またコイル対としては超伝導体を用いた。第
2図において横軸はコイル対の中間位置から融液表面ま
での距離2と、この距離に対応して変化する「表面直交
磁界比」であシ、縦軸は結晶中の酸素濃度である。実験
結果として(a)。
FIG. 2 shows experimental results specifically explaining the effect of controlling oxygen concentration according to this example. In this experiment, the diameter of the quartz crucible was 15 cm, and the depth of the silicon melt was 7.5 cm.)
, a silicon crystal with a diameter of 7.6 cm was grown. As for the rotation speed, the crystal t-3 Orpm rrutsuho is 1 Orp.
It was set as m. In addition, a superconductor was used as the coil pair. In Figure 2, the horizontal axis is the distance 2 from the middle position of the coil pair to the melt surface, and the "surface orthogonal magnetic field ratio" that changes according to this distance, and the vertical axis is the oxygen concentration in the crystal. . As an experimental result (a).

(b)の2本の曲線が示されている。(a)はコイル対
のアンペアターンが同一の8.6 X 10’A−tu
rn/mの場合の結果であり、(blはコイル対のアン
ペアターンが同一の2.9 X IQ6A−turn 
/ mの場合の結果である。
Two curves in (b) are shown. (a) is a coil pair with the same ampere turns of 8.6 x 10'A-tu
The results are for rn/m, (bl is 2.9
/m.

また、第2図の中で4A、 4B、 4Cはそれぞれ第
1図A、第1図B、第1図Cに対応する点を示す。これ
らの実験結果として、まずアンペアターンが比較的大き
い、即ち比較的強いカスブ磁界を用いた(a)の場合に
は、結晶中の酸素濃度が例えば代表的な4A、 4B、
 4Cの点でそれぞれ13 X 10  atoms/
am +2.5 X 10”atoms/ Cm”、 
10 X 101017ato/ cm”となシ。
Further, in FIG. 2, 4A, 4B, and 4C indicate points corresponding to FIG. 1A, FIG. 1B, and FIG. 1C, respectively. As a result of these experiments, first, in the case of (a) where the ampere turn is relatively large, that is, a relatively strong Kasub magnetic field is used, the oxygen concentration in the crystal is, for example, 4A, 4B,
13 X 10 atoms/each at 4C points
am +2.5 x 10"atoms/cm",
10 x 101017ato/cm”.

従来のように磁界の強さやるつぼの回転数を変えること
なく、融液の表面とコイル対の間の相対位置関係を変化
させただけで約1桁の広い範囲で酸素濃度の制御を行う
ことができた。また比較的弱いカスプ磁界を用いた第2
図の<b+の場合にも結晶中の酸素濃度が変化する傾向
は上記(aJの場合と同様であシ、融液の表面とコイル
対の間の相対位置関係を変化させただけで酸素濃度の制
御を行うことができた。
Oxygen concentration can be controlled over a wide range of approximately one order of magnitude by simply changing the relative positional relationship between the melt surface and the coil pair, without changing the magnetic field strength or crucible rotation speed as in the past. was completed. In addition, a second method using a relatively weak cusp magnetic field
Even in the case of <b+ in the figure, the tendency for the oxygen concentration in the crystal to change is the same as in the case of aJ above. was able to control the

本実施例ではコイル対を固定し、るつぼを上下方向に移
動させて融液表面とコイル対との間の相対位置関係を変
化させたが、その反対にるつぼを固定してコイル対の方
を上下させても上記の相対位置関係を変化させることが
でき、この場合にも上で説明したと同様に酸素濃度の制
御を行うことができた。
In this example, the coil pair was fixed and the crucible was moved vertically to change the relative positional relationship between the melt surface and the coil pair. The above relative positional relationship could also be changed by moving it up and down, and in this case as well, the oxygen concentration could be controlled in the same way as described above.

実施例2: 第3図A、B、Cは本発明の第二の実施例を説明する縦
断面図である。この実施例では、上記第一の実施例に比
べて結晶の成長が進み、シリコン融液2の量が少なくな
っている。本実施例では「表面直交磁界比」が、第3図
人では約3.第3図Bでは0.第3図Cでは約0.6と
変化させられた。
Embodiment 2: FIGS. 3A, B, and C are longitudinal sectional views illustrating a second embodiment of the present invention. In this example, the crystal growth progresses and the amount of silicon melt 2 is reduced compared to the first example. In this example, the "surface orthogonal magnetic field ratio" is approximately 3. In Figure 3B, 0. In FIG. 3C, it was changed to about 0.6.

第4図は本実施例の効果を説明する実験結果である。こ
の場合、融液の深さが3 cmに浅くなっている他は、
第2図の場合と同じ実験条件とした。
FIG. 4 shows experimental results explaining the effects of this embodiment. In this case, except that the depth of the melt is shallow to 3 cm,
The experimental conditions were the same as in the case of FIG.

第4図の中の6A、6B、6Gはそれぞれ第3図人。6A, 6B, and 6G in Figure 4 are the people in Figure 3, respectively.

B 、CK対応するコイル中間位置から融液表面までの
距離を示す。(a)と(b)は第2図において説明した
トP]シ211類のアンペアターンのカスプ磁界におけ
る実験結果である。結晶中の酸素濃度は6Aの位置にお
いて最も高く、6Bの位置において最も低く、6Cの位
置においてその中間となシ、第2図の実験と同様に、融
液の表面とコイル対の間の相対位置関係を変化させるこ
とによって酸素濃度を広い範囲に制御することができた
B, CK shows the distance from the corresponding coil intermediate position to the melt surface. (a) and (b) are experimental results in the cusp magnetic field of the ampere turn of type 211 described in FIG. The oxygen concentration in the crystal is highest at position 6A, lowest at position 6B, and intermediate at position 6C.Similar to the experiment in Figure 2, the relative relationship between the surface of the melt and the coil pair By changing the positional relationship, the oxygen concentration could be controlled over a wide range.

実施例3: 第5図人、Bは本発明の第三の実施例を説明する実験結
果であって、上記第一および第二の実施例に基づいて結
晶の長さ方向の酸素濃度の分布を均一にし且つ酸素濃度
の様々な制御を実現したものである。
Example 3: Figure 5B shows the experimental results for explaining the third example of the present invention, which shows the distribution of oxygen concentration in the length direction of the crystal based on the first and second examples above. This makes it possible to make the oxygen concentration uniform and to control the oxygen concentration in various ways.

まず第5図人では、カスプ磁界を上記第一および第二の
実施例における(a)に相当する強いカスプ磁界とし、
コイル対の中間位置から融液表面までの距離を図の中に
2で示したように変化させながら結晶を長く連続的に成
長させ、融液の大部分を固化させた。その結果、長さ方
向に均一で且つ11X 101017ato / am
’から2.5 X 10 ” atoms / cm8
の広い範囲の様々な酸素濃度を有するシリコン結晶全得
ることができた。
First, in the case of Figure 5, the cusp magnetic field is a strong cusp magnetic field corresponding to (a) in the first and second embodiments,
While changing the distance from the middle position of the coil pair to the melt surface as shown by 2 in the figure, crystals were grown continuously for a long time, and most of the melt was solidified. As a result, it is uniform in the length direction and 11X 101017ato/am
’ to 2.5 X 10” atoms/cm8
It was possible to obtain whole silicon crystals with various oxygen concentrations over a wide range of .

次に第5図Bでは、カスプ磁界を上記第一および第二の
実施例における(b)に相当する弱い磁界とし、融液の
表面とコイル対の間の相対位置関係を図の中に2で示し
たように変化させながら結晶を長く連続的に成長させ、
融液の大部分を固化させた。その結果、長さ方向に均一
で且つ10 X 1017a t oms / cm”
から8 X 10”atoms / cm8の範囲の様
々な酸素濃度を有するシリコン結晶を得ることができた
Next, in FIG. 5B, the cusp magnetic field is set to a weak magnetic field corresponding to (b) in the first and second embodiments, and the relative positional relationship between the surface of the melt and the coil pair is shown in the figure. The crystals are grown continuously for a long time while changing as shown in
Most of the melt was solidified. As a result, it is uniform in the length direction and 10 x 1017a toms/cm”
Silicon crystals with various oxygen concentrations ranging from 8 X 10”atoms/cm could be obtained.

実施例4: 第6図A、Bは本発明の第四の実施例を説明する縦断面
図でちる。本実施例では、上側のコイル14ト下側のコ
イル15の間のアンペアターンの比を変化させることに
よって「表面直交磁界比」を変化させた。即ちコイル間
のアンペアターンの比以外は前記第1図人と同一の構成
および配置とし、第1図人では上側コイル14と下側コ
イルのアンペアターンが同−即ち比が1対1であったの
に対して、第6図人では0.8対1とし、第6図Bでは
1対0.8とした。これにより「表面直交磁界比」が第
1図人の場合の1に対して第6図人では0.06 。
Embodiment 4: FIGS. 6A and 6B are longitudinal sectional views illustrating a fourth embodiment of the present invention. In this example, the "surface orthogonal magnetic field ratio" was changed by changing the ampere-turn ratio between the upper coil 14 and the lower coil 15. That is, except for the ratio of ampere turns between the coils, the configuration and arrangement were the same as that of the Figure 1 person, and in the Figure 1 person, the ampere turns of the upper coil 14 and the lower coil were the same - that is, the ratio was 1:1. In contrast, the ratio was set to 0.8 to 1 for humans in Figure 6, and 1 to 0.8 for Figure 6 B. As a result, the "surface orthogonal magnetic field ratio" is 1 for the person in Figure 1, whereas it is 0.06 for the person in Figure 6.

第6図Bでは3に変化させられた。この実施例の効果を
明らかにするため、第6図人の構成では上側コイル14
0アンペアターンf 4.6 X 10’A−turn
/m、下側コイル15のアンペアターンを5.7 X 
10’A−turn/mとし、一方第6図Bの構成では
上下のコイル14と15のアンペアターンをこの反対に
して実験を行った。その結果、結晶4の酸素濃度が第6
図人の場合には6.2X1017atoms/cm”+
第6図Bの場合には21 X 101017ato/ 
am8となシ、アンペアターンの比をわずかに変化させ
ただけで酸素濃度を大幅に変化させて制御することがで
きた。
In FIG. 6B, it was changed to 3. In order to clarify the effect of this embodiment, in the human configuration shown in FIG. 6, the upper coil 14
0 amp turn f 4.6 x 10'A-turn
/m, lower coil 15 ampere turns 5.7
10'A-turn/m, while in the configuration shown in FIG. 6B, experiments were conducted with the ampere turns of the upper and lower coils 14 and 15 reversed. As a result, the oxygen concentration of crystal 4 is 6th
In case of figure 6.2X1017atoms/cm”+
In the case of Figure 6B, 21 x 101017ato/
It was possible to control the oxygen concentration by changing the oxygen concentration by only slightly changing the ratio between am8 and ampere turn.

実施例5: 第7図A、Bは本発明の第五の実施例を説明する縦断面
図である。本実施例では、上側のコイル14と下側のコ
イル15の間の距離を変化させることによって「表面直
交磁界比」を変化させた。第7図人は、融液の表面16
が上下のコイル14と15の中間位置よシ上側に離れて
おシその距離が1.5cmになっている(この場合Z=
L5cm)。他は前記第1図Aと同じ構成および配置で
ある。これに対して第7図Bでは、同じZ = 1.5
cmではあるが、上下のコイル間の距離が第7図人の場
合の2.5倍になっている。これにより「表面直交磁界
比」が第7図人の場合の0.45から第7図Bの場合の
0.53に変化させられた。この実施例の効果を明らか
にするため、第7図A、Bとも、上下のコイルのアンペ
アターンを同一の5.7 X 10’A−turn /
 mとして実験度の制御効果を確認した。本実施例では
前記の他の実施例に比べれば酸素濃度の制御範囲は狭か
ったが、所望の濃度に極めて正確に制御できるという利
点があった。
Embodiment 5: FIGS. 7A and 7B are vertical sectional views illustrating a fifth embodiment of the present invention. In this example, the "surface orthogonal magnetic field ratio" was changed by changing the distance between the upper coil 14 and the lower coil 15. Figure 7: The person is the surface of the melt 16
is separated upward from the middle position between the upper and lower coils 14 and 15, and the distance is 1.5 cm (in this case, Z=
L5cm). The rest of the structure and arrangement are the same as in FIG. 1A. On the other hand, in Figure 7B, the same Z = 1.5
cm, but the distance between the upper and lower coils is 2.5 times that of the human case in Figure 7. As a result, the "surface orthogonal magnetic field ratio" was changed from 0.45 in the case of the person in FIG. 7 to 0.53 in the case of FIG. 7B. In order to clarify the effect of this embodiment, the ampere turns of the upper and lower coils are the same in both Figures 7A and 7B, 5.7 x 10'A-turn/
The control effect of the degree of experiment was confirmed as m. Although the control range of oxygen concentration in this embodiment was narrower than in the other embodiments described above, it had the advantage of being able to control the oxygen concentration extremely accurately to a desired concentration.

実施例6: 第8図A、Bは本発明の第六の実施例全説明する縦断面
図である。本実施例では、前記第五の実施例と同様に上
側のコイル14と下側のコイル15の間の距離を変化さ
せることによって「表面直交磁界比」を変化させた。第
8図人は、融液の表面16が上下のコイル14と15の
中間位置よシ下側に離れておりその距離が1.5cmに
なっている(この場合Z −= −1,5am )。 
他は前記第1図Cと同じ構成および配置である。これに
対して第8図Bでは、同じZ = −1,5cmではあ
るが、上下のコイル間の距離が第8図人の場合の2.5
倍になっている。これにより「表面直交磁界比」が第8
図人の場合の0.43から第8図Bの場合の0.50 
に変化させられた。この実施例の効果と明らかにするた
め、第8図人、Bとも、上下のコイルのアンペアターン
f同一の5.7 X 10 A−turn/mとして実
験を行った。
Embodiment 6: FIGS. 8A and 8B are vertical cross-sectional views fully illustrating the sixth embodiment of the present invention. In this example, the "surface orthogonal magnetic field ratio" is changed by changing the distance between the upper coil 14 and the lower coil 15, as in the fifth example. In Figure 8, the surface 16 of the melt is located at a distance below the midpoint between the upper and lower coils 14 and 15, and the distance is 1.5 cm (in this case, Z −= −1,5 am). .
The rest of the configuration and arrangement are the same as those in FIG. 1C. On the other hand, in Figure 8B, although Z = -1.5cm is the same, the distance between the upper and lower coils is 2.5 cm as in the case of Figure 8.
It's doubled. As a result, the “surface orthogonal magnetic field ratio” becomes 8th.
From 0.43 in case of Figure 8 to 0.50 in case of Figure 8B
was changed to. In order to clarify the effects of this embodiment, an experiment was conducted with the ampere turns f of the upper and lower coils being the same for both the coils of Figure 8 and B, 5.7 x 10 A-turn/m.

その結果、結晶4の酸素濃度が第8図人(7)場合には
7.5 X 10” atoms / am” +第8
図Bの場合には8.5XIO”atoms/cm8とな
シ、前記第五の実施例と同様に酸素濃度の制御効果をa
認した。
As a result, if the oxygen concentration of crystal 4 is 7.5 x 10"atoms/am" + 8th
In the case of Figure B, it is 8.5XIO"atoms/cm8, and the oxygen concentration control effect is a as in the fifth embodiment.
Approved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、るつぼ内に収容
した電気伝導性を有する結晶材料の融液に対して場所に
よって異なる垂直成分と水平成分とから成る磁界を印加
し、その際、融液の表面に直交する磁界の成分と、融液
とるつほの接触界面に直交する磁界の成分の大きさの比
を変化させることによって、るつぼ材から結晶中に混入
する混入不純物の濃度を広範囲に正確に制御することが
できる。従って具体的には、実施例として説明した種々
の方法を適宜選択して用いることにより、種々の半導体
装置に適した混入不純物濃度の結晶を、周辺機器への悪
影響や歩留シの低下などを来たすことなく、極めて容易
に製造することができるという利点がある。
As explained above, according to the present invention, a magnetic field consisting of a vertical component and a horizontal component that differ depending on the location is applied to the melt of an electrically conductive crystalline material housed in a crucible, and at that time, the melt By changing the ratio of the magnetic field component perpendicular to the surface of the liquid and the magnetic field component perpendicular to the contact interface between the melt and the melt, the concentration of impurities mixed into the crystal from the crucible material can be controlled over a wide range. can be precisely controlled. Specifically, by appropriately selecting and using the various methods described in the examples, it is possible to produce crystals with impurity concentrations suitable for various semiconductor devices without adversely affecting peripheral devices or reducing yields. It has the advantage that it can be manufactured very easily without causing any problems.

なお、本発明の詳細説明ではシリコン結晶中の酸素を代
表的な混入不純物として取シ上げたが、るつぼ等の容器
の構成材料から融液中に混入し、融液の表面から蒸発し
ながら結晶中に混入するという性質を持つ混入不純物の
濃度制御には全τ本発明が有効であることは、第一の実
施例の説明の中で述べた本発明の原理から明らかである
In the detailed explanation of the present invention, oxygen in the silicon crystal was taken up as a typical impurity, but it is mixed into the melt from the constituent materials of the container such as a crucible, and crystallizes while evaporating from the surface of the melt. It is clear from the principle of the present invention described in the description of the first embodiment that the present invention is effective in controlling the concentration of impurities that have the property of being mixed into the liquid.

一方、本発明は、軸対称な磁界によって軸対称な温度分
布全維持し、それによ)成長縞などのない均一な結晶を
得ることができるという軸対称なカスプ磁界を印加する
方法の長所を損なうことは全くな込ので、均一性も極め
て良好な結果ができるという利点もある。
On the other hand, the present invention loses the advantage of the method of applying an axially symmetrical cusp magnetic field, which is that an axially symmetrical magnetic field can maintain the entire axially symmetrical temperature distribution, thereby obtaining a uniform crystal without growth striations. There is also the advantage that extremely good uniformity can be achieved since this is completely straightforward.

また、本発明の詳細な説明においては、磁界として従来
公知のカスプ磁界を例にして述べたが、本発明の効果は
上記カスプ磁界に限定されるものではない。即ち、本発
明に係わる磁界としては、場所によって異なる垂直成分
と水平成分とから成ることが具備すべき条件であること
は第一の実施例では説明した本発明の原理から明白であ
る。
Furthermore, in the detailed description of the present invention, a conventionally known cusp magnetic field was used as an example of the magnetic field, but the effects of the present invention are not limited to the cusp magnetic field. That is, it is clear from the principle of the present invention explained in the first embodiment that the magnetic field according to the present invention must be composed of a vertical component and a horizontal component that differ depending on the location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、B、Cは本発明の第一の実施例の代表的3条
件の構成を示す縦断面図、 第2図は第一の実施例の効果を示す実験結果。 第3図A、B、Cは結晶の成長後期に本発明を適用した
第二の実施例の代表的3条件の構成金示す縦断面図、 第4図は第二の実施例の効果を示す実験結果、第5図A
、Bは結晶の長さ方向に均一な酸素濃度制御を実現した
第三の実施例についての2種類の実験結果、 第6図人、Bは第四の実施例の代表的2条件の構成を示
す縦断面図、 第7図人、Bは第五の実施例の代表的2条件の構成を示
す縦断面図、 第8図A、Bは第六の実施例の代表的2条件の構成金示
す縦断面図、 第9図は水平方向の磁界印加を含む従来技術の構成を示
す縦断面図。 第10図はカスブ磁界印加による従来の対流抑制技術の
構成を示す縦断面図。 第11図人、Bは融液量変化に対応してカスプ磁界印加
手段を上下動させる手段を備えた従来技術の構成を示す
縦断面図、である。 ・・・るつtf ・・融液 ・・・水平磁界のベクトル ・・・結晶 ・・・水平磁界印加手段 6・・・結晶の引上げ軸 7・・・結晶回転 8・・・るつぼの支持軸 9・・・るつぼ回転 10・・・対流 11・・・カスプ磁界のベクトル 比・・・上側コイルの励磁電流 13・・・下側コイルの励磁電流 14・・・上側のコイル 15・・・下側のコイル 16・・・融液の表面 17・・・コイル対の支持具 18・・・コイル対の上下方向 19・・・磁界の強さ方向ベクトル 20・・・るつぼの上下方向 Cフ 特許出願人 日本電信電話株式会社 代理人 弁理士 玉蟲久五部(外2名)1表面直突碓界
迂」 コイル中間イ立!かI:l融濱貰面までの距離Z(cm
)第一の実施堡)の9jJ票を示す実験結果第  21
!l r、5面直交倣界比」 コイル中間位置から融液表面までの距離Z(cm)第二
の寞絶例の9jJ県を示す実験結果第 4  図 O 0,2 0,40,6 固化率 0.8 結晶の長さ方向に均一ケ酸素濃度制御を実現し1こ第三
の実施例1二ついての2種類の実験結果第 図 iN Oつ 融液′!変化に対応してカスア伍。界印カロ手r全2上
下幼さ亡る手段ξ1菌えlこ従氷技(肘の鷹成と示す縦
断面図 第 図
FIGS. 1A, B, and C are vertical cross-sectional views showing the configuration under three typical conditions of the first embodiment of the present invention, and FIG. 2 is an experimental result showing the effects of the first embodiment. Figures 3A, B, and C are vertical cross-sectional views showing the composition of three typical conditions of the second embodiment in which the present invention is applied in the late stage of crystal growth. Figure 4 shows the effect of the second embodiment. Experimental results, Figure 5A
, B shows two types of experimental results for the third embodiment that achieved uniform oxygen concentration control in the length direction of the crystal, and FIG. Figure 7 is a vertical cross-sectional view showing the configuration under two typical conditions of the fifth embodiment; Figures 8A and B are the configuration under two typical conditions of the sixth embodiment. FIG. 9 is a vertical cross-sectional view showing the configuration of a prior art technology including application of a horizontal magnetic field. FIG. 10 is a longitudinal cross-sectional view showing the configuration of a conventional convection suppression technique by applying a cusp magnetic field. FIG. 11B is a vertical cross-sectional view showing the configuration of a conventional technique provided with means for vertically moving the cusp magnetic field applying means in response to changes in the amount of melt. ...Crucible tf...Melt...Vector of horizontal magnetic field...Crystal...Horizontal magnetic field applying means 6...Crystal pulling axis 7...Crystal rotation 8...Crucible support axis 9... Crucible rotation 10... Convection 11... Vector ratio of cusp magnetic field... Exciting current of upper coil 13... Exciting current of lower coil 14... Upper coil 15... Lower Side coil 16...Surface of the melt 17...Support for the coil pair 18...Vertical direction of the coil pair 19...Magnetic field strength direction vector 20...Vertical direction of the crucible Applicant Nippon Telegraph and Telephone Co., Ltd. Agent Patent attorney Gobe Tamamushi (2 others) 1. Directly hitting the surface Usukai Ryo” Coil middle position! I: Distance Z (cm) to the receiving surface
) Experimental results No. 21 showing 9jJ votes for the first implementation area)
! L r, 5-plane orthogonal field ratio" Distance Z (cm) from the coil intermediate position to the melt surface Experimental results showing the second best example of 9jJ Figure 4 O 0,2 0,40,6 Solidification Achieving uniform oxygen concentration control in the length direction of the crystal with a ratio of 0.8, the results of two types of experiments are shown in Figure 1. Kasua Go responds to changes. Kaiin Karo Te r All 2 Upper and Lower Childhood Death Means ξ 1 Bacteria E l Koju Ice Technique (Longitudinal cross-sectional view showing elbow hawk formation)

Claims (4)

【特許請求の範囲】[Claims] (1)溶融状態において電気伝導性を有する結晶材料の
融液からの結晶成長時における混入不純物濃度の制御方
法において、 電気伝導性を有する結晶材料の融液が収容された容器と
、 前記融液から結晶を成長させる手段と、 前記融液に対して場所によって異なる垂直成分と水平成
分とから成る磁界を印加する手段とを設け、 前記融液の表面に直交する磁界の成分と前記融液の前記
容器との接触界面に直交する磁界の成分の大きさの比を
変化させて混入不純物濃度の制御を行う ことを特徴とする混入不純物濃度の制御方法。
(1) A method for controlling the concentration of mixed impurities during crystal growth from a melt of a crystalline material having electrical conductivity in a molten state, comprising: a container containing a melt of a crystalline material having electrical conductivity; and the melt. means for growing a crystal from the melt, and means for applying a magnetic field consisting of a vertical component and a horizontal component that differ depending on the location to the melt, and a means for applying a magnetic field consisting of a vertical component and a horizontal component that differ depending on the location, the component of the magnetic field orthogonal to the surface of the melt and the A method for controlling the concentration of mixed impurities, characterized in that the concentration of mixed impurities is controlled by changing the ratio of the magnitudes of components of the magnetic field perpendicular to the contact interface with the container.
(2)前記磁界を印加する手段は、逆方向の周回電流に
より励磁された上下対向配置のコイル対からなり、前記
融液の表面に直交する磁界の成分と融液の容器との接触
界面に直交する磁界の成分の大きさの比を変化させる手
段は、前記融液の表面と前記コイル対の間の相対位置関
係を変化させることからなることを特徴とする請求項1
記載の混入不純物濃度の制御方法。
(2) The means for applying the magnetic field consists of a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions, and the means for applying the magnetic field is arranged at the contact interface between the component of the magnetic field perpendicular to the surface of the melt and the container of the melt. 2. The means for changing the magnitude ratio of orthogonal magnetic field components comprises changing the relative positional relationship between the surface of the melt and the pair of coils.
Method for controlling the concentration of mixed impurities as described.
(3)前記磁界を印加する手段は、逆方向の周回電流に
より励磁された上下対向配置のコイル対からなり、前記
融液の表面に直交する磁界の成分と融液の容器との接触
界面に直交する磁界の成分の大きさの比を変化させる手
段は、コイルの間のアンペアターンの比を変化させるこ
とからなることを特徴とする請求項1記載の混入不純物
濃度の制御方法。
(3) The means for applying the magnetic field consists of a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions, and is arranged at the contact interface between the component of the magnetic field perpendicular to the surface of the melt and the container of the melt. 2. The method of claim 1, wherein the means for changing the magnitude ratio of orthogonal magnetic field components comprises changing the ampere-turn ratio between the coils.
(4)前記磁界を印加する手段は、逆方向の周回電流に
より励磁された上下対向配置のコイル対からなり、前記
融液の表面に直交する磁界の成分と融液の容器との接触
界面に直交する磁界の成分の大きさの比を変化させる手
段は、コイルの間の距離を変化させることからなること
を特徴とする請求項1記載の混入不純物濃度の制御方法
(4) The means for applying the magnetic field consists of a pair of coils arranged vertically opposite each other and excited by circulating currents in opposite directions, and is arranged at the contact interface between the magnetic field component orthogonal to the surface of the melt and the melt container. 2. The method of controlling the concentration of mixed impurities according to claim 1, wherein the means for changing the magnitude ratio of orthogonal magnetic field components comprises changing the distance between the coils.
JP20778688A 1988-08-22 1988-08-22 Method for controlling concentration of contaminating impurity Pending JPH0255284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20778688A JPH0255284A (en) 1988-08-22 1988-08-22 Method for controlling concentration of contaminating impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20778688A JPH0255284A (en) 1988-08-22 1988-08-22 Method for controlling concentration of contaminating impurity

Publications (1)

Publication Number Publication Date
JPH0255284A true JPH0255284A (en) 1990-02-23

Family

ID=16545481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20778688A Pending JPH0255284A (en) 1988-08-22 1988-08-22 Method for controlling concentration of contaminating impurity

Country Status (1)

Country Link
JP (1) JPH0255284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JPH05208887A (en) * 1992-01-30 1993-08-20 Shin Etsu Handotai Co Ltd Method for growing silicon single crystal rod by fz process and apparatus therefor
CN109811402A (en) * 2017-11-22 2019-05-28 上海新昇半导体科技有限公司 A kind of crystal pulling system and crystal pulling method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222984A (en) * 1985-03-28 1986-10-03 Toshiba Corp Unit for single crystal production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222984A (en) * 1985-03-28 1986-10-03 Toshiba Corp Unit for single crystal production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JPH05208887A (en) * 1992-01-30 1993-08-20 Shin Etsu Handotai Co Ltd Method for growing silicon single crystal rod by fz process and apparatus therefor
CN109811402A (en) * 2017-11-22 2019-05-28 上海新昇半导体科技有限公司 A kind of crystal pulling system and crystal pulling method

Similar Documents

Publication Publication Date Title
Hirata et al. Silicon crystal growth in a cusp magnetic field
US6702892B2 (en) Production device for high-quality silicon single crystals
JPS5874594A (en) Growing method for crystal
JP2017057127A (en) Single crystal pulling-up device and single crystal pulling-up method
EP0149189B1 (en) Gaas single crystal and preparation thereof
DE102013216378A9 (en) Apparatus and method for generating a homogeneous magnetic field for pulling a single crystal
JPH0255284A (en) Method for controlling concentration of contaminating impurity
WO2017199536A1 (en) Single crystal pulling device and single crystal pulling method
EP0943703A2 (en) Silicon single crystal and method for producing the same
Kotrbova et al. Growth and perfection of flux grown FeBO3 and 57FeBO3 crystals
JPH01282185A (en) Method for growing crystal
JPS58217493A (en) Method for pulling up single crystal
US20230175166A1 (en) Single-crystal pulling apparatus and single-crystal pulling method
JPS5850953B2 (en) crystal growth method
JP2572070B2 (en) Single crystal manufacturing method
JP2000086392A (en) Production of silicon single crystal
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
US3695941A (en) Preparation of eutectic material
JP2021080112A (en) Apparatus and method for pulling single crystal
JPH0160000B2 (en)
JPS61251594A (en) Apparatus for producing single crystal
JPH10120485A (en) Single crystal production apparatus
KR840001382B1 (en) Process for solidification
JPS6236096A (en) Production of single crystal and device therefor
US4810325A (en) Liquid-phase-epitaxy deposition method in the manufacture of devices