WO2017199536A1 - Single crystal pulling device and single crystal pulling method - Google Patents

Single crystal pulling device and single crystal pulling method Download PDF

Info

Publication number
WO2017199536A1
WO2017199536A1 PCT/JP2017/008434 JP2017008434W WO2017199536A1 WO 2017199536 A1 WO2017199536 A1 WO 2017199536A1 JP 2017008434 W JP2017008434 W JP 2017008434W WO 2017199536 A1 WO2017199536 A1 WO 2017199536A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
axis
magnetic field
flux density
magnetic flux
Prior art date
Application number
PCT/JP2017/008434
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 高野
孝世 菅原
友彦 太田
雅彦 浦野
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2017199536A1 publication Critical patent/WO2017199536A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a single crystal pulling apparatus and a single crystal pulling method using the same.
  • Semiconductors such as silicon and gallium arsenide are composed of a single crystal and are used for memory of computers ranging from small to large, and there is a demand for large capacity, low cost, and high quality storage devices.
  • a magnetic field is applied to a molten semiconductor raw material housed in a crucible, thereby generating a melt.
  • a method of manufacturing a large-diameter and high-quality semiconductor while suppressing thermal convection (generally referred to as a magnetic field application Czochralski (MCZ) method) is known.
  • a single crystal pulling apparatus 100 of FIG. 21 includes a pulling furnace 101 whose upper surface can be opened and closed, and has a structure in which a crucible 102 is built in the pulling furnace 101.
  • a heater 103 for heating and melting the semiconductor raw material 106 in the crucible 102 is provided around the crucible 102 inside the pulling furnace 101, and a pair of superconducting coils 104 (104 a, 104 a, A superconducting magnet 130 in which 104b) is built in a refrigerant container (hereinafter referred to as a cylindrical refrigerant container) 105 as a cylindrical container is disposed.
  • a refrigerant container hereinafter referred to as a cylindrical refrigerant container
  • the semiconductor raw material 106 is put in the crucible 102 and heated by the heater 103 to melt the semiconductor raw material 106.
  • a seed crystal descends from the upper part of the center of the crucible 102 into the molten liquid, and the seed crystal is pulled up in a pulling direction 108 at a predetermined speed by a pulling mechanism (not shown).
  • a crystal grows in the solid / liquid boundary layer, and a single crystal is generated.
  • a fluid motion of the melt induced by the heating of the heater 103 that is, thermal convection occurs, the melt that is pulled up is disturbed, and the yield of single crystal formation decreases.
  • the superconducting coil 104 of the superconducting magnet 130 is used as a countermeasure. That is, the semiconductor raw material 106 of the molten liquid is subjected to an operation deterring force due to the magnetic lines 107 generated by energizing the superconducting coil 104, and the grown single crystal slowly grows as the seed crystal is pulled up without convection in the crucible 102. It is pulled upward and manufactured as a solid single crystal 109.
  • a pulling mechanism for pulling the single crystal 109 along the central axis 110 of the crucible is provided above the pulling furnace 101, although not shown.
  • the superconducting magnet 130 is configured such that a superconducting coil 104 (104a, 104b) is accommodated in a cylindrical vacuum vessel 119 via a cylindrical refrigerant vessel 105. In this superconducting magnet 130, a pair of superconducting coils 104 a and 104 b facing each other through the central axis 110 in the vacuum vessel 119 are accommodated.
  • the pair of superconducting coils 104a and 104b is a Helmholtz type magnetic field coil that generates a magnetic field along the same horizontal direction. As shown in FIG. 21, the pulling furnace 101 and the central axis 110 of the vacuum vessel 119 are arranged. Magnetic field lines 107 that are perpendicular to the horizontal axis are generated (the position of the central axis 110 is referred to as the magnetic field center).
  • the superconducting magnet 130 includes a current lead 111 for introducing current into the two superconducting coils 104a and 104b, a first radiation shield 117 housed in the cylindrical refrigerant container 105, and A small helium refrigerator 112 for cooling the second radiation shield 118, a gas discharge pipe 113 for discharging helium gas in the cylindrical refrigerant container 105, a service port 114 having a supply port for supplying liquid helium, and the like are provided. Yes.
  • the pulling furnace 101 shown in FIG. 21 is disposed in the bore 115 (the inner diameter is D) of the superconducting magnet 130.
  • FIG. 23 shows the magnetic field distribution of the conventional superconducting magnet 130 described above.
  • a pair of superconducting coils 104 a and 104 b facing each other are arranged, so that each coil arrangement direction (X direction in FIG. 23) faces both sides.
  • the magnetic field gradually increases, and in the direction perpendicular to this (Y direction in FIG. 23), the magnetic field gradually decreases in the vertical direction.
  • the magnetic field gradient in the bore 115 is too large, the thermal convection suppression generated in the molten single crystal raw material is unbalanced, and the magnetic field efficiency is poor. . That is, as shown by the hatched area in FIG.
  • the magnetic field uniformity is not good in the vicinity of the central magnetic field (that is, in FIG. 23, the cross is elongated in the vertical and horizontal directions). Therefore, there is a problem that the effect of suppressing thermal convection is low and a high quality single crystal cannot be pulled up.
  • the number of superconducting coils 104 is four or more (for example, 104a, 104b, 104c, 104d, as shown in FIGS. 24 (a) and 24 (b)). 4) and arranged on a plane in a cylindrical vessel coaxially provided around the pulling furnace, and each superconducting coil arranged in the plane is set to face each other through the axis of the cylindrical vessel.
  • an arrangement angle ⁇ (see FIG.
  • the arrangement angles ⁇ of the superconducting coils 104a, 104b, 104c, and 104d in FIG. 24 are respectively 100 degrees, 110 degrees, 115 degrees, 120 degrees, and 130 degrees (that is, the center angle ⁇ between the coil axes is 80 degrees, respectively).
  • the central magnetic field is uniformly arranged over a sufficiently wide region.
  • the arrangement angle ⁇ is as small as 90 degrees (the central angle ⁇ between the coil axes is 90 degrees)
  • the width of the central magnetic field in the Y direction becomes extremely narrow. As shown in FIG.
  • FIG. 19 shows the result of analyzing the state of crystal pulling by the conventional technique using the two coils shown in FIGS. 21 and 22, and the left side in the figure is parallel to the direction of the magnetic force line in the central axis 110 (that is, the X axis).
  • the right side shows the flow velocity distribution in the cross section perpendicular to the X axis (that is, the cross section parallel to the Y axis).
  • the single crystal pulling state is analyzed by the technique disclosed in Patent Document 1 in which a uniform magnetic field distribution is formed by the four coils shown in FIG. 24 (however, the central angle ⁇ between the coil axes is 60 degrees).
  • FIG. 20 showing the results, the difference in flow velocity between the left side (in the cross section parallel to the X axis) and the right side (in the cross section perpendicular to the X axis) is slightly smaller than that in FIG.
  • the flow velocity distribution is uneven in the direction.
  • the analysis results shown in FIGS. 19 and 20 are obtained by simulation analysis of a state where the pulling is performed using the following single crystal pulling conditions using FEMAG-TMF as analysis software.
  • Used crucible Diameter 800mm
  • Single crystal raw material charge 400kg
  • Single crystal to grow Diameter 306mm Length of straight body of single crystal: 40cm
  • Magnetic flux density Adjusted to be 3000 G at the central axis 110 in the horizontal plane including the coil axis.
  • Single crystal rotation speed 6 rpm
  • Crucible rotation speed 0.03 rpm
  • the speed displayed in FIGS. 19 and 20 is the speed in the cross section, and the circumferential speed is excluded.
  • the present invention has been made in view of the above problems, and can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown.
  • An object of the present invention is to provide a single crystal pulling apparatus and a single crystal pulling method capable of obtaining a single crystal having a high oxygen concentration by a simple method.
  • a heating furnace and a crucible in which a molten single crystal raw material is accommodated are arranged, a pulling furnace having a central axis, and a magnetic field having a superconducting coil provided around the pulling furnace.
  • a single crystal pulling apparatus that suppresses convection in the crucible by applying a horizontal magnetic field to the molten single crystal raw material by energizing the superconducting coil.
  • the magnetic field generator can switch and generate two types of magnetic fields having different magnetic force line directions in the central axis in a horizontal plane including the coil axis of the superconducting coil and different magnetic field distributions.
  • a single crystal pulling apparatus is provided.
  • the magnetic field generator is capable of switching and generating two types of magnetic fields having different magnetic field distributions in the central axis and having different magnetic field distributions.
  • the magnetic field generator has a magnetic flux density distribution on the X axis when the magnetic force line direction is the X axis in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. Is a downwardly convex distribution, and when the magnetic flux density at the central axis in the horizontal plane is set as a magnetic flux density setting value, the magnetic flux density on the X axis is a value exceeding the magnetic flux density setting value at the crucible wall.
  • the magnetic flux density distribution on the Y axis that is perpendicular to the X axis and passes through the central axis in the horizontal plane is a downwardly convex distribution, and the magnetic flux density on the Y axis is equal to the magnetic flux density setting value at the crucible wall. It is preferable that the magnetic field distribution be 120% or less.
  • the magnetic field generating device of the single crystal pulling device generates such a magnetic field distribution, the flow rate of the raw material melt is reduced in the cross section perpendicular to the X axis where the convection suppressing force due to electromagnetic force is insufficient. Because it becomes difficult, the time until oxygen eluted from the crucible wall reaches the single crystal is shortened, and the amount of oxygen evaporated from the free surface of the raw material melt is reduced, increasing the oxygen concentration taken into the single crystal. Can be made. That is, a single crystal having a high oxygen concentration can be manufactured by generating the above magnetic field distribution in one of the two types of magnetic fields.
  • the magnetic field generator has a magnetic flux density distribution on the Y axis when the magnetic force line direction is the Y axis in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. Is a convex distribution, and when the magnetic flux density at the central axis in the horizontal plane is a magnetic flux density setting value, the magnetic flux density on the Y-axis is 60% or less of the magnetic flux density setting value at the crucible wall.
  • the magnetic flux density distribution on the X axis perpendicular to the Y axis and passing through the central axis in the horizontal plane is a downward convex distribution, and the magnetic flux density on the X axis is equal to the magnetic flux density set value at the crucible wall. It is also preferable to generate a magnetic field distribution of 170% or more.
  • the flow rate of the raw material melt is reduced even in a cross section perpendicular to the Y axis where the convection suppression force by electromagnetic force is insufficient.
  • the flow velocity in the cross section parallel to the Y axis of the raw material melt and the flow velocity in the cross section perpendicular to the Y axis of the raw material melt can be balanced. Even within the cross section perpendicular to the Y-axis, reducing the flow rate of the raw material melt increases the time it takes for oxygen eluted from the crucible wall to reach the single crystal, and evaporates oxygen from the free surface of the raw material melt.
  • the oxygen concentration taken into the single crystal can be greatly reduced. Further, by balancing the flow velocity in the cross section parallel to the Y axis of the raw material melt and the flow velocity in the cross section perpendicular to the Y axis of the raw material melt, growth fringes in the single crystal to be grown can be suppressed. That is, by generating the magnetic field distribution as described above in one of the two types of magnetic fields, a single crystal with a very low oxygen concentration and suppressed growth fringes can be manufactured.
  • the center angle ⁇ is preferably 60 degrees or more and 70 degrees or less.
  • each coil axis is included in the same horizontal plane, and the direction of the current flowing in one pair is switched. It is preferable that the direction of the lines of magnetic force in the central axis can be switched.
  • Such a magnetic field generator can easily switch between two types of magnetic fields by simply switching the current direction.
  • the present invention provides a single crystal pulling method for pulling up a semiconductor single crystal using the single crystal pulling apparatus.
  • the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown.
  • the two kinds of magnetic fields can be switched by a simple method such as switching the direction of the flowing current, whereby a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the single crystal pulling apparatus of this invention. It is a figure which shows an example of two types of magnetic fields in the single crystal pulling apparatus of this invention. It is a figure which shows arrangement
  • FIG. 1 It is a figure which shows arrangement
  • FIG. 2 It is a figure which shows magnetic flux density distribution in the plane containing the coil axis
  • FIG. It is a figure which shows magnetic flux density distribution in the plane containing the coil axis
  • FIG. It is a figure which shows magnetic flux density distribution in the plane containing the coil axis
  • FIG. It is a figure which shows the flow-velocity distribution in the melt cross section in Example 1.
  • FIG. 6 is a graph showing magnetic flux density distributions in the direction of magnetic field lines in Examples 1 to 3 and Comparative Example 1. 6 is a graph showing the magnetic flux density distribution in the direction perpendicular to the magnetic field lines in Examples 1 to 3 and Comparative Example 1. It is a graph which shows the relationship between center angle (alpha) between coil axes
  • FIG. 2 is a schematic perspective view and a schematic cross-sectional view showing a 4-coil superconducting magnet of Patent Document 1.
  • the oxygen concentration in the single crystal to be grown can be reduced and the growth fringes in the single crystal to be grown can be suppressed, and a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus.
  • a single crystal pulling apparatus and a single crystal pulling method There has been a demand for the development of a single crystal pulling apparatus and a single crystal pulling method.
  • the present inventors have pulled a single crystal equipped with a magnetic field generator capable of switching and generating two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. If it is an apparatus, the oxygen concentration in the single crystal to be grown can be reduced, the growth fringes in the single crystal to be grown can be suppressed, and the single crystal having a high oxygen concentration can be obtained in the same pulling apparatus by switching the magnetic field. And the present invention was completed.
  • the present invention comprises a heating furnace and a pulling furnace having a central axis in which a crucible containing a molten single crystal raw material is placed, and a magnetic field generator having a superconducting coil provided around the pulling furnace,
  • a single crystal pulling device that applies a horizontal magnetic field to the molten single crystal raw material by energizing the superconducting coil and suppresses convection of the molten single crystal raw material in the crucible
  • the magnetic field generating device comprises: A single crystal pulling apparatus capable of switching and generating two kinds of magnetic fields having different magnetic force line directions in the central axis in a horizontal plane including the coil axis of the superconducting coil and having different magnetic field distributions. .
  • FIG. 1 is a schematic cross-sectional view showing an example of a single crystal pulling apparatus of the present invention.
  • a single crystal pulling apparatus 11 of FIG. 1 includes a heating furnace 3, a pulling furnace 1 having a central shaft 10 in which a crucible 2 in which a molten single crystal raw material (hereinafter referred to as a melt) 6 is accommodated, and a pulling furnace 1 is provided with a magnetic field generator 30 having a superconducting coil 4 provided around 1 and applying a horizontal magnetic field to the melt 6 by energizing the superconducting coil 4 to convect the melt 6 in the crucible 2.
  • the single crystal 9 is pulled up in the pulling direction 8 while being suppressed.
  • the magnetic field generator 30 can generate two types of magnetic fields by switching the magnetic field lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis of the superconducting coil 4 and having different magnetic field distributions. is there.
  • FIG. 2 (a) and 2 (b) are diagrams showing examples of two types of magnetic fields in the single crystal pulling apparatus of the present invention.
  • 2 (a) and 2 (b) two pairs of superconducting coils 4 arranged opposite to each other are provided so that the respective coil shafts 13 are included in the same horizontal plane, and have current paths. Each coil pair is wired separately.
  • the arrow on the superconducting coil 4 indicates the direction of the current loop when the coil is viewed from directly above, and the left two coils are right-handed coils, so that the current loop is in the opposite direction to the current direction.
  • the two coils on the right side are left-handed coils, so that a current loop is formed in the same direction as the current direction.
  • the direction of the magnetic force line in the central axis is the X-axis direction, but by reversing the current direction (current polarity) flowing in the lower left and upper right coils as shown in FIG.
  • the current loop formed by the coils of the first and second coils reverses, and the direction of the magnetic field lines in the central axis changes in the Y-axis direction.
  • the magnetic field generator 30 is capable of generating two types of magnetic fields by switching the direction of the magnetic force lines 7 in the central axis 10 by 90 degrees and having different magnetic field distributions. If it has such a magnetic field generator, both a single crystal with a low oxygen concentration and a single crystal with a high oxygen concentration can be more reliably manufactured by switching between two types of magnetic fields.
  • the magnetic field generator 30 has the direction of the magnetic force lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis 13 of the superconducting coil 4 in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions.
  • the magnetic flux density on the X axis is a downward convex distribution
  • the magnetic flux density on the central axis 10 in the horizontal plane 12 is the magnetic flux density setting value
  • the magnetic flux density on the X axis is At the crucible wall, the value exceeds the set value of the magnetic flux density (preferably more than 100% and 130% or less), and at the same time, the magnetic flux density distribution on the Y axis passing through the central axis 10 perpendicular to the X axis in the horizontal plane 12 is lower.
  • the magnetic flux density on the Y-axis generates a magnetic field distribution that is 120% or less (usually more than 100% and 120% or less) of the magnetic flux density setting value in the crucible wall.
  • the magnetic flux density distribution on the X-axis is a downward convex distribution
  • the magnetic flux density on the X-axis is a value exceeding the magnetic flux density setting value on both sides of the crucible
  • the magnetic flux density distribution on the Y-axis is If the magnetic flux distribution on the Y-axis is 120% or less of the magnetic flux density setting value on the crucible wall (both sides), the convection suppression force in the cross section perpendicular to the X-axis decreases. Since the flow rate of the raw material melt is less likely to be reduced, the time until the oxygen eluted from the crucible wall reaches the single crystal is shortened, and the amount of oxygen evaporated from the free surface of the raw material melt is reduced. The oxygen concentration taken into the single crystal can be increased. That is, a single crystal having a high oxygen concentration can be produced by generating the magnetic field distribution as described above.
  • the magnetic field generator 30 has the direction of the magnetic force lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis 13 of the superconducting coil 4 in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions.
  • the magnetic flux density distribution on the Y-axis is a convex distribution, and when the magnetic flux density at the central axis 10 in the horizontal plane 12 is the magnetic flux density setting value, the magnetic flux density on the Y-axis is At the crucible wall, the magnetic flux density distribution on the X axis passing through the central axis 10 perpendicular to the Y axis in the horizontal plane 12 is at the same time lower than the magnetic flux density setting value of 60% or less (usually more than 0% and 60% or less).
  • the magnetic flux density distribution on the Y axis is an upwardly convex distribution
  • the magnetic flux density on the Y axis is 60% or less of the magnetic flux density setting value on the crucible walls (both sides)
  • the magnetic flux density distribution on the X axis is If the magnetic field distribution is 170% or more of the magnetic flux density setting value on the crucible wall (both sides) on the X axis, the convection suppression force due to electromagnetic force in the cross section perpendicular to the Y axis is sufficient.
  • the flow rate of the raw material melt is sufficiently reduced, and the flow rate in the cross section parallel to the Y axis of the raw material melt and the flow rate in the cross section perpendicular to the Y axis of the raw material melt can be balanced. Therefore, it takes a long time for oxygen eluted from the crucible wall to reach the single crystal, and the amount of oxygen evaporated from the free surface of the raw material melt increases, thereby greatly reducing the oxygen concentration taken into the single crystal. be able to.
  • the magnetic field generator 30 is provided with two pairs of superconducting coils 4 arranged so as to face each other so that the respective coil axes are included in the same horizontal plane, and the center sandwiching the X axis between the coil axes
  • the angle ⁇ is preferably not less than 60 degrees and not more than 70 degrees.
  • the central angle ⁇ sandwiching the X axis between the coil axes is set to 60 degrees or more and 70 degrees or less, the direction of the line of magnetic force changes from the X axis direction to the Y axis direction by switching the direction of the current flowing through one coil pair.
  • the central angle ⁇ ′ across the Y axis, which is the direction of the magnetic field is (180 ⁇ ) degrees, the central angle between the coil axes including the direction of the magnetic field changes from 110 degrees to 120 degrees.
  • the magnetic field generator 30 is provided with two pairs of superconducting coils 4 arranged so as to face each other so that the respective coil axes are included in the same horizontal plane, and the direction of the current flowing in one pair is switched.
  • the direction of the magnetic force lines 7 in the central axis 10 can be switched.
  • two types of magnetic fields can be easily switched by simply switching the current direction.
  • Such switching of the magnetic field distribution can be performed before magnetic field excitation when growing crystals having different required oxygen concentrations.
  • the current flowing in the superconducting coil is supplied from a DC power source for the superconducting magnet.
  • the magnetic field distribution can be easily switched by exciting the magnet after changing the polarity inside the power source. In the superconducting state, repulsive force or attractive force acts between the coils, so if the current direction is changed in such a situation, the coil itself moves to cause a quench (collapse of the superconducting state). Therefore, it is necessary to change the polarity before starting excitation.
  • the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown.
  • the two kinds of magnetic fields can be switched by a simple method such as switching the direction of the flowing current, whereby a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus.
  • the present invention also provides a single crystal pulling method for pulling a semiconductor single crystal using the single crystal pulling apparatus of the present invention described above.
  • Example 1 In the single crystal pulling apparatus 11 shown in FIG. 1, the arrangement of superconducting coils is the same as that shown in FIG. 3 (the central angle ⁇ sandwiching the X-axis between the coil axes is 60 degrees; The semiconductor single crystal was pulled up under the pulling conditions shown below using the wiring).
  • Used crucible Diameter 800mm
  • Single crystal raw material charge 400kg
  • Single crystal to grow Diameter 306mm
  • Length of straight body of single crystal 40cm
  • Magnetic flux density Adjusted to be 3000 G in the central axis in the horizontal plane including the coil axis.
  • Single crystal rotation speed 6 rpm
  • Crucible rotation speed 0.03 rpm
  • Example 2 In the single crystal pulling apparatus 11 shown in FIG. 1, except that the superconducting coil is arranged as shown in FIG. 4 (center angle ⁇ is 70 degrees; two coils are wired separately one by one). In the same manner as in Example 1, the semiconductor single crystal was pulled up.
  • Example 3 In the single crystal pulling apparatus 11 shown in FIG. 1, except that the superconducting coil is arranged as shown in FIG. 5 (center angle ⁇ is 80 degrees; two pairs of coils are wired separately). In the same manner as in Example 1, the semiconductor single crystal was pulled up.
  • FIGS. 8A to 11A are magnetic flux density distributions in the horizontal plane including the coil axis when the direction of the magnetic force line is the X-axis direction
  • FIGS. 8B to 11B are magnetic field lines. It is magnetic flux density distribution in the horizontal surface containing a coil axis
  • Table 1 shows the magnetic flux density at the crucible wall when the magnetic force line direction is the X-axis direction and when the magnetic force line direction is the Y-axis direction.
  • FIG. 16 shows a graph showing the magnetic flux density distribution in the direction of the magnetic lines of force
  • FIG. 17 shows a graph showing the magnetic flux density distribution in the direction perpendicular to the lines of magnetic force.
  • FIGS. 12 (a) to 15 (a) are flow velocity distributions in a cross section parallel to the magnetic force lines
  • FIGS. 12 (b) to 15 (b) are flow velocity distributions in a cross section perpendicular to the magnetic force lines.
  • Example 1 in which the central angle ⁇ sandwiching the X axis between the coil axes is 60 degrees ( ⁇ ′ is 120 degrees) and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction.
  • ⁇ ′ is 120 degrees
  • different magnetic field distributions were generated as shown in FIGS. 8A and 8B.
  • Table 1 and FIGS. 16 and 17 when the magnetic force line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is a downward convex distribution (FIG. 16), and the magnetic flux density on the X-axis.
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is the magnetic flux density setting at the crucible wall. It was 120% or less of the value.
  • Table 1 and FIGS. 16 and 17 when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the Y-axis. Is less than 60% of the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the X axis is a downward convex distribution (FIG.
  • the magnetic flux density on the X axis is the magnetic flux density setting at the crucible wall. It was 170% or more of the value.
  • the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic force lines and the cross section perpendicular to the magnetic force lines.
  • the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X axis direction is about 10 to 15 ppma-JEIDA, and the magnetic force line direction is changed to the Y axis.
  • the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 3 ppma-JEIDA, it can be seen that single crystals having greatly different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
  • Example 2 in which the center angle ⁇ sandwiching the X axis between the coil axes is 70 degrees ( ⁇ ′ is 110 degrees), and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction.
  • ⁇ ′ is 110 degrees
  • different magnetic field distributions occurred as shown in FIGS. 9A and 9B.
  • Table 1 and FIGS. 16 and 17 when the magnetic force line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is a downward convex distribution (FIG. 16), and the magnetic flux density on the X-axis.
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is the magnetic flux density setting at the crucible wall. It was 120% or less of the value.
  • Table 1 and FIGS. 16 and 17 when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the Y-axis. Is less than 60% of the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the X axis is a downward convex distribution (FIG.
  • the magnetic flux density on the X axis is the magnetic flux density setting at the crucible wall. It was 170% or more of the value.
  • the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic field lines and the cross section perpendicular to the magnetic force lines.
  • the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X-axis direction is about 8 to 11 ppma-JEIDA.
  • the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 3.5 ppma-JEIDA, it can be seen that single crystals having greatly different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
  • Example 3 in which the center angle ⁇ sandwiching the X axis between the coil axes is 80 degrees ( ⁇ ′ is 100 degrees) and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction.
  • ⁇ ′ is 100 degrees
  • different magnetic field distributions are generated as shown in FIGS. 10 (a) and 10 (b).
  • Table 1 and FIGS. 16 and 17 when the magnetic field line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the X-axis.
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is 120, which is the magnetic flux density setting value at the crucible wall. It was a value exceeding%. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), but the magnetic flux on the Y-axis.
  • the density of the crucible wall exceeds 60% of the set value of the magnetic flux density, and the magnetic flux density distribution on the X axis is a downwardly convex distribution (FIG. 17), but the magnetic flux density on the X axis is the crucible wall. Then, it was less than 170% of the magnetic flux density setting value. Further, as shown in FIGS. 14A and 14B, the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic field lines and the cross section perpendicular to the magnetic force lines. In addition, as shown in FIG. 18, the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X-axis direction is about 6 to 8 ppma-JEIDA.
  • the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 4 ppma-JEIDA, it can be seen that single crystals having different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
  • FIG. 16 shows the magnetic flux density distribution on the X-axis in which the center angle ⁇ sandwiching the X axis between the coil axes is 90 degrees ( ⁇ ′ is also 90 degrees) and two pairs of coils are separately wired one by one.
  • FIG. 16 shows that even when the direction of the magnetic field is switched between the X-axis direction and the Y-axis direction by switching the current direction, the magnetic field distribution is simply rotated by 90 degrees, and different magnetic field distributions are generated. It wasn't.
  • Table 1 and FIGS. 16 and 17 when the magnetic field line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the X-axis.
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is 120, which is the magnetic flux density setting value at the crucible wall. It was a value exceeding%. Further, as shown in Table 1 and FIGS. 16 and 17, the same magnetic flux density distribution except that the magnetic flux density distribution when the magnetic force line direction is the X-axis direction is rotated by 90 degrees even when the magnetic force line direction is the Y-axis direction. It was. Further, as shown in FIGS.
  • the flow velocity distribution in the cross section of the melt was also the same in the cross section parallel to the magnetic force lines and the cross section perpendicular to the magnetic force lines.
  • concentration There is no difference in concentration, and both are about 5 to 6 ppma-JEIDA, so that it is understood that single crystals having different oxygen concentrations cannot be produced even when the magnetic field is switched. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
  • the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress growth fringes in the single crystal to be grown. It was revealed that a single crystal having a high oxygen concentration can be obtained by a simple method. Further, it has been clarified that the difference in oxygen concentration of the single crystal is particularly increased when the magnetic field is switched by setting the central angle ⁇ sandwiching the X axis between the coil axes to 60 degrees or more and 70 degrees or less.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention is a single crystal pulling device that includes: a pulling furnace which has, disposed therein, a heater and a crucible that stores molten single crystal starting material, and has a central axis; and a magnetic field generating device which is provided around the pulling furnace and has a superconductive coil. The single crystal pulling device applies a horizontal magnetic field to the single crystal starting material melted by the energization of the superconductive coil, and suppresses convection in the molten single crystal starting material in the crucible. The magnetic field generating device is capable of generating, in turn, two types of magnetic fields which have different directions of magnetic force lines in the central axis in a horizontal plane that includes a coil axis of the superconductive coil and have different magnetic field distributions. Thus, a single crystal pulling device is provided which is capable of reducing the oxygen concentration in the single crystal to be grown and of suppressing growth striation in the single crystal to be grown, and which is capable of obtaining, with the same pulling device, a single crystal with a high oxygen concentration by a simple method.

Description

単結晶引き上げ装置及び単結晶引き上げ方法Single crystal pulling apparatus and single crystal pulling method
 本発明は、単結晶引き上げ装置、及びこれを用いた単結晶引き上げ方法に関する。 The present invention relates to a single crystal pulling apparatus and a single crystal pulling method using the same.
 シリコンやガリウム砒素などの半導体は単結晶で構成され、小型から大型までのコンピュータのメモリ等に利用されており、記憶装置の大容量化、低コスト化、高品質化が要求されている。 Semiconductors such as silicon and gallium arsenide are composed of a single crystal and are used for memory of computers ranging from small to large, and there is a demand for large capacity, low cost, and high quality storage devices.
 従来、これら半導体の要求を満たす単結晶を製造するための単結晶引き上げ方法の1つとして、坩堝内に収容されている溶融状態の半導体原料に磁場を印加させ、これにより、溶融液に発生する熱対流を抑止して、大直径かつ高品質の半導体を製造する方法(一般に磁場印加チョクラルスキー(MCZ)法と称している)が知られている。 Conventionally, as one of the single crystal pulling methods for producing a single crystal that satisfies the requirements of these semiconductors, a magnetic field is applied to a molten semiconductor raw material housed in a crucible, thereby generating a melt. A method of manufacturing a large-diameter and high-quality semiconductor while suppressing thermal convection (generally referred to as a magnetic field application Czochralski (MCZ) method) is known.
 図21を用いて従来のMCZ法による単結晶引き上げ装置の一例を説明する。図21の単結晶引き上げ装置100は、上面が開閉可能な引き上げ炉101を備え、この引き上げ炉101内に坩堝102を内蔵した構成となっている。そして、引き上げ炉101の内側には坩堝102内の半導体原料106を加熱溶融するためのヒータ103が坩堝102の周囲に設けられ、引き上げ炉101の外側には、1対の超電導コイル104(104a、104b)を円筒型容器としての冷媒容器(以下、円筒型冷媒容器と称する)105に内蔵した超電導磁石130が配置されている。 An example of a conventional single crystal pulling apparatus using the MCZ method will be described with reference to FIG. A single crystal pulling apparatus 100 of FIG. 21 includes a pulling furnace 101 whose upper surface can be opened and closed, and has a structure in which a crucible 102 is built in the pulling furnace 101. A heater 103 for heating and melting the semiconductor raw material 106 in the crucible 102 is provided around the crucible 102 inside the pulling furnace 101, and a pair of superconducting coils 104 (104 a, 104 a, A superconducting magnet 130 in which 104b) is built in a refrigerant container (hereinafter referred to as a cylindrical refrigerant container) 105 as a cylindrical container is disposed.
 単結晶の製造に際しては、坩堝102内に半導体原料106を入れてヒータ103により加熱し、半導体原料106を溶融させる。この溶融液中に図示しない種結晶を例えば坩堝102の中央部上方から下降して着液させ、図示しない引き上げ機構により種結晶を所定の速度で引き上げ方向108の方向に引き上げていく。これにより、固体・液体境界層に結晶が成長し、単結晶が生成される。この際、ヒータ103の加熱によって誘起される溶融液の流体運動、即ち熱対流が生じると、引き上げられる溶融液が乱され、単結晶生成の歩留りが低下する。 In manufacturing the single crystal, the semiconductor raw material 106 is put in the crucible 102 and heated by the heater 103 to melt the semiconductor raw material 106. For example, a seed crystal (not shown) descends from the upper part of the center of the crucible 102 into the molten liquid, and the seed crystal is pulled up in a pulling direction 108 at a predetermined speed by a pulling mechanism (not shown). Thereby, a crystal grows in the solid / liquid boundary layer, and a single crystal is generated. At this time, when a fluid motion of the melt induced by the heating of the heater 103, that is, thermal convection occurs, the melt that is pulled up is disturbed, and the yield of single crystal formation decreases.
 そこで、この対策として、超電導磁石130の超電導コイル104を使用する。即ち、溶融液の半導体原料106は、超電導コイル104への通電によって発生する磁力線107により動作抑止力を受け、坩堝102内で対流することなく、種結晶の引き上げに伴って成長単結晶がゆっくりと上方に向って引き上げられ、固体の単結晶109として製造されるようになる。なお、引き上げ炉101の上方には、図示しないが、単結晶109を坩堝の中心軸110に沿って引き上げるための引き上げ機構が設けられている。 Therefore, as a countermeasure, the superconducting coil 104 of the superconducting magnet 130 is used. That is, the semiconductor raw material 106 of the molten liquid is subjected to an operation deterring force due to the magnetic lines 107 generated by energizing the superconducting coil 104, and the grown single crystal slowly grows as the seed crystal is pulled up without convection in the crucible 102. It is pulled upward and manufactured as a solid single crystal 109. A pulling mechanism for pulling the single crystal 109 along the central axis 110 of the crucible is provided above the pulling furnace 101, although not shown.
 次に、図22により、図21に示した単結晶引き上げ装置100に用いられる超電導磁石130の一例について説明する。図21及び図22において、同じ構成要素には同じ符号を付している。また、図を見やすくするため、それぞれの図において構成要素を適宜省略している。この超電導磁石130は、円筒型真空容器119に超電導コイル104(104a,104b)を円筒型冷媒容器105を介して収納した構成とされている。この超電導磁石130においては、真空容器119内の中心軸110を介して互いに向き合う1対の超電導コイル104a,104bが収納されている。これら1対の超電導コイル104a、104bは横向きの同一方向に沿う磁場を発生しているヘルムホルツ型磁場コイルであり、図21に示すように、引き上げ炉101及び真空容器119の中心軸110に対して水平に直交する磁力線107を発生している(この中心軸110の位置を磁場中心と称している)。 Next, an example of the superconducting magnet 130 used in the single crystal pulling apparatus 100 shown in FIG. 21 will be described with reference to FIG. 21 and 22, the same components are denoted by the same reference numerals. In addition, in order to make the drawings easy to see, the constituent elements are appropriately omitted in the respective drawings. The superconducting magnet 130 is configured such that a superconducting coil 104 (104a, 104b) is accommodated in a cylindrical vacuum vessel 119 via a cylindrical refrigerant vessel 105. In this superconducting magnet 130, a pair of superconducting coils 104 a and 104 b facing each other through the central axis 110 in the vacuum vessel 119 are accommodated. The pair of superconducting coils 104a and 104b is a Helmholtz type magnetic field coil that generates a magnetic field along the same horizontal direction. As shown in FIG. 21, the pulling furnace 101 and the central axis 110 of the vacuum vessel 119 are arranged. Magnetic field lines 107 that are perpendicular to the horizontal axis are generated (the position of the central axis 110 is referred to as the magnetic field center).
 なお、この超電導磁石130は、図21、22に示すように2つの超電導コイル104a、104bに電流を導入する電流リード111、円筒型冷媒容器105の内部に納められた第1の輻射シールド117及び第2の輻射シールド118を冷却するための小型ヘリウム冷凍機112、円筒型冷媒容器105内のヘリウムガスを放出するガス放出管113及び液体ヘリウムを補給する補給口を有するサービスポート114等を備えている。このような超電導磁石130のボア115(その内径はDである)内に、図21に示した引き上げ炉101が配設される。 21 and 22, the superconducting magnet 130 includes a current lead 111 for introducing current into the two superconducting coils 104a and 104b, a first radiation shield 117 housed in the cylindrical refrigerant container 105, and A small helium refrigerator 112 for cooling the second radiation shield 118, a gas discharge pipe 113 for discharging helium gas in the cylindrical refrigerant container 105, a service port 114 having a supply port for supplying liquid helium, and the like are provided. Yes. The pulling furnace 101 shown in FIG. 21 is disposed in the bore 115 (the inner diameter is D) of the superconducting magnet 130.
 図23は、上述した従来の超電導磁石130の磁場分布を示している。図22に示すように、従来の超電導磁石130においては、互いに向き合った1対の超電導コイル104a、104bが配置されていることから、各コイル配置方向(図23のX方向)では両側に向って磁場が次第に大きくなり、これと直交する方向(図23のY方向)では上下方向に向って次第に磁場が小さくなる。このような従来の構成では図23に示すようにボア115内の範囲の磁場勾配が大きすぎるため、溶融した単結晶原料に発生する熱対流抑制が不均衡になっており、かつ磁場効率が悪い。即ち、図23に同じ磁束密度の領域を斜線で示したように、中心磁場近傍付近の領域では、磁場均一性がよくない(即ち、図23において、上下、左右に細長いクロス状になっている)ため、熱対流の抑制効果が低く、高品質の単結晶を引き上げることができないという問題点があった。 FIG. 23 shows the magnetic field distribution of the conventional superconducting magnet 130 described above. As shown in FIG. 22, in the conventional superconducting magnet 130, a pair of superconducting coils 104 a and 104 b facing each other are arranged, so that each coil arrangement direction (X direction in FIG. 23) faces both sides. The magnetic field gradually increases, and in the direction perpendicular to this (Y direction in FIG. 23), the magnetic field gradually decreases in the vertical direction. In such a conventional configuration, as shown in FIG. 23, since the magnetic field gradient in the bore 115 is too large, the thermal convection suppression generated in the molten single crystal raw material is unbalanced, and the magnetic field efficiency is poor. . That is, as shown by the hatched area in FIG. 23, the magnetic field uniformity is not good in the vicinity of the central magnetic field (that is, in FIG. 23, the cross is elongated in the vertical and horizontal directions). Therefore, there is a problem that the effect of suppressing thermal convection is low and a high quality single crystal cannot be pulled up.
 特許文献1には、上記の問題点を解決するため、図24(a)、図24(b)に示すように、超電導コイル104の数を4以上(例えば、104a、104b、104c、104dの4つ)とし、引き上げ炉の周囲に同軸的に設けた筒形容器内の平面上に配置するとともに、その配置された各超電導コイルを筒形容器の軸心を介して対向する向きに設定し、かつ超電導コイルの相互に隣接する1対ずつのもの同士が筒形容器の内側に向く配設角度θ(図24(b)参照)を100度~130度の範囲(即ち、X軸を挟んで隣接するコイル軸間の中心角度α(図24(b)参照)は50度~80度)に設定することが開示されている。これによって、ボア115内部に磁場勾配の少ない均一性のよい横磁場を発生させることができ、また、平面上に同心円状もしくは正方形状の磁場分布を発生させることができ、不均衡電磁力を大幅に抑制することができるとされ、また、その結果、引き上げ方向の均一磁場領域が向上するとともに、横磁場方向の磁力線がほぼ水平になり、不均衡電磁力の抑制により、高品質の単結晶の製造が実現でき、更に、この単結晶引き上げ方法によれば、高品質の単結晶を歩留りよく引き上げることができることも開示されている。なお、図24(a)、(b)中の構成要素のうち図21、22に示した構成要素に相当するものについては同じ符号を付した。また、図24(b)中、dはコイルの内径、lは対向するコイル間の距離である。 In Patent Document 1, in order to solve the above-described problem, the number of superconducting coils 104 is four or more (for example, 104a, 104b, 104c, 104d, as shown in FIGS. 24 (a) and 24 (b)). 4) and arranged on a plane in a cylindrical vessel coaxially provided around the pulling furnace, and each superconducting coil arranged in the plane is set to face each other through the axis of the cylindrical vessel. In addition, an arrangement angle θ (see FIG. 24B) in which one pair of superconducting coils adjacent to each other faces the inside of the cylindrical container is in the range of 100 degrees to 130 degrees (that is, the X axis is sandwiched) The center angle α between adjacent coil axes (see FIG. 24B) is set to 50 to 80 degrees. As a result, a uniform horizontal magnetic field with a small magnetic field gradient can be generated inside the bore 115, and a concentric or square magnetic field distribution can be generated on the plane, greatly increasing the unbalanced electromagnetic force. As a result, the uniform magnetic field region in the pulling direction is improved, and the magnetic field lines in the transverse magnetic field direction are almost horizontal. It is also disclosed that manufacturing can be realized, and further, according to this single crystal pulling method, a high quality single crystal can be pulled with a good yield. In addition, the same code | symbol was attached | subjected about the component equivalent to the component shown in FIG. 21, 22 among the components in FIG. 24 (a), (b). In FIG. 24B, d is the inner diameter of the coil, and l is the distance between the opposing coils.
 即ち、図24の超電導コイル104a、104b、104c、104dの配設角度θを、それぞれ、100度、110度、115度、120度、130度(即ち、コイル軸間の中心角度αはそれぞれ80度、70度、65度、60度、50度)とした場合の磁場分布を示した図25~図29では、中心磁場が十分に広い領域に亘って均一に配置される。その一方で、図30に示すように、配設角度θが90度(コイル軸間の中心角度αは90度)と小さい場合には、中心磁場のY方向の幅が極端に狭くなり、図31に示すように、配設角度θが140度(コイル軸間の中心角度αは40度)と大きい場合には、中心磁場のX方向の幅が極端に狭くなっている。従って、図24の超電導磁石130において、配設角度θを100度~130度の範囲に設定することで、ボア115内部に同心円状もしくは正方形状の等分布磁場を得ることができるとされている。 That is, the arrangement angles θ of the superconducting coils 104a, 104b, 104c, and 104d in FIG. 24 are respectively 100 degrees, 110 degrees, 115 degrees, 120 degrees, and 130 degrees (that is, the center angle α between the coil axes is 80 degrees, respectively). In FIG. 25 to FIG. 29 showing the magnetic field distribution in the case of degrees, 70 degrees, 65 degrees, 60 degrees, and 50 degrees, the central magnetic field is uniformly arranged over a sufficiently wide region. On the other hand, as shown in FIG. 30, when the arrangement angle θ is as small as 90 degrees (the central angle α between the coil axes is 90 degrees), the width of the central magnetic field in the Y direction becomes extremely narrow. As shown in FIG. 31, when the arrangement angle θ is as large as 140 degrees (the center angle α between the coil axes is 40 degrees), the width of the central magnetic field in the X direction is extremely narrow. Therefore, in the superconducting magnet 130 of FIG. 24, it is said that a concentric or square uniform magnetic field can be obtained in the bore 115 by setting the arrangement angle θ in the range of 100 degrees to 130 degrees. .
特開2004-051475号公報JP 2004-051475 A
 しかしながら、本発明者らが検討した結果、図25~図29に示すように均一な磁場分布であっても、中心軸110における磁力線(即ち、図25~図29中に示したX軸とY軸の交点における磁力線)がX軸方向に向かう横磁場においては、X軸と平行な断面内とX軸に垂直な断面内とでは熱対流に違いがあることが、3次元の融液対流を含む総合伝熱解析により明らかとなった。 However, as a result of the study by the present inventors, even if the magnetic field distribution is uniform as shown in FIGS. 25 to 29, the magnetic field lines in the central axis 110 (that is, the X axis and Y axis shown in FIGS. In a transverse magnetic field in which the magnetic field lines at the intersections of the axes are directed in the X-axis direction, there is a difference in thermal convection between the cross section parallel to the X axis and the cross section perpendicular to the X axis. It became clear by comprehensive heat transfer analysis.
 図19は、図21、22に示す2コイルを用いた従来技術で結晶引き上げを行っている状態を解析した結果であり、図中左側は中心軸110における磁力線方向(即ち、X軸)に平行な断面内の流速分布を示しており、また右側はX軸に垂直な断面(即ち、Y軸に平行な断面)内の流速分布を示したものである。このように原料融液に磁場を印加することで対流は抑制され、特に原料融液の下半分では殆ど流れがなくなっているが、上半分には流れ場が残っている。磁場中で導電性流体が運動する場合、磁力線ならびに磁力線に垂直な速度成分と直交する方向に誘起電流が生ずるが、電気的に絶縁性を有する石英坩堝を用いた場合は、坩堝壁と原料融液の自由表面が絶縁壁となるため、これらに直交する方向の誘起電流は流れなくなる。このため、原料融液の上部においては電磁力による対流抑制力が弱くなっており、また図19の左側(X軸に平行な断面内)と右側(X軸と垂直な断面内)を比べると、X軸と垂直な断面内(磁力線に垂直な断面内)の方が、X軸に平行な断面内(磁力線に平行な断面内)よりも対流が強くなっていることがわかる。 FIG. 19 shows the result of analyzing the state of crystal pulling by the conventional technique using the two coils shown in FIGS. 21 and 22, and the left side in the figure is parallel to the direction of the magnetic force line in the central axis 110 (that is, the X axis). The right side shows the flow velocity distribution in the cross section perpendicular to the X axis (that is, the cross section parallel to the Y axis). Thus, by applying a magnetic field to the raw material melt, convection is suppressed, and in particular, there is almost no flow in the lower half of the raw material melt, but a flow field remains in the upper half. When the conductive fluid moves in a magnetic field, an induced current is generated in the direction perpendicular to the magnetic force line and the velocity component perpendicular to the magnetic force line. However, when an electrically insulating quartz crucible is used, the crucible wall and the raw material fusion are generated. Since the free surface of the liquid becomes an insulating wall, no induced current flows in the direction perpendicular to these. For this reason, the convection suppressing force due to electromagnetic force is weak at the upper part of the raw material melt, and the left side (in the cross section parallel to the X axis) and the right side (in the cross section perpendicular to the X axis) of FIG. It can be seen that the convection is stronger in the cross section perpendicular to the X axis (in the cross section perpendicular to the magnetic field lines) than in the cross section parallel to the X axis (in the cross section parallel to the magnetic force lines).
 一方、図24に示す4コイルにより均一な磁場分布を形成した特許文献1で開示されている技術(ただし、コイル軸間の中心角度αは60度)で単結晶引き上げを行っている状態を解析した結果を示す図20では、図19と比較すると、左側(X軸に平行な断面内)と右側(X軸と垂直な断面内)の流速差が若干小さくなっているが、それでも坩堝の周方向で不均一な流速分布となっている。 On the other hand, the single crystal pulling state is analyzed by the technique disclosed in Patent Document 1 in which a uniform magnetic field distribution is formed by the four coils shown in FIG. 24 (however, the central angle α between the coil axes is 60 degrees). In FIG. 20 showing the results, the difference in flow velocity between the left side (in the cross section parallel to the X axis) and the right side (in the cross section perpendicular to the X axis) is slightly smaller than that in FIG. The flow velocity distribution is uneven in the direction.
 ここで、図19、20に示す解析結果は、解析ソフトとしてFEMAG-TMFを使用し、以下に示す単結晶引き上げ条件を用いて引き上げを行っている状態をシミュレーション解析したものである。
  使用坩堝       :直径800mm
  単結晶原料のチャージ量:400kg
  育成する単結晶    :直径306mm
  単結晶の直胴部の長さ :40cm
  磁束密度       :コイル軸を含む水平面内の中心軸110において3000Gとなるように調整
  単結晶回転速度    :6rpm
  坩堝回転速度     :0.03rpm
 なお、図19、20において表示されている速度は、断面内の速度であり、周方向速度は除外している。
Here, the analysis results shown in FIGS. 19 and 20 are obtained by simulation analysis of a state where the pulling is performed using the following single crystal pulling conditions using FEMAG-TMF as analysis software.
Used crucible: Diameter 800mm
Single crystal raw material charge: 400kg
Single crystal to grow: Diameter 306mm
Length of straight body of single crystal: 40cm
Magnetic flux density: Adjusted to be 3000 G at the central axis 110 in the horizontal plane including the coil axis. Single crystal rotation speed: 6 rpm
Crucible rotation speed: 0.03 rpm
In addition, the speed displayed in FIGS. 19 and 20 is the speed in the cross section, and the circumferential speed is excluded.
 図19、20で見られるように、従来技術及び特許文献1に開示された技術においては、X軸に垂直な断面内に坩堝壁から成長界面への流れ場が残存することで、石英坩堝から溶出する酸素が結晶に到達するため、水平磁場印加による酸素濃度低下効果には限界があり、最近要求が多くなっているパワーデバイスやイメージセンサー用半導体結晶における極低濃度の酸素濃度要求に応えることが難しくなっているという問題点がある。また、坩堝の周方向で不均一な流れ場が存在することは、単結晶を回転させながら引き上げる単結晶においては成長縞の原因となり、成長方向に平行な断面内を評価すると、結晶回転周期の抵抗率・酸素濃度変動が観察されるため、成長方向に垂直にスライスしたウェーハ面内ではリング状の分布となってしまうという問題点もある。ただし、このような極低酸素結晶はパワーデバイスやイメージセンサー用途に限られており、その他のメモリやCPUなどのロジック用途には例えば10ppma-JEIDA以上の酸素濃度を有する結晶が要求されていることから、同じ引き上げ装置で極低酸素結晶と高酸素結晶の両方を製造できることが望ましい。 19 and 20, in the prior art and the technique disclosed in Patent Document 1, the flow field from the crucible wall to the growth interface remains in the cross section perpendicular to the X axis. Since the dissolved oxygen reaches the crystal, there is a limit to the effect of lowering the oxygen concentration by applying a horizontal magnetic field, meeting the extremely low oxygen concentration demands of semiconductor crystals for power devices and image sensors, which have recently been increasing in demand. There is a problem that has become difficult. In addition, the presence of a non-uniform flow field in the circumferential direction of the crucible causes growth fringes in a single crystal that is pulled up while rotating the single crystal, and when the cross section parallel to the growth direction is evaluated, Since fluctuations in resistivity and oxygen concentration are observed, there is also a problem that a ring-shaped distribution occurs in the wafer plane sliced perpendicular to the growth direction. However, such ultra-low oxygen crystals are limited to power devices and image sensor applications, and crystals having an oxygen concentration of 10 ppma-JEIDA or higher are required for other memory and CPU logic applications. Therefore, it is desirable that both the extremely low oxygen crystal and the high oxygen crystal can be manufactured with the same pulling apparatus.
 本発明は、上記問題点に鑑みてなされたものであって、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができる単結晶引き上げ装置及び単結晶引き上げ方法を提供することを目的とする。 The present invention has been made in view of the above problems, and can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown. An object of the present invention is to provide a single crystal pulling apparatus and a single crystal pulling method capable of obtaining a single crystal having a high oxygen concentration by a simple method.
 上記目的を達成するために、本発明では、加熱ヒータ及び溶融した単結晶原料が収容される坩堝が配置され中心軸を有する引き上げ炉と、前記引き上げ炉の周囲に設けられ超伝導コイルを有する磁場発生装置とを備え、前記超電導コイルへの通電により前記溶融した単結晶原料に水平磁場を印加して、前記溶融した単結晶原料の前記坩堝内での対流を抑制する単結晶引き上げ装置であって、前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものである単結晶引き上げ装置を提供する。 In order to achieve the above object, in the present invention, a heating furnace and a crucible in which a molten single crystal raw material is accommodated are arranged, a pulling furnace having a central axis, and a magnetic field having a superconducting coil provided around the pulling furnace. A single crystal pulling apparatus that suppresses convection in the crucible by applying a horizontal magnetic field to the molten single crystal raw material by energizing the superconducting coil. The magnetic field generator can switch and generate two types of magnetic fields having different magnetic force line directions in the central axis in a horizontal plane including the coil axis of the superconducting coil and different magnetic field distributions. A single crystal pulling apparatus is provided.
 このような単結晶引き上げ装置であれば、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができる。 With such a single crystal pulling apparatus, it is possible to reduce the oxygen concentration in the single crystal to be grown and to suppress the growth stripes in the single crystal to be grown. High single crystals can also be obtained.
 また、前記磁場発生装置は、前記中心軸における磁力線方向が90度ずれており、かつ前記磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものであることが好ましい。 In addition, it is preferable that the magnetic field generator is capable of switching and generating two types of magnetic fields having different magnetic field distributions in the central axis and having different magnetic field distributions.
 このような磁場発生装置を備えたものであれば、2種類の磁場を切り替えることで、より確実に酸素濃度の低い単結晶と酸素濃度の高い単結晶の両方を製造することができる。 If such a magnetic field generator is provided, it is possible to more reliably produce both a single crystal having a low oxygen concentration and a single crystal having a high oxygen concentration by switching between two types of magnetic fields.
 また、前記磁場発生装置は、前記磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、前記磁力線方向をX軸としたときに、前記X軸上の磁束密度分布が下に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値を超えた値となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の120%以下となるような磁場分布を発生させるものであることが好ましい。 Further, the magnetic field generator has a magnetic flux density distribution on the X axis when the magnetic force line direction is the X axis in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. Is a downwardly convex distribution, and when the magnetic flux density at the central axis in the horizontal plane is set as a magnetic flux density setting value, the magnetic flux density on the X axis is a value exceeding the magnetic flux density setting value at the crucible wall. At the same time, the magnetic flux density distribution on the Y axis that is perpendicular to the X axis and passes through the central axis in the horizontal plane is a downwardly convex distribution, and the magnetic flux density on the Y axis is equal to the magnetic flux density setting value at the crucible wall. It is preferable that the magnetic field distribution be 120% or less.
 単結晶引き上げ装置の磁場発生装置が、このような磁場分布を発生させるものであれば、電磁力による対流抑制力が不十分なX軸と垂直な断面内において、原料融液の流速が低減されにくくなることから、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が短くなり、原料融液の自由表面からの酸素蒸発量が減少することで、単結晶に取り込まれる酸素濃度を増加させることができる。つまり、2種類の磁場のうち一方において、上記のような磁場分布を発生させることで、酸素濃度の高い単結晶を製造することができる。 If the magnetic field generating device of the single crystal pulling device generates such a magnetic field distribution, the flow rate of the raw material melt is reduced in the cross section perpendicular to the X axis where the convection suppressing force due to electromagnetic force is insufficient. Because it becomes difficult, the time until oxygen eluted from the crucible wall reaches the single crystal is shortened, and the amount of oxygen evaporated from the free surface of the raw material melt is reduced, increasing the oxygen concentration taken into the single crystal. Can be made. That is, a single crystal having a high oxygen concentration can be manufactured by generating the above magnetic field distribution in one of the two types of magnetic fields.
 また、前記磁場発生装置は、前記磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、前記磁力線方向をY軸としたときに、前記Y軸上の磁束密度分布が上に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の60%以下となると同時に、前記水平面内において前記Y軸と直交し前記中心軸を通るX軸上の磁束密度分布が下に凸の分布であり、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値の170%以上となるような磁場分布を発生させるものであることも好ましい。 Further, the magnetic field generator has a magnetic flux density distribution on the Y axis when the magnetic force line direction is the Y axis in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. Is a convex distribution, and when the magnetic flux density at the central axis in the horizontal plane is a magnetic flux density setting value, the magnetic flux density on the Y-axis is 60% or less of the magnetic flux density setting value at the crucible wall. At the same time, the magnetic flux density distribution on the X axis perpendicular to the Y axis and passing through the central axis in the horizontal plane is a downward convex distribution, and the magnetic flux density on the X axis is equal to the magnetic flux density set value at the crucible wall. It is also preferable to generate a magnetic field distribution of 170% or more.
 単結晶引き上げ装置の磁場発生装置が、このような磁場分布を発生させるものであれば、電磁力による対流抑制力が不十分なY軸と垂直な断面内においても、原料融液の流速を低減できるとともに、原料融液のY軸に平行な断面内における流速と、原料融液のY軸における垂直な断面における流速とをバランスさせることができる。Y軸と垂直な断面内においても、原料融液の流速を低減することによって、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、原料融液の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができる。また、原料融液のY軸に平行な断面における流速と、原料融液のY軸に垂直な断面における流速とをバランスさせることによって、育成する単結晶中の成長縞を抑制することができる。つまり、2種類の磁場のうち一方において、上記のような磁場分布を発生させることで、酸素濃度が極めて低く、成長縞が抑制された単結晶を製造することができる。 If the magnetic field generator of the single crystal pulling device generates such a magnetic field distribution, the flow rate of the raw material melt is reduced even in a cross section perpendicular to the Y axis where the convection suppression force by electromagnetic force is insufficient. In addition, the flow velocity in the cross section parallel to the Y axis of the raw material melt and the flow velocity in the cross section perpendicular to the Y axis of the raw material melt can be balanced. Even within the cross section perpendicular to the Y-axis, reducing the flow rate of the raw material melt increases the time it takes for oxygen eluted from the crucible wall to reach the single crystal, and evaporates oxygen from the free surface of the raw material melt. By increasing the amount, the oxygen concentration taken into the single crystal can be greatly reduced. Further, by balancing the flow velocity in the cross section parallel to the Y axis of the raw material melt and the flow velocity in the cross section perpendicular to the Y axis of the raw material melt, growth fringes in the single crystal to be grown can be suppressed. That is, by generating the magnetic field distribution as described above in one of the two types of magnetic fields, a single crystal with a very low oxygen concentration and suppressed growth fringes can be manufactured.
 また、前記磁場発生装置は、それぞれ対向配置された超電導コイルの対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、前記コイル軸間の前記X軸を挟む中心角度αが60度以上70度以下のものであることが好ましい。 In the magnetic field generator, two pairs of superconducting coils opposed to each other are provided so that the respective coil axes are included in the same horizontal plane, and the X axis is sandwiched between the coil axes. The center angle α is preferably 60 degrees or more and 70 degrees or less.
 磁場発生装置の超電導コイルをこのように配置することで、上記のような磁場分布をより確実に発生させることができる。 By arranging the superconducting coils of the magnetic field generator in this way, the magnetic field distribution as described above can be generated more reliably.
 また、前記磁場発生装置は、それぞれ対向配置された超電導コイルの対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、一方の対に流れる電流方向を切り替えることで前記中心軸における磁力線方向を切り替えることができるものであることが好ましい。 In the magnetic field generator, two pairs of superconducting coils arranged opposite to each other are provided so that each coil axis is included in the same horizontal plane, and the direction of the current flowing in one pair is switched. It is preferable that the direction of the lines of magnetic force in the central axis can be switched.
 このような磁場発生装置であれば、電流方向を切り替えるだけで、容易に2種類の磁場を切り替えることができる。 Such a magnetic field generator can easily switch between two types of magnetic fields by simply switching the current direction.
 また、本発明では、上記の単結晶引き上げ装置を用いて、半導体単結晶を引き上げる単結晶引き上げ方法を提供する。 Also, the present invention provides a single crystal pulling method for pulling up a semiconductor single crystal using the single crystal pulling apparatus.
 このような単結晶引き上げ方法であれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された半導体単結晶を育成でき、同じ引き上げ装置を用いて、取り込まれる酸素濃度を増加させた半導体単結晶も容易に育成することができる。 With such a single crystal pulling method, it is possible to grow a semiconductor single crystal in which the incorporated oxygen concentration is significantly reduced and the growth fringes are suppressed, and the incorporated oxygen concentration is increased using the same pulling apparatus. A semiconductor single crystal can also be easily grown.
 以上のように、本発明の単結晶引き上げ装置であれば、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、また、例えば超電導コイルに流れる電流の方向を切り替えるなどの簡便な方法で2種類の磁場を切り替えることができ、これによって、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶を得ることができる。 As described above, the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown. The two kinds of magnetic fields can be switched by a simple method such as switching the direction of the flowing current, whereby a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus.
本発明の単結晶引き上げ装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the single crystal pulling apparatus of this invention. 本発明の単結晶引き上げ装置における、2種類の磁場の一例を示す図である。It is a figure which shows an example of two types of magnetic fields in the single crystal pulling apparatus of this invention. 実施例1における超電導コイルの配置、電流方向、及び磁力線方向を示す図である。It is a figure which shows arrangement | positioning of the superconducting coil in Example 1, an electric current direction, and a magnetic force line direction. 実施例2における超電導コイルの配置、電流方向、及び磁力線方向を示す図である。It is a figure which shows arrangement | positioning of the superconducting coil in Example 2, an electric current direction, and a magnetic force line direction. 実施例3における超電導コイルの配置、電流方向、及び磁力線方向を示す図である。It is a figure which shows arrangement | positioning of the superconducting coil in Example 3, a current direction, and a magnetic force line direction. 比較例1における超電導コイルの配置、電流方向、及び磁力線方向を示す図である。It is a figure which shows arrangement | positioning of a superconducting coil in the comparative example 1, a current direction, and a magnetic force line direction. 比較例2における超電導コイルの配置、電流方向、及び磁力線方向を示す図である。It is a figure which shows arrangement | positioning of a superconducting coil in Comparative Example 2, a current direction, and a magnetic force line direction. 実施例1におけるコイル軸を含む平面内の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution in the plane containing the coil axis | shaft in Example 1. FIG. 実施例2におけるコイル軸を含む平面内の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution in the plane containing the coil axis | shaft in Example 2. FIG. 実施例3におけるコイル軸を含む平面内の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution in the plane containing the coil axis | shaft in Example 3. FIG. 比較例1におけるコイル軸を含む平面内の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution in the plane containing the coil axis | shaft in the comparative example 1. FIG. 実施例1における融液断面内の流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section in Example 1. FIG. 実施例2における融液断面内の流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section in Example 2. FIG. 実施例3における融液断面内の流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section in Example 3. FIG. 比較例1における融液断面内の流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section in the comparative example 1. 実施例1~3と比較例1における、磁力線方向の磁束密度分布を示すグラフである。6 is a graph showing magnetic flux density distributions in the direction of magnetic field lines in Examples 1 to 3 and Comparative Example 1. 実施例1~3と比較例1における、磁力線と垂直方向の磁束密度分布を示すグラフである。6 is a graph showing the magnetic flux density distribution in the direction perpendicular to the magnetic field lines in Examples 1 to 3 and Comparative Example 1. コイル軸間の中心角度αと単結晶中酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between center angle (alpha) between coil axes | shafts, and oxygen concentration in a single crystal. 従来技術の2コイルの超電導磁石を用いた場合の融液断面における流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section at the time of using the 2 coil superconducting magnet of a prior art. 特許文献1の4コイルの超電導磁石を用いた場合の融液断面における流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the melt cross section at the time of using the 4 coil superconducting magnet of patent document 1. FIG. 従来の単結晶引き上げ装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional single crystal pulling apparatus. 従来の単結晶引き上げ装置に用いられる2コイルの超電導磁石の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the superconducting magnet of 2 coils used for the conventional single crystal pulling apparatus. 従来の単結晶引き上げ装置における磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution in the conventional single crystal pulling apparatus. 特許文献1の4コイルの超電導磁石を示す概略斜視図及び概略横断面図である。FIG. 2 is a schematic perspective view and a schematic cross-sectional view showing a 4-coil superconducting magnet of Patent Document 1. FIG. 図24において超電導コイルの配設角度θ=100度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 100 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=110度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 110 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=115度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 115 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=120度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 120 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=130度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 130 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=90度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 90 degree | times of a superconducting coil in FIG. 図24において超電導コイルの配設角度θ=140度のときの磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution when arrangement | positioning angle | corner (theta) = 140 degree | times of a superconducting coil in FIG.
 上述のように、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができる単結晶引き上げ装置及び単結晶引き上げ方法の開発が求められていた。 As described above, the oxygen concentration in the single crystal to be grown can be reduced and the growth fringes in the single crystal to be grown can be suppressed, and a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus. There has been a demand for the development of a single crystal pulling apparatus and a single crystal pulling method.
 本発明者らは、上記課題について鋭意検討を重ねた結果、磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができる磁場発生装置を備えた単結晶引き上げ装置であれば、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、磁場を切り替えることで、同じ引き上げ装置において、酸素濃度の高い単結晶も得ることができることを見出し、本発明を完成させた。 As a result of intensive studies on the above problems, the present inventors have pulled a single crystal equipped with a magnetic field generator capable of switching and generating two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. If it is an apparatus, the oxygen concentration in the single crystal to be grown can be reduced, the growth fringes in the single crystal to be grown can be suppressed, and the single crystal having a high oxygen concentration can be obtained in the same pulling apparatus by switching the magnetic field. And the present invention was completed.
 即ち、本発明は、加熱ヒータ及び溶融した単結晶原料が収容される坩堝が配置され中心軸を有する引き上げ炉と、前記引き上げ炉の周囲に設けられ超伝導コイルを有する磁場発生装置とを備え、前記超電導コイルへの通電により前記溶融した単結晶原料に水平磁場を印加して、前記溶融した単結晶原料の前記坩堝内での対流を抑制する単結晶引き上げ装置であって、前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものである単結晶引き上げ装置である。 That is, the present invention comprises a heating furnace and a pulling furnace having a central axis in which a crucible containing a molten single crystal raw material is placed, and a magnetic field generator having a superconducting coil provided around the pulling furnace, A single crystal pulling device that applies a horizontal magnetic field to the molten single crystal raw material by energizing the superconducting coil and suppresses convection of the molten single crystal raw material in the crucible, wherein the magnetic field generating device comprises: A single crystal pulling apparatus capable of switching and generating two kinds of magnetic fields having different magnetic force line directions in the central axis in a horizontal plane including the coil axis of the superconducting coil and having different magnetic field distributions. .
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
<単結晶引き上げ装置>
 図1は、本発明の単結晶引き上げ装置の一例を示す概略断面図である。まず、図1を参照しながら、本発明の単結晶引き上げ装置の実施態様の一例を説明する。図1の単結晶引き上げ装置11は、加熱ヒータ3と、溶融した単結晶原料(以下、融液と称する)6が収容される坩堝2が配置され中心軸10を有する引き上げ炉1と、引き上げ炉1の周囲に設けられ超電導コイル4を有する磁場発生装置30とを備えており、超電導コイル4への通電により融液6に水平磁場を印加して、融液6の坩堝2内での対流を抑制しながら、単結晶9を引き上げ方向8に引き上げる構成になっている。
<Single crystal pulling device>
FIG. 1 is a schematic cross-sectional view showing an example of a single crystal pulling apparatus of the present invention. First, an example of an embodiment of the single crystal pulling apparatus of the present invention will be described with reference to FIG. A single crystal pulling apparatus 11 of FIG. 1 includes a heating furnace 3, a pulling furnace 1 having a central shaft 10 in which a crucible 2 in which a molten single crystal raw material (hereinafter referred to as a melt) 6 is accommodated, and a pulling furnace 1 is provided with a magnetic field generator 30 having a superconducting coil 4 provided around 1 and applying a horizontal magnetic field to the melt 6 by energizing the superconducting coil 4 to convect the melt 6 in the crucible 2. The single crystal 9 is pulled up in the pulling direction 8 while being suppressed.
 磁場発生装置30は、超電導コイル4のコイル軸を含む水平面12内の中心軸10における磁力線7方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものである。 The magnetic field generator 30 can generate two types of magnetic fields by switching the magnetic field lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis of the superconducting coil 4 and having different magnetic field distributions. is there.
 ここで、本発明の単結晶引き上げ装置の磁場発生装置で発生させる2種類の磁場について、図2を参照しながら説明する。図2(a)及び図2(b)は、本発明の単結晶引き上げ装置における、2種類の磁場の一例を示す図である。図2(a)及び図2(b)では、それぞれ対向配置された超電導コイル4の対がそれぞれのコイル軸13が同じ水平面内に含まれるように2対設けられ、電流経路を有しており、それぞれのコイルの対は別々に配線されている。また、超電導コイル4上の矢印は、該当コイルを真上から見た場合の電流ループの向きを示しており、左側の2コイルは右巻きコイルのため、電流の向きと逆方向に電流ループが形成されており、右側の2コイルは左巻きコイルのため、電流の向きと同方向に電流ループが形成されている。図2(a)においては、中心軸における磁力線方向はX軸方向となるが、図2(b)のように、左下と右上のコイルに流れる電流方向(電流極性)を反転させることによって、これらのコイルが作る電流ループが逆転し、中心軸における磁力線方向はY軸方向に変化する。 Here, two types of magnetic fields generated by the magnetic field generator of the single crystal pulling apparatus of the present invention will be described with reference to FIG. 2 (a) and 2 (b) are diagrams showing examples of two types of magnetic fields in the single crystal pulling apparatus of the present invention. 2 (a) and 2 (b), two pairs of superconducting coils 4 arranged opposite to each other are provided so that the respective coil shafts 13 are included in the same horizontal plane, and have current paths. Each coil pair is wired separately. The arrow on the superconducting coil 4 indicates the direction of the current loop when the coil is viewed from directly above, and the left two coils are right-handed coils, so that the current loop is in the opposite direction to the current direction. The two coils on the right side are left-handed coils, so that a current loop is formed in the same direction as the current direction. In FIG. 2A, the direction of the magnetic force line in the central axis is the X-axis direction, but by reversing the current direction (current polarity) flowing in the lower left and upper right coils as shown in FIG. The current loop formed by the coils of the first and second coils reverses, and the direction of the magnetic field lines in the central axis changes in the Y-axis direction.
 磁場発生装置30は、中心軸10における磁力線7方向が90度ずれており、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものであることが好ましい。このような磁場発生装置を備えたものであれば、2種類の磁場を切り替えることで、より確実に酸素濃度の低い単結晶と酸素濃度の高い単結晶の両方を製造することができる。 It is preferable that the magnetic field generator 30 is capable of generating two types of magnetic fields by switching the direction of the magnetic force lines 7 in the central axis 10 by 90 degrees and having different magnetic field distributions. If it has such a magnetic field generator, both a single crystal with a low oxygen concentration and a single crystal with a high oxygen concentration can be more reliably manufactured by switching between two types of magnetic fields.
 また、磁場発生装置30は、磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、超電導コイル4のコイル軸13を含む水平面12内の中心軸10における磁力線7方向をX軸としたときに、X軸上の磁束密度分布が下に凸の分布であり、水平面12内の中心軸10における磁束密度を磁束密度設定値とした場合、X軸上の磁束密度は坩堝壁では磁束密度設定値を超えた値(好ましくは、100%を超え130%以下)となると同時に、水平面12内においてX軸と直交し中心軸10を通るY軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の120%以下(通常、100%を超え120%以下)となるような磁場分布を発生させるものであることが好ましい。 Further, the magnetic field generator 30 has the direction of the magnetic force lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis 13 of the superconducting coil 4 in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. , Where the magnetic flux density distribution on the X axis is a downward convex distribution, and the magnetic flux density on the central axis 10 in the horizontal plane 12 is the magnetic flux density setting value, the magnetic flux density on the X axis is At the crucible wall, the value exceeds the set value of the magnetic flux density (preferably more than 100% and 130% or less), and at the same time, the magnetic flux density distribution on the Y axis passing through the central axis 10 perpendicular to the X axis in the horizontal plane 12 is lower. The magnetic flux density on the Y-axis generates a magnetic field distribution that is 120% or less (usually more than 100% and 120% or less) of the magnetic flux density setting value in the crucible wall. Like There.
 X軸上の磁束密度分布が下に凸の分布であり、X軸上の磁束密度が坩堝壁(両側)で磁束密度設定値を超えた値であり、同時に、Y軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度が坩堝壁(両側)で磁束密度設定値の120%以下の磁場分布であれば、X軸と垂直な断面内における対流抑制力が減少し、原料融液の流速が低減されにくくなることから、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が短くなり、原料融液の自由表面からの酸素蒸発量が減少することで、単結晶に取り込まれる酸素濃度を増加させることができる。つまり、上記のような磁場分布を発生させることで、酸素濃度の高い単結晶を製造することができる。 The magnetic flux density distribution on the X-axis is a downward convex distribution, the magnetic flux density on the X-axis is a value exceeding the magnetic flux density setting value on both sides of the crucible, and at the same time, the magnetic flux density distribution on the Y-axis is If the magnetic flux distribution on the Y-axis is 120% or less of the magnetic flux density setting value on the crucible wall (both sides), the convection suppression force in the cross section perpendicular to the X-axis decreases. Since the flow rate of the raw material melt is less likely to be reduced, the time until the oxygen eluted from the crucible wall reaches the single crystal is shortened, and the amount of oxygen evaporated from the free surface of the raw material melt is reduced. The oxygen concentration taken into the single crystal can be increased. That is, a single crystal having a high oxygen concentration can be produced by generating the magnetic field distribution as described above.
 また、磁場発生装置30は、磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、超電導コイル4のコイル軸13を含む水平面12内の中心軸10における磁力線7方向をY軸としたときに、Y軸上の磁束密度分布が上に凸の分布であり、水平面12内の中心軸10における磁束密度を磁束密度設定値とした場合、Y軸上の磁束密度は坩堝壁では磁束密度設定値の60%以下(通常、0%を超え60%以下)となると同時に、水平面12内においてY軸と直交し中心軸10を通るX軸上の磁束密度分布が下に凸の分布であり、X軸上の磁束密度は坩堝壁では磁束密度設定値の170%以上(好ましくは、170%以上250%以下)となるような磁場分布を発生させるものであることも好ましい。 Further, the magnetic field generator 30 has the direction of the magnetic force lines 7 in the central axis 10 in the horizontal plane 12 including the coil axis 13 of the superconducting coil 4 in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. Is the Y-axis, the magnetic flux density distribution on the Y-axis is a convex distribution, and when the magnetic flux density at the central axis 10 in the horizontal plane 12 is the magnetic flux density setting value, the magnetic flux density on the Y-axis is At the crucible wall, the magnetic flux density distribution on the X axis passing through the central axis 10 perpendicular to the Y axis in the horizontal plane 12 is at the same time lower than the magnetic flux density setting value of 60% or less (usually more than 0% and 60% or less). It is also preferable to generate a magnetic field distribution that has a convex distribution and the magnetic flux density on the X-axis is 170% or more (preferably 170% or more and 250% or less) of the magnetic flux density setting value in the crucible wall. .
 Y軸上の磁束密度分布が上に凸の分布であり、Y軸上の磁束密度が坩堝壁(両側)で磁束密度設定値の60%以下であり、同時に、X軸上の磁束密度分布が下に凸の分布であり、X軸上の坩堝壁(両側)で磁束密度設定値の170%以上の磁場分布であれば、Y軸と垂直な断面内における電磁力による対流抑制力が十分な状態となり、原料融液の流速が十分に低減されるとともに、原料融液のY軸に平行な断面内における流速と、原料融液のY軸における垂直な断面における流速とをバランスさせることができるため、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、原料融液の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができる。また、原料融液のY軸に平行な断面における流速と、原料融液のY軸に垂直な断面における流速とをバランスさせることによって、育成する単結晶中の成長縞を抑制することができる。つまり、上記のような磁場分布を発生させることで、酸素濃度が極めて低く、成長縞が抑制された単結晶を製造することができる。 The magnetic flux density distribution on the Y axis is an upwardly convex distribution, the magnetic flux density on the Y axis is 60% or less of the magnetic flux density setting value on the crucible walls (both sides), and at the same time, the magnetic flux density distribution on the X axis is If the magnetic field distribution is 170% or more of the magnetic flux density setting value on the crucible wall (both sides) on the X axis, the convection suppression force due to electromagnetic force in the cross section perpendicular to the Y axis is sufficient. Thus, the flow rate of the raw material melt is sufficiently reduced, and the flow rate in the cross section parallel to the Y axis of the raw material melt and the flow rate in the cross section perpendicular to the Y axis of the raw material melt can be balanced. Therefore, it takes a long time for oxygen eluted from the crucible wall to reach the single crystal, and the amount of oxygen evaporated from the free surface of the raw material melt increases, thereby greatly reducing the oxygen concentration taken into the single crystal. be able to. Further, by balancing the flow velocity in the cross section parallel to the Y axis of the raw material melt and the flow velocity in the cross section perpendicular to the Y axis of the raw material melt, growth fringes in the single crystal to be grown can be suppressed. That is, by generating the magnetic field distribution as described above, a single crystal having an extremely low oxygen concentration and suppressed growth fringes can be manufactured.
 つまり、上記のような磁場分布を発生させる2種類の磁場を切り替えて発生させることができる磁場発生装置を用いることで、より確実に、酸素濃度が極めて低く成長縞が抑制された単結晶と、酸素濃度の高い単結晶の両方を、同じ単結晶引き上げ装置で製造することができる。 That is, by using a magnetic field generator that can switch and generate two types of magnetic fields that generate a magnetic field distribution as described above, a single crystal with a very low oxygen concentration and suppressed growth fringes, Both single crystals with a high oxygen concentration can be produced with the same single crystal pulling apparatus.
 また、磁場発生装置30は、それぞれ対向配置された超電導コイル4の対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、コイル軸間のX軸を挟む中心角度αが60度以上70度以下のものであることが好ましい。磁場発生装置の超電導コイルをこのように配置することで、上記のような磁場分布をより確実に発生させることができる。 In addition, the magnetic field generator 30 is provided with two pairs of superconducting coils 4 arranged so as to face each other so that the respective coil axes are included in the same horizontal plane, and the center sandwiching the X axis between the coil axes The angle α is preferably not less than 60 degrees and not more than 70 degrees. By arranging the superconducting coils of the magnetic field generator in this way, the magnetic field distribution as described above can be generated more reliably.
 なお、コイル軸間のX軸を挟む中心角度αを60度以上70度以下とした場合、一方のコイル対に流れる電流方向を切り替えることで、磁力線方向がX軸方向からY軸方向に変化するとともに、磁力線方向であるY軸を挟む中心角度α’は(180-α)度となるため、磁力線方向を含むコイル軸間の中心角度は110度以上120度以下に変化することになる。 When the central angle α sandwiching the X axis between the coil axes is set to 60 degrees or more and 70 degrees or less, the direction of the line of magnetic force changes from the X axis direction to the Y axis direction by switching the direction of the current flowing through one coil pair. At the same time, since the central angle α ′ across the Y axis, which is the direction of the magnetic field, is (180−α) degrees, the central angle between the coil axes including the direction of the magnetic field changes from 110 degrees to 120 degrees.
 また、磁場発生装置30は、それぞれ対向配置された超電導コイル4の対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、一方の対に流れる電流方向を切り替えることで中心軸10における磁力線7方向を切り替えることができるものであることが好ましい。このような磁場発生装置であれば、電流方向を切り替えるだけで、容易に2種類の磁場を切り替えることができる。 In addition, the magnetic field generator 30 is provided with two pairs of superconducting coils 4 arranged so as to face each other so that the respective coil axes are included in the same horizontal plane, and the direction of the current flowing in one pair is switched. Thus, it is preferable that the direction of the magnetic force lines 7 in the central axis 10 can be switched. With such a magnetic field generator, two types of magnetic fields can be easily switched by simply switching the current direction.
 なお、このような磁場分布の切り替えは、要求される酸素濃度が異なる結晶を育成する場合、磁場励磁前に行うことができる。超電導コイルに流れる電流は超電導マグネット用の直流電源から供給されるが、電源内部にて極性を変更した上で、励磁することにより、簡便に磁場分布の切り替えが可能となる。なお、超電導状態においては、コイル間には反発力あるいは吸引力が互いに作用しているため、このような状況で電流方向を変更すると、コイル自体が動くことでクエンチ(超電導状態の崩壊)を引き起こしてしまうため、極性を変更する場合は、必ず励磁開始前に実施する必要がある。 It should be noted that such switching of the magnetic field distribution can be performed before magnetic field excitation when growing crystals having different required oxygen concentrations. The current flowing in the superconducting coil is supplied from a DC power source for the superconducting magnet. However, the magnetic field distribution can be easily switched by exciting the magnet after changing the polarity inside the power source. In the superconducting state, repulsive force or attractive force acts between the coils, so if the current direction is changed in such a situation, the coil itself moves to cause a quench (collapse of the superconducting state). Therefore, it is necessary to change the polarity before starting excitation.
 以上のように、本発明の単結晶引き上げ装置であれば、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、また、例えば超電導コイルに流れる電流の方向を切り替えるなどの簡便な方法で2種類の磁場を切り替えることができ、これによって、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶を得ることができる。 As described above, the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown. The two kinds of magnetic fields can be switched by a simple method such as switching the direction of the flowing current, whereby a single crystal having a high oxygen concentration can be obtained by a simple method in the same pulling apparatus.
<単結晶引き上げ方法>
 また、本発明では、上述の本発明の単結晶引き上げ装置を用いて、半導体単結晶を引き上げる単結晶引き上げ方法を提供する。
<Single crystal pulling method>
The present invention also provides a single crystal pulling method for pulling a semiconductor single crystal using the single crystal pulling apparatus of the present invention described above.
 このような単結晶引き上げ方法であれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された半導体単結晶を育成でき、同じ引き上げ装置を用いて、取り込まれる酸素濃度を増加させた半導体単結晶も容易に育成することができる。 With such a single crystal pulling method, it is possible to grow a semiconductor single crystal in which the incorporated oxygen concentration is significantly reduced and the growth fringes are suppressed, and the incorporated oxygen concentration is increased using the same pulling apparatus. A semiconductor single crystal can also be easily grown.
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited thereto.
[実施例1]
 図1に示される単結晶引き上げ装置11において、超電導コイルの配置を図3に示されるコイル配置(コイル軸間のX軸を挟む中心角度αが60度;2対のコイルを1対ずつ別々に配線)としたものを用いて、以下に示す引き上げ条件で、半導体単結晶の引き上げを行った。
[Example 1]
In the single crystal pulling apparatus 11 shown in FIG. 1, the arrangement of superconducting coils is the same as that shown in FIG. 3 (the central angle α sandwiching the X-axis between the coil axes is 60 degrees; The semiconductor single crystal was pulled up under the pulling conditions shown below using the wiring).
(引き上げ条件)
  使用坩堝       :直径800mm
  単結晶原料のチャージ量:400kg
  育成する単結晶    :直径306mm
  単結晶の直胴部の長さ :40cm
  磁束密度       :コイル軸を含む水平面内の中心軸において3000Gとなるように調整
  単結晶回転速度    :6rpm
  坩堝回転速度     :0.03rpm
(Raising conditions)
Used crucible: Diameter 800mm
Single crystal raw material charge: 400kg
Single crystal to grow: Diameter 306mm
Length of straight body of single crystal: 40cm
Magnetic flux density: Adjusted to be 3000 G in the central axis in the horizontal plane including the coil axis. Single crystal rotation speed: 6 rpm
Crucible rotation speed: 0.03 rpm
[実施例2]
 図1に示される単結晶引き上げ装置11において、超電導コイルの配置を図4に示されるコイル配置(中心角度αが70度;2対のコイルを1対ずつ別々に配線)としたものを用いる以外は実施例1と同様にして、半導体単結晶の引き上げを行った。
[Example 2]
In the single crystal pulling apparatus 11 shown in FIG. 1, except that the superconducting coil is arranged as shown in FIG. 4 (center angle α is 70 degrees; two coils are wired separately one by one). In the same manner as in Example 1, the semiconductor single crystal was pulled up.
[実施例3]
 図1に示される単結晶引き上げ装置11において、超電導コイルの配置を図5に示されるコイル配置(中心角度αが80度;2対のコイルを1対ずつ別々に配線)としたものを用いる以外は実施例1と同様にして、半導体単結晶の引き上げを行った。
[Example 3]
In the single crystal pulling apparatus 11 shown in FIG. 1, except that the superconducting coil is arranged as shown in FIG. 5 (center angle α is 80 degrees; two pairs of coils are wired separately). In the same manner as in Example 1, the semiconductor single crystal was pulled up.
[比較例1]
 図1に示される単結晶引き上げ装置11において、超電導コイルの配置を図6に示されるコイル配置(中心角度αが90度;2対のコイルを1対ずつ別々に配線)としたものを用いる以外は実施例1と同様にして、半導体単結晶の引き上げを行った。
[Comparative Example 1]
In the single crystal pulling apparatus 11 shown in FIG. 1, except that the superconducting coil is arranged as shown in FIG. 6 (center angle α is 90 degrees; two pairs of coils are wired separately). In the same manner as in Example 1, the semiconductor single crystal was pulled up.
[比較例2]
 図1に示される単結晶引き上げ装置11において、超電導コイルの配置を図7に示されるコイル配置(コイル軸間のX軸を挟む中心角度αが60度;2対のコイルをすべて直列に配線)としたものを用いる以外は実施例1と同様にして、半導体単結晶の引き上げを行った。
[Comparative Example 2]
In the single crystal pulling apparatus 11 shown in FIG. 1, the arrangement of superconducting coils is as shown in FIG. 7 (the central angle α sandwiching the X axis between the coil axes is 60 degrees; all two pairs of coils are wired in series) The semiconductor single crystal was pulled up in the same manner as in Example 1 except that the above was used.
 実施例1~3及び比較例1の単結晶引き上げ装置を用いた場合の、コイル軸を含む水平面内の磁束密度分布を測定した。その結果を図8~11に示す。ここで、図8(a)~11(a)は、磁力線方向がX軸方向の場合のコイル軸を含む水平面内の磁束密度分布であり、図8(b)~11(b)は、磁力線方向がY軸方向の場合のコイル軸を含む水平面内の磁束密度分布である。また、磁力線方向がX軸方向の場合と磁力線方向がY軸方向の場合の坩堝壁での磁束密度を表1に示す。また、磁力線方向の磁束密度分布を示すグラフを図16に、磁力線と垂直方向の磁束密度分布を示すグラフを図17に示す。 When the single crystal pulling apparatus of Examples 1 to 3 and Comparative Example 1 was used, the magnetic flux density distribution in the horizontal plane including the coil axis was measured. The results are shown in FIGS. Here, FIGS. 8A to 11A are magnetic flux density distributions in the horizontal plane including the coil axis when the direction of the magnetic force line is the X-axis direction, and FIGS. 8B to 11B are magnetic field lines. It is magnetic flux density distribution in the horizontal surface containing a coil axis | shaft in case a direction is a Y-axis direction. Table 1 shows the magnetic flux density at the crucible wall when the magnetic force line direction is the X-axis direction and when the magnetic force line direction is the Y-axis direction. FIG. 16 shows a graph showing the magnetic flux density distribution in the direction of the magnetic lines of force, and FIG. 17 shows a graph showing the magnetic flux density distribution in the direction perpendicular to the lines of magnetic force.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 更に、解析ソフトとしてFEMAG-TMFを使用し、実施例1~3及び比較例1の単結晶引き上げ装置を用いて上記に示す引き上げ条件で単結晶の引き上げを行った場合の単結晶の直胴部の長さが40cmとなった時点の融液の断面(磁力線と平行な断面と垂直な断面)における流速分布をシミュレーション解析した。その解析結果を図12~15に示す。なお、図12(a)~15(a)は、磁力線と平行な断面における流速分布であり、図12(b)~15(b)は、磁力線と垂直な断面における流速分布である。 Further, the straight body portion of the single crystal in the case where the single crystal is pulled under the pulling conditions described above using the single crystal pulling apparatus of Examples 1 to 3 and Comparative Example 1 using FEMAG-TMF as analysis software The flow velocity distribution in the cross section of the melt (the cross section parallel to the magnetic field lines and the cross section perpendicular to the magnetic field lines) at the time when the length of the film became 40 cm was analyzed by simulation. The analysis results are shown in FIGS. 12 (a) to 15 (a) are flow velocity distributions in a cross section parallel to the magnetic force lines, and FIGS. 12 (b) to 15 (b) are flow velocity distributions in a cross section perpendicular to the magnetic force lines.
 また、実施例1~3及び比較例1、2で育成した半導体単結晶について、酸素濃度を調べた。その結果を図18に示す。 Also, the oxygen concentration of the semiconductor single crystals grown in Examples 1 to 3 and Comparative Examples 1 and 2 was examined. The result is shown in FIG.
 コイル軸間のX軸を挟む中心角度αを60度(α’を120度)とし、2対のコイルを1対ずつ別々に配線した実施例1では、電流方向の切り替えにより磁力線方向をX軸方向、Y軸方向と切り替えた場合に、図8(a)及び図8(b)に示されるように、それぞれ異なる磁場分布が発生していた。また、表1及び図16、17に示されるように、磁力線方向がX軸方向の場合、X軸上の磁束密度分布は下に凸の分布(図16)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値を超えた値となっており、Y軸上の磁束密度分布は下に凸の分布(図17)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の120%以下となっていた。また、表1及び図16、17に示されるように、磁力線方向がY軸方向の場合、Y軸上の磁束密度分布は上に凸の分布(図16)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の60%以下となっており、X軸上の磁束密度分布は下に凸の分布(図17)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値の170%以上となっていた。また、図12(a)及び図12(b)に示されるように、融液の断面における流速分布も、磁力線と平行な断面と磁力線と垂直な断面でそれぞれ異なっていた。また、図18に示されるように、磁力線方向がX軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は10~15ppma-JEIDA程度であり、磁場を切り替えて磁力線方向がY軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は3ppma-JEIDA程度であることから、磁場の切り替えによって酸素濃度が大きく異なる単結晶を製造できていることが分かる。また、育成した低酸素濃度の単結晶には、成長縞が見られなかった。 In Example 1 in which the central angle α sandwiching the X axis between the coil axes is 60 degrees (α ′ is 120 degrees) and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction. When switching between the direction and the Y-axis direction, different magnetic field distributions were generated as shown in FIGS. 8A and 8B. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic force line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is a downward convex distribution (FIG. 16), and the magnetic flux density on the X-axis. Is a value exceeding the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is the magnetic flux density setting at the crucible wall. It was 120% or less of the value. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the Y-axis. Is less than 60% of the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the X axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the X axis is the magnetic flux density setting at the crucible wall. It was 170% or more of the value. Further, as shown in FIGS. 12A and 12B, the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic force lines and the cross section perpendicular to the magnetic force lines. Further, as shown in FIG. 18, the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X axis direction is about 10 to 15 ppma-JEIDA, and the magnetic force line direction is changed to the Y axis. Since the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 3 ppma-JEIDA, it can be seen that single crystals having greatly different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
 コイル軸間のX軸を挟む中心角度αを70度(α’を110度)とし、2対のコイルを1対ずつ別々に配線した実施例2では、電流方向の切り替えにより磁力線方向をX軸方向、Y軸方向と切り替えた場合に、図9(a)及び図9(b)に示されるように、それぞれ異なる磁場分布が発生していた。また、表1及び図16、17に示されるように、磁力線方向がX軸方向の場合、X軸上の磁束密度分布は下に凸の分布(図16)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値を超えた値となっており、Y軸上の磁束密度分布は下に凸の分布(図17)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の120%以下となっていた。また、表1及び図16、17に示されるように、磁力線方向がY軸方向の場合、Y軸上の磁束密度分布は上に凸の分布(図16)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の60%以下となっており、X軸上の磁束密度分布は下に凸の分布(図17)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値の170%以上となっていた。また、図13(a)及び図13(b)に示されるように、融液の断面における流速分布も、磁力線と平行な断面と磁力線と垂直な断面でそれぞれ異なっていた。また、図18に示されるように、磁力線方向がX軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は8~11ppma-JEIDA程度であり、磁場を切り替えて磁力線方向がY軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は3.5ppma-JEIDA程度であることから、磁場の切り替えによって酸素濃度が大きく異なる単結晶を製造できていることが分かる。また、育成した低酸素濃度の単結晶には、成長縞が見られなかった。 In Example 2 in which the center angle α sandwiching the X axis between the coil axes is 70 degrees (α ′ is 110 degrees), and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction. When switching between the direction and the Y-axis direction, different magnetic field distributions occurred as shown in FIGS. 9A and 9B. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic force line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is a downward convex distribution (FIG. 16), and the magnetic flux density on the X-axis. Is a value exceeding the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is the magnetic flux density setting at the crucible wall. It was 120% or less of the value. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the Y-axis. Is less than 60% of the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the X axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the X axis is the magnetic flux density setting at the crucible wall. It was 170% or more of the value. Further, as shown in FIGS. 13A and 13B, the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic field lines and the cross section perpendicular to the magnetic force lines. Further, as shown in FIG. 18, the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X-axis direction is about 8 to 11 ppma-JEIDA. Since the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 3.5 ppma-JEIDA, it can be seen that single crystals having greatly different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
 コイル軸間のX軸を挟む中心角度αを80度(α’を100度)とし、2対のコイルを1対ずつ別々に配線した実施例3では、電流方向の切り替えにより磁力線方向をX軸方向、Y軸方向と切り替えた場合に、図10(a)及び図10(b)に示されるように、それぞれ異なる磁場分布が発生していた。また、表1及び図16、17に示されるように、磁力線方向がX軸方向の場合、X軸上の磁束密度分布は上に凸の分布(図16)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値未満となっており、Y軸上の磁束密度分布は下に凸の分布(図17)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の120%を超えた値となっていた。また、表1及び図16、17に示されるように、磁力線方向がY軸方向の場合、Y軸上の磁束密度分布は上に凸の分布(図16)であるものの、Y軸上の磁束密度は坩堝壁では磁束密度設定値の60%を超える値となっており、X軸上の磁束密度分布は下に凸の分布(図17)であるものの、X軸上の磁束密度は坩堝壁では磁束密度設定値の170%未満となっていた。また、図14(a)及び図14(b)に示されるように、融液の断面における流速分布も、磁力線と平行な断面と磁力線と垂直な断面でそれぞれ異なっていた。また、図18に示されるように、磁力線方向がX軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は6~8ppma-JEIDA程度であり、磁場を切り替えて磁力線方向がY軸方向である水平磁場を印加して引き上げた単結晶の酸素濃度は4ppma-JEIDA程度であることから、磁場の切り替えによって酸素濃度が異なる単結晶を製造できていることが分かる。また、育成した低酸素濃度の単結晶には、成長縞が見られなかった。 In Example 3 in which the center angle α sandwiching the X axis between the coil axes is 80 degrees (α ′ is 100 degrees) and two pairs of coils are separately wired one by one, the direction of the magnetic force lines is changed to the X axis by switching the current direction. When the direction and the Y-axis direction are switched, different magnetic field distributions are generated as shown in FIGS. 10 (a) and 10 (b). Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the X-axis. Is less than the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is 120, which is the magnetic flux density setting value at the crucible wall. It was a value exceeding%. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the Y-axis direction, the magnetic flux density distribution on the Y-axis is an upward convex distribution (FIG. 16), but the magnetic flux on the Y-axis. The density of the crucible wall exceeds 60% of the set value of the magnetic flux density, and the magnetic flux density distribution on the X axis is a downwardly convex distribution (FIG. 17), but the magnetic flux density on the X axis is the crucible wall. Then, it was less than 170% of the magnetic flux density setting value. Further, as shown in FIGS. 14A and 14B, the flow velocity distribution in the cross section of the melt was also different between the cross section parallel to the magnetic field lines and the cross section perpendicular to the magnetic force lines. In addition, as shown in FIG. 18, the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in which the magnetic force line direction is the X-axis direction is about 6 to 8 ppma-JEIDA. Since the oxygen concentration of the single crystal pulled up by applying a horizontal magnetic field in the direction is about 4 ppma-JEIDA, it can be seen that single crystals having different oxygen concentrations can be produced by switching the magnetic field. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
 一方、コイル軸間のX軸を挟む中心角度αを90度(α’も90度)とし、2対のコイルを1対ずつ別々に配線した比較例1では、図11(a)及び図11(b)に示されるように、電流方向の切り替えにより磁力線方向をX軸方向、Y軸方向と切り替えた場合にも、磁場分布はそのまま90度回転するだけであり、それぞれ異なる磁場分布は発生していなかった。また、表1及び図16、17に示されるように、磁力線方向がX軸方向の場合、X軸上の磁束密度分布は上に凸の分布(図16)であり、X軸上の磁束密度は坩堝壁では磁束密度設定値未満となっており、Y軸上の磁束密度分布は下に凸の分布(図17)であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の120%を超えた値となっていた。また、表1及び図16、17に示されるように、磁力線方向がY軸方向の場合にも、磁力線方向がX軸方向の場合の磁束密度分布が90度回転した以外は同様の磁束密度分布となっていた。また、図15(a)及び図15(b)に示されるように、融液の断面における流速分布も、磁力線と平行な断面と磁力線と垂直な断面でそれぞれ同じであった。また、図18に示されるように、磁力線方向がX軸方向である水平磁場を印加して引き上げた単結晶と磁力線方向がY軸方向である水平磁場を印加して引き上げた単結晶中の酸素濃度に違いは見られず、どちらも5~6ppma-JEIDA程度であることから、磁場を切り替えても酸素濃度が異なる単結晶を製造できないことが分かる。また、育成した低酸素濃度の単結晶には、成長縞が見られなかった。 On the other hand, in the first comparative example in which the center angle α sandwiching the X axis between the coil axes is 90 degrees (α ′ is also 90 degrees) and two pairs of coils are separately wired one by one, FIG. As shown in (b), even when the direction of the magnetic field is switched between the X-axis direction and the Y-axis direction by switching the current direction, the magnetic field distribution is simply rotated by 90 degrees, and different magnetic field distributions are generated. It wasn't. Further, as shown in Table 1 and FIGS. 16 and 17, when the magnetic field line direction is the X-axis direction, the magnetic flux density distribution on the X-axis is an upward convex distribution (FIG. 16), and the magnetic flux density on the X-axis. Is less than the magnetic flux density setting value at the crucible wall, the magnetic flux density distribution on the Y axis is a downward convex distribution (FIG. 17), and the magnetic flux density on the Y axis is 120, which is the magnetic flux density setting value at the crucible wall. It was a value exceeding%. Further, as shown in Table 1 and FIGS. 16 and 17, the same magnetic flux density distribution except that the magnetic flux density distribution when the magnetic force line direction is the X-axis direction is rotated by 90 degrees even when the magnetic force line direction is the Y-axis direction. It was. Further, as shown in FIGS. 15A and 15B, the flow velocity distribution in the cross section of the melt was also the same in the cross section parallel to the magnetic force lines and the cross section perpendicular to the magnetic force lines. Further, as shown in FIG. 18, a single crystal pulled by applying a horizontal magnetic field whose magnetic force line direction is the X-axis direction and oxygen in the single crystal pulled by applying a horizontal magnetic field whose magnetic force line direction is the Y-axis direction. There is no difference in concentration, and both are about 5 to 6 ppma-JEIDA, so that it is understood that single crystals having different oxygen concentrations cannot be produced even when the magnetic field is switched. Further, no growth stripes were observed in the grown single crystal having a low oxygen concentration.
 また、コイル軸間のX軸を挟む中心角度αを60度とし、2対のコイルをすべて直列に配線した比較例2では、磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができないため、図18に示されるように、実施例1において磁力線方向がX軸方向である水平磁場を印加して引き上げた単結晶と同程度の酸素濃度の高い(10~15ppma-JEIDA程度の)単結晶しか製造することができなかった。なお、育成した高酸素濃度の単結晶には、成長縞が見られた。 In Comparative Example 2 in which the center angle α sandwiching the X axis between the coil axes is 60 degrees and all the two pairs of coils are wired in series, the magnetic field lines are different from each other and the magnetic field distributions are different from each other. Therefore, as shown in FIG. 18, the oxygen concentration is as high as that of a single crystal pulled up by applying a horizontal magnetic field in which the direction of the magnetic field is the X-axis direction in Example 1 (10 Only single crystals (about ˜15 ppma-JEIDA) could be produced. Note that growth stripes were observed in the grown single crystal having a high oxygen concentration.
 以上のことから、本発明の単結晶引き上げ装置であれば、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができ、同じ引き上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができることが明らかとなった。また、コイル軸間のX軸を挟む中心角度αを60度以上70度以下とすることで、磁場を切り替えた場合の単結晶の酸素濃度の差が特に大きくなることが明らかとなった。 From the above, the single crystal pulling apparatus of the present invention can reduce the oxygen concentration in the single crystal to be grown and can suppress growth fringes in the single crystal to be grown. It was revealed that a single crystal having a high oxygen concentration can be obtained by a simple method. Further, it has been clarified that the difference in oxygen concentration of the single crystal is particularly increased when the magnetic field is switched by setting the central angle α sandwiching the X axis between the coil axes to 60 degrees or more and 70 degrees or less.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (7)

  1.  加熱ヒータ及び溶融した単結晶原料が収容される坩堝が配置され中心軸を有する引き上げ炉と、前記引き上げ炉の周囲に設けられ超伝導コイルを有する磁場発生装置とを備え、前記超電導コイルへの通電により前記溶融した単結晶原料に水平磁場を印加して、前記溶融した単結晶原料の前記坩堝内での対流を抑制する単結晶引き上げ装置であって、
     前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものであることを特徴とする単結晶引き上げ装置。
    A heating furnace and a crucible in which a molten single crystal raw material is accommodated are arranged, a pulling furnace having a central axis, and a magnetic field generator having a superconducting coil provided around the pulling furnace and energizing the superconducting coil A single crystal pulling device that applies a horizontal magnetic field to the molten single crystal raw material to suppress convection in the crucible of the molten single crystal raw material,
    The magnetic field generator is capable of switching and generating two types of magnetic fields having different magnetic force line directions in the central axis in a horizontal plane including the coil axis of the superconducting coil and having different magnetic field distributions. Single crystal pulling device characterized by
  2.  前記磁場発生装置は、前記中心軸における磁力線方向が90度ずれており、かつ前記磁場分布が互いに異なる、2種類の磁場を切り替えて発生させることができるものであることを特徴とする請求項1に記載の単結晶引き上げ装置。 2. The magnetic field generation apparatus according to claim 1, wherein the magnetic field lines in the central axis are shifted by 90 degrees, and two types of magnetic fields having different magnetic field distributions can be switched and generated. A single crystal pulling apparatus according to 1.
  3.  前記磁場発生装置は、前記磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、前記磁力線方向をX軸としたときに、前記X軸上の磁束密度分布が下に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値を超えた値となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の120%以下となるような磁場分布を発生させるものであることを特徴とする請求項1又は請求項2に記載の単結晶引き上げ装置。 In the magnetic field generator, the magnetic flux density distribution on the X axis is lower when one of two types of magnetic fields having different magnetic field lines and different magnetic field distributions is used. When the magnetic flux density at the central axis in the horizontal plane is a magnetic flux density setting value, the magnetic flux density on the X-axis is a value exceeding the magnetic flux density setting value at the crucible wall, In the horizontal plane, the magnetic flux density distribution on the Y axis perpendicular to the X axis and passing through the central axis is a downward convex distribution, and the magnetic flux density on the Y axis is 120% of the magnetic flux density setting value at the crucible wall. The single crystal pulling apparatus according to claim 1 or 2, wherein a magnetic field distribution is generated as follows.
  4.  前記磁場発生装置は、前記磁力線方向が互いに異なり、かつ磁場分布が互いに異なる、2種類の磁場のうち一方において、前記磁力線方向をY軸としたときに、前記Y軸上の磁束密度分布が上に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の60%以下となると同時に、前記水平面内において前記Y軸と直交し前記中心軸を通るX軸上の磁束密度分布が下に凸の分布であり、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値の170%以上となるような磁場分布を発生させるものであることを特徴とする請求項1又は請求項2に記載の単結晶引き上げ装置。 In the magnetic field generator, the magnetic flux density distribution on the Y axis is higher when the magnetic force line direction is the Y axis in one of two types of magnetic fields having different magnetic force line directions and different magnetic field distributions. When the magnetic flux density at the central axis in the horizontal plane is a magnetic flux density setting value, the magnetic flux density on the Y axis is 60% or less of the magnetic flux density setting value at the crucible wall, In the horizontal plane, the magnetic flux density distribution on the X axis that is orthogonal to the Y axis and passes through the central axis is a convex downward distribution, and the magnetic flux density on the X axis is 170% of the magnetic flux density setting value at the crucible wall. The single crystal pulling apparatus according to claim 1 or 2, wherein a magnetic field distribution as described above is generated.
  5.  前記磁場発生装置は、それぞれ対向配置された超電導コイルの対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、前記コイル軸間の前記X軸を挟む中心角度αが60度以上70度以下のものであることを特徴とする請求項1から請求項4のいずれか一項に記載の単結晶引き上げ装置。 In the magnetic field generator, two pairs of superconducting coils arranged opposite to each other are provided so that each coil axis is included in the same horizontal plane, and a central angle sandwiching the X axis between the coil axes The single crystal pulling apparatus according to any one of claims 1 to 4, wherein α is not less than 60 degrees and not more than 70 degrees.
  6.  前記磁場発生装置は、それぞれ対向配置された超電導コイルの対がそれぞれのコイル軸が同じ水平面内に含まれるように2対設けられたものであり、一方の対に流れる電流方向を切り替えることで前記中心軸における磁力線方向を切り替えることができるものであることを特徴とする請求項1から請求項5のいずれか一項に記載の単結晶引き上げ装置。 In the magnetic field generator, two pairs of superconducting coils arranged opposite to each other are provided so that each coil axis is included in the same horizontal plane, and the direction of the current flowing in one pair is switched to change the current direction. The single crystal pulling apparatus according to any one of claims 1 to 5, wherein a direction of a line of magnetic force in the central axis can be switched.
  7.  請求項1から請求項6のいずれか一項に記載の単結晶引き上げ装置を用いて、半導体単結晶を引き上げることを特徴とする単結晶引き上げ方法。 A single crystal pulling method comprising pulling up a semiconductor single crystal using the single crystal pulling apparatus according to any one of claims 1 to 6.
PCT/JP2017/008434 2016-05-16 2017-03-03 Single crystal pulling device and single crystal pulling method WO2017199536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098073 2016-05-16
JP2016098073A JP6620670B2 (en) 2016-05-16 2016-05-16 Single crystal pulling apparatus and single crystal pulling method

Publications (1)

Publication Number Publication Date
WO2017199536A1 true WO2017199536A1 (en) 2017-11-23

Family

ID=60325767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008434 WO2017199536A1 (en) 2016-05-16 2017-03-03 Single crystal pulling device and single crystal pulling method

Country Status (2)

Country Link
JP (1) JP6620670B2 (en)
WO (1) WO2017199536A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129883A (en) * 2018-03-30 2019-08-16 杭州慧翔电液技术开发有限公司 A method of magnet structure and magnetic control pulling of crystals for magnetic control pulling of crystals
JPWO2022102251A1 (en) 2020-11-10 2022-05-19
JP2022110323A (en) 2021-01-18 2022-07-29 住友重機械工業株式会社 Superconducting magnet device
JP2022141151A (en) * 2021-03-15 2022-09-29 信越半導体株式会社 Apparatus and method for pulling single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275188A (en) * 1985-05-30 1986-12-05 Toshiba Corp Pulling method for single crystal
JPH101388A (en) * 1996-06-18 1998-01-06 Super Silicon Kenkyusho:Kk Device for pulling up single crystal having magnetic field applying function and pulling-up method
JP2004051475A (en) * 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275188A (en) * 1985-05-30 1986-12-05 Toshiba Corp Pulling method for single crystal
JPH101388A (en) * 1996-06-18 1998-01-06 Super Silicon Kenkyusho:Kk Device for pulling up single crystal having magnetic field applying function and pulling-up method
JP2004051475A (en) * 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal

Also Published As

Publication number Publication date
JP2017206396A (en) 2017-11-24
JP6620670B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6436031B2 (en) Single crystal pulling apparatus and single crystal pulling method
WO2017199536A1 (en) Single crystal pulling device and single crystal pulling method
JP2009173536A (en) Apparatus for manufacturing high-quality semiconductor single crystal ingot and method using the same
JP2004051475A (en) Single crystal puller, superconductive magnet, and method for pulling up single crystal
Vegad et al. Review of some aspects of single crystal growth using Czochralski crystal growth technique
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
JP2019151502A (en) Method for controlling convection pattern of silicon melt, method for manufacturing silicon single crystal and apparatus for pulling silicon single crystal
WO2020225985A1 (en) Single crystal pulling apparatus and single crystal pulling method
Chen et al. Effects of crystal-crucible iso-rotation and a balanced/unbalanced cusp magnetic field on the heat, flow, and oxygen transport in a Czochralski silicon melt
Vizman Flow control by magnetic fields during crystal growth from melt
JP7160006B2 (en) Single crystal pulling apparatus and single crystal pulling method
Liu et al. Effects of rotating magnetic field on Bi12SiO20 crystal growth by vertical zone-melting technique
JP2021080112A (en) Apparatus and method for pulling single crystal
TWI751726B (en) A semiconductor crystal growth apparatus
Kakimoto et al. Fluid dynamics: modeling and analysis
JP2019196289A (en) Production method of single crystal, and draw-up device of single crystal
TW202248471A (en) Single crystal pulling-up apparatus and single crystal pulling-up method
JP7439900B2 (en) Single crystal pulling equipment and single crystal pulling method
TWI797764B (en) Method for producing single crystal, magnetic field generator and apparatus for producing single crystal
KR20230133299A (en) Single crystal pulling device and single crystal pulling method
JPH10167875A (en) Device for producing single crystal
JPH01246192A (en) Device for pulling up single crystal

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798973

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798973

Country of ref document: EP

Kind code of ref document: A1