JPS5850953B2 - crystal growth method - Google Patents

crystal growth method

Info

Publication number
JPS5850953B2
JPS5850953B2 JP857880A JP857880A JPS5850953B2 JP S5850953 B2 JPS5850953 B2 JP S5850953B2 JP 857880 A JP857880 A JP 857880A JP 857880 A JP857880 A JP 857880A JP S5850953 B2 JPS5850953 B2 JP S5850953B2
Authority
JP
Japan
Prior art keywords
container
magnetic field
crystal
crystal growth
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP857880A
Other languages
Japanese (ja)
Other versions
JPS56104791A (en
Inventor
伸幸 伊沢
利彦 鈴木
金治 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP857880A priority Critical patent/JPS5850953B2/en
Priority to GB8029356A priority patent/GB2059932B/en
Priority to FR8019942A priority patent/FR2465802B1/en
Priority to DE19803035267 priority patent/DE3035267A1/en
Priority to SE8006569A priority patent/SE8006569L/en
Priority to NL8005228A priority patent/NL8005228A/en
Priority to CA000360638A priority patent/CA1177367A/en
Priority to IT24803/80A priority patent/IT1141064B/en
Priority to AT0473180A priority patent/AT398582B/en
Publication of JPS56104791A publication Critical patent/JPS56104791A/en
Priority to US06/339,065 priority patent/US4619730A/en
Publication of JPS5850953B2 publication Critical patent/JPS5850953B2/en
Priority to US06/562,015 priority patent/US4622211A/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は、半導体、特にシリコンの結晶成長法に係わる
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing crystals of semiconductors, particularly silicon.

結晶の成長方法としては、引上法、ゾーン・レベリング
法、ブリッジマン法、デンドライト成長法などが挙げら
れるが、いずれの方法においても、その結晶材料を収容
する容器の組成元素が、結晶材料中に混入し、成長され
た結晶の純度が低下する。
Examples of crystal growth methods include the pulling method, zone leveling method, Bridgman method, and dendrite growth method. The purity of the grown crystal decreases.

例えばシリコンの結晶をチョクラルスキー法(引上法)
にて成長させる場合、その結晶材料の融液を収容する容
器としては、一般に石英(SiO2)るつぼが用いられ
るが、この場合、るつぼから酸素が分解混入され、高純
度の結晶を得るこ゛とができないという欠点がある。
For example, silicon crystals are processed using the Czochralski method (pulling method).
In the case of crystal growth, a quartz (SiO2) crucible is generally used as a container to contain the melt of the crystal material, but in this case, oxygen is decomposed and mixed in from the crucible, making it impossible to obtain high-purity crystals. There is a drawback.

本発明は、このような欠点を回避して高純度の結晶、或
いは所望の純度の結晶を再現性良く得ることのできる結
晶成長法を提供するものである。
The present invention provides a crystal growth method that avoids such drawbacks and can obtain highly pure crystals or crystals of desired purity with good reproducibility.

すなわち、本発明者は諸種の実験考察を重ねた結果、こ
の不純物の混入は、容器内における結晶材料液の移動、
特に対流による移動に大きく依存するものであることを
究明し、この究明に基いて対流の抑止を磁場の印加によ
って図り、容器戒分の液中への混入を制御する。
That is, as a result of various experimental considerations, the present inventor has found that the contamination of this impurity is caused by the movement of the crystal material liquid within the container.
In particular, we have determined that the movement is highly dependent on convection, and based on this finding, we have attempted to suppress convection by applying a magnetic field to control the mixing of the container's ingredients into the liquid.

すなわち、更に述べるなら、容器内に結晶材料液を収容
する場合、この容器と結晶材料液が少くとも高温に加熱
された部分において、容器の構成成分が、この容器に接
する結晶材料液へと溶解するが、この場合、容器内にお
ける熱対流が比較的激しく生じていると、容器と接触す
る部分に溶解された容器成分が、熱対流によって速やか
に他部へと運び去られ、これによって、結晶材料液の容
器成分の溶解濃度は速やかに一様化され、これに伴って
、結晶材料液の容器との接触部における容器成分の溶解
濃度が低められるので、容器成分の結晶材料液への溶解
が生じ易くなり、その溶解は、飽和溶解度ないしはこれ
に近い状態まで生じ、この時、液全体がほぼ一様の溶解
濃度となっている。
In other words, when a crystalline material liquid is stored in a container, the constituent components of the container are dissolved into the crystalline material liquid that is in contact with the container at least in the portion where the container and the crystalline material liquid are heated to a high temperature. However, in this case, if the heat convection inside the container is relatively intense, the components of the container that are dissolved in the part that comes into contact with the container are quickly carried away to other parts by the heat convection, which causes crystallization. The dissolved concentration of the container components in the material liquid is quickly uniformized, and as a result, the dissolved concentration of the container components in the contact area of the crystal material liquid with the container is lowered, so that the dissolution of the container components in the crystal material liquid is reduced. is likely to occur, and its dissolution occurs to a state at or close to saturation solubility, at which time the entire liquid has a substantially uniform dissolution concentration.

このように結晶材料液の対流が比較的激しい場合は、容
器成分の、この容器と接する液中への溶解が著しく生じ
、またこの成分の液中における他部への移動速度が犬と
なるので、これに伴ってこれより育成される結晶中の容
器成分による不純物濃度が高められることが究明された
When the convection of the crystal material liquid is relatively strong in this way, the dissolution of the container components into the liquid in contact with the container occurs significantly, and the movement speed of these components to other parts of the liquid becomes slow. It has been found that this increases the concentration of impurities due to the container components in crystals grown from this method.

本発明はこの究明に基いて、上述したように結晶材料液
に磁場を与え、これによって結晶材料液の対流を抑制さ
せる。
Based on this research, the present invention applies a magnetic field to the crystal material liquid as described above, thereby suppressing convection of the crystal material liquid.

このように、磁場の印加によって対流が抑制されるのは
、次の現象に基くものとされている。
The reason why convection is suppressed by the application of a magnetic field is said to be based on the following phenomenon.

すなわち、磁場中で、電気伝導性を有する流体、すなわ
ち導体が運動すると、流体中に電位差が発生し、電流が
流れる。
That is, when a fluid having electrical conductivity, ie, a conductor, moves in a magnetic field, a potential difference is generated in the fluid, and a current flows.

そして、この磁場を流れる電流によって、この電流を担
う液体が新しい力を受ける。
The current flowing through this magnetic field applies a new force to the liquid that carries this current.

この力は液体が動く方向と反対の方向であるので流体の
動きは純くなり、見掛上粘性が上ったことになる。
Since this force is in the opposite direction to the direction in which the liquid moves, the movement of the fluid becomes pure and its viscosity increases.

これは磁気粘性といわれる。そして、このように磁気粘
性が生じたことによって流体、すなわち結晶材料液の対
流が生じにくくなる。
This is called magnetic viscosity. Then, due to the magnetic viscosity generated in this way, convection of the fluid, that is, the crystal material liquid becomes difficult to occur.

因みに、結晶育成を磁場印加の下で行うという方法は、
Journal of Applied Physic
s、Vol 37゜P 2021 (1966)、Jo
urnal of MaterialScience
t Vol、 5P822 (1970)、Sympo
sium:”GalliumArsenide、”fa
sc ? 5 t Tomsk 。
Incidentally, the method of growing crystals under the application of a magnetic field is
Journal of Applied Physics
s, Vol 37゜P 2021 (1966), Jo
urnal of MaterialScience
t Vol, 5P822 (1970), Sympo
sium: “Gallium Arsenide,” fa
sc? 5t Tomsk.

P34(1974)、特公昭49−49307によって
知られている。
P34 (1974), known from Japanese Patent Publication No. 49-49307.

しかし、容器成分の融液中への混入に現しては認識され
ていない。
However, the mixing of container components into the melt has not been recognized.

第1図を参照して本発明による引上法に基く結晶成長法
の一例を説明する。
An example of the crystal growth method based on the pulling method according to the present invention will be explained with reference to FIG.

図中1は本発明方法を実施するに用い得る単結晶成長装
置を全体として示す。
In the figure, reference numeral 1 generally indicates a single crystal growth apparatus that can be used to carry out the method of the present invention.

2は成る程度の電気伝導性を有する結晶材料の融液又は
溶液、すなわちSi融液3が収容された容器、例えば石
英るつぼを示す。
Reference numeral 2 denotes a container, for example a quartz crucible, containing a melt or solution of a crystalline material having a certain degree of electrical conductivity, that is, a Si melt 3.

この容器2の外周には、加熱手段4が配置される。A heating means 4 is arranged around the outer periphery of this container 2 .

この加熱手段4は、通電ヒーター5が、例えばジクザグ
パターンに容器2の外周面に沿う円筒面状をなすように
配置される。
In the heating means 4, the energized heaters 5 are arranged in a cylindrical shape along the outer peripheral surface of the container 2, for example, in a zigzag pattern.

この加熱手段4の外側には必要に応じて例えば円筒状の
熱遮蔽体、或いは水冷等によって冷却されるジャケット
6が配置され、その外側に永久磁石、或いは電磁石より
戒る例えば直流磁場発生手段7が配置される。
Outside this heating means 4, for example, a cylindrical heat shield or a jacket 6 cooled by water cooling is arranged as necessary, and a permanent magnet or a direct current magnetic field generating means 7, for example, which is not an electromagnet, is arranged outside the heating means 4. is placed.

8は単結晶シード、例えばSi単結晶シードで、9はそ
の引上げチャックである。
8 is a single crystal seed, for example a Si single crystal seed, and 9 is its pulling chuck.

加熱手段4の通電ヒーター5への通電は、リップル分が
4%以下に抑えられたほぼ直流の電流、或いは1 kH
z以上の交流又は脈流とする。
Electricity is supplied to the energizing heater 5 of the heating means 4 with a substantially direct current with ripple content suppressed to 4% or less, or with a current of 1 kHz.
Alternating current or pulsating current of z or more.

このような通電電流とするときは、加熱手段4が磁場と
の作用で生ずる不要の振動を回避できることを確めた。
It has been confirmed that when such a current is applied, unnecessary vibrations caused by the interaction of the heating means 4 with the magnetic field can be avoided.

このようにして、Siシード8を、Si融液面から所要
の速度で引上げることによってSi結晶10の成長を行
う。
In this way, the Si crystal 10 is grown by pulling the Si seed 8 from the Si melt surface at a required speed.

この場合、容器2と、引上単結晶体10(したがってシ
ード8)は、回転しない状態で行うことも、両者は相対
的に回転させるようにすることもできる。
In this case, the container 2 and the pulled single crystal 10 (therefore, the seed 8) may be unrotated, or they may be rotated relative to each other.

因みに、その回転数と、酸素濃度との関係は、第2図に
示すようにその回転数が犬となると濃度が増す。
Incidentally, the relationship between the number of rotations and the oxygen concentration is as shown in FIG. 2, as the number of rotations increases, the concentration increases.

第2図中実線曲線は、4000G(ガウス)の磁場を与
えた場合で、破線曲線は磁場が零の場合で、両者を比較
することによって明らかなように磁場を与えた場合は、
与えない場合に比し酸素濃度が低くなる。
The solid line curve in Figure 2 is for the case when a magnetic field of 4000G (Gauss) is applied, and the dashed line curve is for the case when the magnetic field is zero.As can be seen by comparing the two, when a magnetic field is applied,
The oxygen concentration will be lower than when it is not provided.

このように磁場の印加の下で育成されたSi結晶10は
、結晶材料液3の容器2、すなわち石英るつぼの構成成
分の酸素Oの濃度が激減されることが確められた。
It was confirmed that in the Si crystal 10 grown under the application of a magnetic field in this manner, the concentration of oxygen O, which is a constituent of the container 2 of the crystal material liquid 3, that is, the quartz crucible, was drastically reduced.

これは前述したように結晶材料液3に磁場が与えられた
ことによって、液3の見掛上の粘性が高まり、液3の動
きが純くなり、対。
This is because, as mentioned above, by applying a magnetic field to the crystal material liquid 3, the apparent viscosity of the liquid 3 increases, and the movement of the liquid 3 becomes pure.

流が減少し、これに伴って容器成分酸素Oの液3におけ
る移動速度が低下し、また溶解が進行しにくくなり、こ
れら相俟って液3の、特に、Siの固相一液相界面にお
ける酸素濃度を低下させることに基くと思われる。
The flow decreases, and as a result, the moving speed of the container component oxygen O in the liquid 3 decreases, and dissolution becomes difficult to proceed. This seems to be based on lowering the oxygen concentration in the air.

因みに、磁場の印加を行わない場合、すなわち熱対流が
比較的激しく生じている場合、Siの固相一液相界面に
は、容器2と接触する部分で溶解した酸素Oが、著しい
速さ、実験によれば約0.5crrL/秒の速さで到達
したものが、4000G(ガウス)程度の磁場印加で、
その移動速度が測定不能程度に遅くなった。
Incidentally, when no magnetic field is applied, that is, when thermal convection is relatively intense, the oxygen O dissolved at the part in contact with the container 2 flows at a remarkable speed at the Si solid-liquid phase interface. According to experiments, when a magnetic field of about 4000 G (Gauss) was applied, the magnetic field reached at a speed of about 0.5 crrL/sec.
Its movement speed became unmeasurably slow.

このように本発明の方法では、液面の振動が少く、ノ又
その温度変動が小さいので、結晶成長を安定にすること
ができる。
As described above, in the method of the present invention, the vibration of the liquid level is small, and the temperature fluctuation thereof is also small, so that crystal growth can be stabilized.

第3図は、磁場を与えない状態におけるるつぼ(容器2
)内における液3の酸素濃度の測定結果を示し、この場
合、点a及びbで示す容器2の壁面との接触の近傍にお
ける周辺部での濃度も、点Cで示す中心部における濃度
もほぼ一様で高い濃度のI X 1018atoms
/−を示すに比し、本発明方法によって4000Gの磁
場印加を行った場合の同様の各点a、 b及びCの酸素
濃度の測定結果は、第4図に示すように周辺で9 X
1017a t oms /cl’77iであるに比し
、中心部で6.6 X 1017atoms/fflと
いう低い値を示している。
Figure 3 shows the crucible (container 2) in a state where no magnetic field is applied.
), and in this case, the concentration at the periphery near the contact with the wall surface of the container 2, indicated by points a and b, and the concentration at the center, indicated by point C, are almost the same. Uniform and high concentration of I x 1018 atoms
/-, the measurement results of the oxygen concentration at each point a, b, and C when a magnetic field of 4000 G was applied by the method of the present invention were 9
1017atoms/cl'77i, while the central part shows a low value of 6.6 x 1017atoms/ffl.

このことからも本発明によるときは、容器2からの容器
成分の酸素Oの移動が小さいことがわかる。
This also shows that in the case of the present invention, the movement of oxygen O, which is a container component, from the container 2 is small.

尚、この場合、容器2、すなわち石英るつぼは直径12
3間のものを用いた。
In this case, the container 2, that is, the quartz crucible, has a diameter of 12
The one between 3 and 3 was used.

また、第5図は、引上げられたSi結晶中の不純物濃度
の測定結果を示すもので横軸は、Si結晶の引上げ方向
に沿う位置を示し、領域Aの部分では磁場を与えない状
態で結晶の育成を行った部分を示し、領域Bの部分では
本発明方法によって4000Gの磁場を与えた状態で結
晶育成を行った部分を示す。
In addition, Fig. 5 shows the measurement results of the impurity concentration in the pulled Si crystal, and the horizontal axis shows the position along the pulling direction of the Si crystal. The region B shows a region where crystal growth was performed in a state where a magnetic field of 4000 G was applied by the method of the present invention.

同図において縦軸は酸素濃度を示す。In the figure, the vertical axis indicates oxygen concentration.

これより明らかなように磁場印加を行う場合、行わない
場合に比し、酸素濃度を低めることができ、結晶の純度
を高めることができることがわかる。
As is clear from this, when a magnetic field is applied, the oxygen concentration can be lowered and the purity of the crystal can be increased compared to when no magnetic field is applied.

上述したように本発明によれば、結晶中の酸素濃度を低
くできるので、酸素のドナー化による比抵抗の減少を抑
えることができ、又インゴット内での比抵抗の分布変化
を少くすることができる。
As described above, according to the present invention, the oxygen concentration in the crystal can be lowered, so it is possible to suppress the decrease in resistivity due to oxygen becoming a donor, and it is also possible to reduce changes in the resistivity distribution within the ingot. can.

又、熱処理中の酸素の析出によるウェーバのそりを少く
することができる。
Further, it is possible to reduce warping of the weber due to oxygen precipitation during heat treatment.

上述したように本発明方法によるときは、容器内の結晶
材料液に磁場印加を行うことによってその見掛上の粘性
を高めて対流の抑制を行うので、容器の成分の結晶材料
液中への溶解と移動とを制御することができ、良質、高
純度の結晶を得ることができる。
As mentioned above, when using the method of the present invention, convection is suppressed by increasing the apparent viscosity of the crystal material liquid in the container by applying a magnetic field to the crystal material liquid in the container. Dissolution and migration can be controlled, and high-quality, high-purity crystals can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による結晶成長法の各側の結晶成長装置
の構成国、第2図は酸素濃度と回転数との関係を示す図
、第3図及び第4図は夫々結晶材料液の酸素濃度分布図
、第5図は結晶の酸素濃度分布図である。 1は結晶成長装置、2は結晶材料液3の収容容器、4は
加熱手段、5はそのヒーター 7は磁場発生手段である
Figure 1 shows the constituent countries of the crystal growth apparatus on each side of the crystal growth method according to the present invention, Figure 2 shows the relationship between oxygen concentration and rotation speed, and Figures 3 and 4 respectively Oxygen concentration distribution diagram, FIG. 5 is an oxygen concentration distribution diagram of the crystal. Reference numeral 1 designates a crystal growth apparatus, 2 a storage container for a crystal material liquid 3, 4 a heating means, 5 a heater thereof, and 7 a magnetic field generating means.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン融液とそれを入れる石英の容器を有し、容
器と相対的に回転させてシリコン結晶体を引き上げ、上
記融液に所定方向の磁場を印加し、それにより上記容器
から上記融液中への酸素の溶解を制御する結晶成長法。
1 It has a silicon melt and a quartz container in which it is placed, and the silicon crystal is pulled up by rotating it relative to the container, and a magnetic field in a predetermined direction is applied to the melt, thereby causing it to be drawn from the container into the melt. A crystal growth method that controls the dissolution of oxygen into
JP857880A 1979-09-20 1980-01-28 crystal growth method Expired JPS5850953B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP857880A JPS5850953B2 (en) 1980-01-28 1980-01-28 crystal growth method
GB8029356A GB2059932B (en) 1979-09-20 1980-09-11 Solidification processes
FR8019942A FR2465802B1 (en) 1979-09-20 1980-09-16 PROCESS FOR SOLIDIFYING A FLUID SUCH AS A SILICON BATH AND PROCESS OBTAINED
DE19803035267 DE3035267A1 (en) 1979-09-20 1980-09-18 METHOD FOR STRENGTHENING LIQUID MATERIALS
NL8005228A NL8005228A (en) 1979-09-20 1980-09-19 METHOD FOR PROCESSING THE TRANSITION IN FIXED STATE.
SE8006569A SE8006569L (en) 1979-09-20 1980-09-19 STELNINGSFORFARANDE
CA000360638A CA1177367A (en) 1979-09-20 1980-09-19 Process for solidification
IT24803/80A IT1141064B (en) 1979-09-20 1980-09-19 SOLIDIFICATION PROCESS
AT0473180A AT398582B (en) 1979-09-20 1980-09-22 CRYSTAL GROWING METHOD
US06/339,065 US4619730A (en) 1979-09-20 1982-01-13 Process for solidification in a magnetic field with a D.C. heater
US06/562,015 US4622211A (en) 1979-09-20 1983-12-16 Apparatus for solidification with resistance heater and magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857880A JPS5850953B2 (en) 1980-01-28 1980-01-28 crystal growth method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16610985A Division JPS6153188A (en) 1985-07-27 1985-07-27 Method of growing crystal

Publications (2)

Publication Number Publication Date
JPS56104791A JPS56104791A (en) 1981-08-20
JPS5850953B2 true JPS5850953B2 (en) 1983-11-14

Family

ID=11696897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857880A Expired JPS5850953B2 (en) 1979-09-20 1980-01-28 crystal growth method

Country Status (1)

Country Link
JP (1) JPS5850953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016005020T5 (en) 2015-11-02 2018-07-19 Sumco Corporation A method of producing a single crystal silicon and single crystal silicon

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131593A (en) * 1983-01-18 1984-07-28 Agency Of Ind Science & Technol Apparatus for producing compound semiconductor single crystal
JPS59199597A (en) * 1983-04-27 1984-11-12 Agency Of Ind Science & Technol Apparatus for producing single crystal
JPS6033295A (en) * 1983-07-29 1985-02-20 Toshiba Ceramics Co Ltd Pulling device for single crystal semiconductor
JPS6033288A (en) * 1983-07-29 1985-02-20 Toshiba Corp Pulling device for single crystal
JPS6033291A (en) * 1983-07-29 1985-02-20 Toshiba Ceramics Co Ltd Preparation of single crystal silicon
US4565671A (en) * 1983-08-05 1986-01-21 Kabushiki Kaisha Toshiba Single crystal manufacturing apparatus
JPH03141186A (en) * 1989-10-27 1991-06-17 Shin Etsu Chem Co Ltd Production of single crystal
JPH03141187A (en) * 1989-10-27 1991-06-17 Shin Etsu Chem Co Ltd Growing method of single crystal
JPH07267776A (en) * 1994-03-31 1995-10-17 Sumitomo Sitix Corp Growth method of single crystal
EP1193333A4 (en) 2000-02-28 2006-10-04 Shinetsu Handotai Kk Method for preparing silicon single crystal and silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016005020T5 (en) 2015-11-02 2018-07-19 Sumco Corporation A method of producing a single crystal silicon and single crystal silicon
DE112016005020B4 (en) 2015-11-02 2022-12-15 Sumco Corporation Method of manufacturing a single crystal silicon and single crystal silicon

Also Published As

Publication number Publication date
JPS56104791A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
KR960006260B1 (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US4622211A (en) Apparatus for solidification with resistance heater and magnets
JPS5850953B2 (en) crystal growth method
JP3086850B2 (en) Method and apparatus for growing single crystal
US5196085A (en) Active magnetic flow control in Czochralski systems
JPS61222984A (en) Unit for single crystal production
JPH0212920B2 (en)
JPH05155682A (en) Method for pulling up silicon single crystal
JPH09194289A (en) Apparatus for pulling up single crystal
JPS6153188A (en) Method of growing crystal
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
US5935327A (en) Apparatus for growing silicon crystals
US3268301A (en) Method of pulling a semiconductor crystal from a melt
JP2001089289A (en) Method of pulling single crystal
KR100221087B1 (en) Silicon single crystal and its growing method
JPS6236096A (en) Production of single crystal and device therefor
JP2592244B2 (en) Equipment for growing uniform crystals
JPS6270286A (en) Apparatus for producting single crystal
JPS6317289A (en) Production of semiconductor single crystal
JPH0351673B2 (en)
JPS6033297A (en) Pulling device for single crystal semiconductor
JPH05319973A (en) Single crystal production unit
JPH05221781A (en) Device for pulling up single crystal
JPH0518793B2 (en)