JPH03141187A - Growing method of single crystal - Google Patents
Growing method of single crystalInfo
- Publication number
- JPH03141187A JPH03141187A JP28057089A JP28057089A JPH03141187A JP H03141187 A JPH03141187 A JP H03141187A JP 28057089 A JP28057089 A JP 28057089A JP 28057089 A JP28057089 A JP 28057089A JP H03141187 A JPH03141187 A JP H03141187A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- magnetic field
- crucible
- melt
- metallic crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000002109 crystal growth method Methods 0.000 claims description 3
- 239000000155 melt Substances 0.000 abstract description 12
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract description 2
- 238000010828 elution Methods 0.000 abstract description 2
- 239000012212 insulator Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000013508 migration Methods 0.000 abstract 1
- 230000005012 migration Effects 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 229910052697 platinum Inorganic materials 0.000 description 9
- 239000012768 molten material Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002848 Pt–Ru Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
Mn−Znフェライト等の酸化物の単結晶を、白金ルツ
ボ等の金属ルツボを用いて育成するブリッジマン法の改
良に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement of the Bridgman method for growing a single crystal of an oxide such as Mn-Zn ferrite using a metal crucible such as a platinum crucible.
(従来技術)
従来、Mn4nフエライト等の酸化物の単結晶を育成す
る際には、これら高融点の材料と化学反応し難(且つ、
これらの化合物よりも高融点の金属ルツボ中で溶融させ
育成する方法が採られてきた。しかし、実際には金属ル
ツボの成分が、不純物として溶融物中に溶出混入し、単
結晶の品質を著しく低下させている場合が多い。即ち、
不純物が混入することにより、結晶欠陥が発生したり、
異相として析出するため、単結晶インゴットの切断、研
削等の製品化の加工工程において異相として析出した金
属が脱落したり、この脱落した金属微粒子が単結晶を傷
付ける等の悪影響を及ぼし、そのため寸法精度や表面粗
さ等がバラツキ、製品の品質や歩留りを悪くする欠点が
あった。(Prior art) Conventionally, when growing single crystals of oxides such as Mn4n ferrite, it is difficult to chemically react with these high melting point materials (and
A method of growing these compounds by melting them in a metal crucible with a higher melting point has been adopted. However, in reality, components of the metal crucible are often eluted and mixed into the melt as impurities, significantly reducing the quality of the single crystal. That is,
Crystal defects may occur due to the inclusion of impurities,
Because the metal precipitates as a different phase, the metal that has been precipitated as a different phase may fall off during the manufacturing process such as cutting and grinding the single crystal ingot, and the fallen metal fine particles may damage the single crystal, causing negative effects such as impairing dimensional accuracy. There were drawbacks such as variations in surface roughness, etc., which deteriorated product quality and yield.
(発明が解決しようとする課題)
この問題に対し、従来、ルツボを含めた溶融物に磁界を
付与して溶融物の対流を抑えると共に、不純物として混
入したルツボ成分の拡散を抑えながら単結晶を育成する
ことでルツボ成分の混入を防止する方法が採られてきた
。(Problem to be solved by the invention) Conventionally, to solve this problem, a magnetic field is applied to the molten material including the crucible to suppress the convection of the molten material, and at the same time, the single crystal is grown while suppressing the diffusion of the crucible components mixed as impurities. A method has been adopted to prevent the contamination of crucible components by growing the crucible.
(特開昭58−41795、特開昭59−21593、
平1)洋。(Japanese Patent Publication No. 58-41795, Japanese Patent Application Publication No. 59-21593,
Hei 1) Yo.
金属p30.No、 3’86参照)。しかしこれらの
方法は、溶融物の対流を抑えるために通常数百から数千
エルステッドという強力な磁界を必要とするため、高価
で且つ大がかりな?Its石を特徴とする特許う不利な
問題があった。metal p30. No. 3'86). However, these methods require a strong magnetic field of usually several hundred to several thousand oersteds to suppress the convection of the melt, making them expensive and large-scale. There were disadvantageous problems with patents featuring its stones.
本発明は、かかる欠点を改良し、金属ルツボ成分の結晶
中への混入が少なく、結晶欠陥および異相析出の少ない
極めて高品質な単結晶を提供することを目的とする。The object of the present invention is to improve such drawbacks and provide an extremely high-quality single crystal in which metal crucible components are less mixed into the crystal, and crystal defects and foreign phase precipitation are less.
(課題を解決するための手段)
本発明者等は、かかる課題を解決するためにルツボ、溶
融物の物性と磁界の及ぼす影響に着目し、種々検討した
結果、本発明に到達したもので、その要旨は、
金属ルツボを用いて酸化物の単結晶を育成するに際し、
金属ルツボ直胴部周囲に磁界用コイルを設けて直流電流
を流し、酸化物の溶融物に磁界を与えながら単結晶を育
成することを特徴とする単結晶育成方法である。(Means for Solving the Problem) In order to solve the problem, the present inventors focused on the physical properties of crucibles and melts and the influence of magnetic fields, and as a result of various studies, they arrived at the present invention. The gist is that when growing oxide single crystals using a metal crucible,
This is a single crystal growth method characterized by providing a magnetic field coil around the straight body of a metal crucible and flowing a direct current to grow a single crystal while applying a magnetic field to the molten oxide.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
一般に、金属ルツボ成分と溶融物とは電気伝導率が異な
り、そのため磁界の中では金属ルツボ成分は溶融物とは
別の大きさの力を受けることになる。本発明は、この現
象を利用したもので、溶融物を含む金属ルツボに磁界を
与えることにより、金属ルツボ成分の溶融物中への拡散
を防止しようとするもので、前述した従来の考え方、即
ち、溶融物の対流を抑えるための数百から数千エルステ
ッドもの大きな磁界は必要とせず、数十エルステッドの
磁界であっても、金属ルツボ成分の拡散を防ぐには充分
な効果が得られることを見出した。Generally, the metal crucible components and the molten material have different electrical conductivities, and therefore, in a magnetic field, the metal crucible components receive a force of a different magnitude than the molten material. The present invention takes advantage of this phenomenon, and attempts to prevent the metal crucible components from diffusing into the melt by applying a magnetic field to the metal crucible containing the melt. It has been shown that a large magnetic field of hundreds to thousands of Oersteds is not necessary to suppress the convection of the melt, and that even a magnetic field of several tens of Oersteds is sufficient to prevent the diffusion of metal crucible components. I found it.
従って、従来言われていたような大がかりで高価な電磁
石は不要で、本発明では金属ルツボの直胴部に金属ルツ
ボと絶縁し乍らコイルを巻き、それに直流電流を流すこ
とにより生じる数十エルステッドの磁界で、ルツボ成分
の混入を制御できることを確認した。本方法では、金属
ルツボに対して縦方向の磁界が発生する。磁界中を運動
する電気伝導性を持つ物質に作用する電磁力は、その運
動方向が磁界と直交する場合に最大となる。即ち、その
方向とは金属ルツボから溶出してきたルツボ成分がルツ
ボの中心部に向かおうとする際に、それを妨げようとす
る方向に電磁力が最も大きく作用することになる。本方
法では数十エルステッド程度の磁界しか発生しないが、
金属ルツボ成分の拡散を抑えるという点では充分である
。Therefore, there is no need for a large-scale and expensive electromagnet as was conventionally said.In the present invention, a coil is wound around the straight body of the metal crucible while insulating it from the metal crucible, and a direct current is passed through it. It was confirmed that mixing of crucible components can be controlled using a magnetic field. In this method, a longitudinal magnetic field is generated with respect to the metal crucible. The electromagnetic force acting on an electrically conductive substance moving in a magnetic field is at its maximum when the direction of movement is perpendicular to the magnetic field. That is, when the crucible component eluted from the metal crucible attempts to head toward the center of the crucible, the electromagnetic force acts most strongly in the direction that attempts to prevent it. Although this method generates a magnetic field of only a few tens of Oersteds,
This is sufficient in terms of suppressing the diffusion of metal crucible components.
本発明を図面によって従来方法と比較して説明すると、
第3図は、従来方法で金属ルツボl内に単結晶原料酸化
物を仕込み、溶融炉5の電熱ヒーター6に通電して昇温
、溶融して溶融物9とする。次いで、金属ルツボをルツ
ボ昇降装置10により炉内を徐々に降下させて、金属ル
ツボの逆円錐部から徐冷し単結晶の育成を始め、温度制
御を続けて溶融物液面まで完全に単結晶化する。これに
対して、本発明は、第1図に示したように、金属ルツボ
1に磁界用コイル4を絶縁物を介して巻き付け、リード
線2.3により直流電源8に接続し、直流電流を流しつ
つ単結晶の育成を行なうことにより金属ルツボ成分の溶
融物中への溶出、析出を防止しようとするものである。The present invention will be explained in comparison with the conventional method using drawings.
In FIG. 3, a single-crystal raw material oxide is charged into a metal crucible 1 using a conventional method, and electricity is applied to an electric heater 6 of a melting furnace 5 to raise the temperature and melt it to form a molten material 9. Next, the metal crucible is gradually lowered in the furnace by the crucible lifting device 10, and the growth of a single crystal is started by slow cooling from the inverted conical part of the metal crucible.The temperature control is continued until the single crystal reaches the melt surface. become In contrast, in the present invention, as shown in FIG. 1, a magnetic field coil 4 is wound around a metal crucible 1 via an insulator, and connected to a DC power source 8 through a lead wire 2.3 to supply a DC current. By growing a single crystal while flowing the melt, the metal crucible components are prevented from elution and precipitation into the melt.
本発明の適用範囲は、単結晶材料としては、Mn−Zn
フェライト、GGG等が挙げられる。金属ルツボ材料と
してはPt、 Pt−Ru、Ru、 Ir等が例示され
る。The scope of application of the present invention is Mn-Zn as a single crystal material.
Examples include ferrite and GGG. Examples of metal crucible materials include Pt, Pt-Ru, Ru, and Ir.
以下、本発明の具体的実施態様を実施例と比較例を挙げ
て説明するが、本発明はこれらに限定されるものではな
い。Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例、比較例)
白金ルツボ(純度100%)の直胴部に21φの白金線
をセラミックス(アルミナ)で絶縁しつつ40回巻きつ
けて磁界用コイルとした。このルツボにMn−Znフェ
ライト(MnO−25モル%、Zn025モル%、Fe
ars50モル%)の粉末を3,600 gr充填し、
溶融炉に入れて昇温し、1700℃で溶融した。次いで
、この溶融物に対して、磁界コイルに直流10Aを流し
てルツボ中心で23.50エルステツドの磁界を与えな
がらルツボな徐々に降下させ、単結晶の育成を行った。(Example, Comparative Example) A 21φ platinum wire was wound 40 times around the straight body of a platinum crucible (100% purity) while being insulated with ceramics (alumina) to obtain a magnetic field coil. Mn-Zn ferrite (MnO-25 mol%, Zn0 25 mol%, Fe
3,600 gr of powder (50 mol%)
It was placed in a melting furnace and heated to 1700°C to melt it. Next, a direct current of 10 A was applied to the melt through a magnetic field coil to apply a magnetic field of 23.50 oersted at the center of the crucible while gradually lowering the melt into the crucible to grow a single crystal.
この単結晶を成長方向に対し垂直に切断し、プロジェク
タ−により切断面5ケ所に観測される白金混入析出量を
粒子の数として測定した。その結果の平均値を第1表に
、単結晶断面の白金析出状態を模式図で第2 (2−1
)図に示した。別に、磁界を与えない以外は実施例と同
一条件でMn−Znフェライト単結晶を育成し、白金混
入析出量を測定し、第1表に示し、析出状態を第2 (
2−2)図に表わした。This single crystal was cut perpendicularly to the growth direction, and the amount of platinum mixed and precipitated observed at five locations on the cut surface using a projector was measured as the number of particles. The average values of the results are shown in Table 1, and the schematic diagram of the platinum precipitation state in the cross section of the single crystal is shown in Table 2 (2-1
) shown in the figure. Separately, Mn-Zn ferrite single crystals were grown under the same conditions as in the example except that no magnetic field was applied, and the amount of precipitated platinum mixed was measured.
2-2) Expressed in the figure.
第1表
第1表に示すように、に磁界を与えながら育成した実施
例の方が白金混入析出量が少な(なっていることがわか
る。また、第2図の単結晶の成長方向に対して垂直の方
向に切断した断面図に示したように、実施例(2−1)
図の方はルツボ側3〜5mm付近に集中して白金粒子析
出が見られ、磁界により白金粒子のルツボ中心への拡散
が妨げられたことが解る。Table 1 As shown in Table 1, it can be seen that the amount of precipitated platinum mixed in was smaller in the example in which the growth was performed while applying a magnetic field to As shown in the cross-sectional view taken in the vertical direction, Example (2-1)
In the figure, platinum particles were precipitated concentrated around 3 to 5 mm from the crucible side, indicating that the magnetic field prevented the platinum particles from diffusing to the center of the crucible.
(発明の効果)
本発明は、金属ルツボを用いて酸化物の単結晶を育成す
るに際し、金属ルツボ直胴部周囲に磁界用コイルを設け
て直流電流を流し、酸化物の溶融物に磁界を与えながら
単結晶を育成することを特徴とする単結晶育成方法であ
って、従来法ではルツボ成分が溶融物中に溶出、析出し
て単結晶の品位を低下させていたが、本発明によればこ
れを防止して、結晶欠陥の極めて少ない高品位の単結晶
を、高価で大型の電磁石を設置することなく製造可能で
、産業上極めて利用価値の高いものである。(Effects of the Invention) When growing a single crystal of an oxide using a metal crucible, the present invention provides a magnetic field coil around the straight body of the metal crucible and flows a direct current to apply a magnetic field to the molten oxide. This is a single crystal growth method characterized by growing a single crystal while giving a By preventing this, it is possible to produce a high-quality single crystal with extremely few crystal defects without installing an expensive and large electromagnet, and it is extremely useful in industry.
第1図は、本発明の実施態様の一例を示す説明図、第3
図は、従来法の説明図である。第2図は、本発明(2−
1)、従来法(2−2)で製造した単結晶の横断面図で
単結晶中に析出したルツボ成分の分布を表わす模式図で
ある。図中主要符号は次の通りである。FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention;
The figure is an explanatory diagram of the conventional method. FIG. 2 shows the present invention (2-
1) is a cross-sectional view of a single crystal produced by the conventional method (2-2), and is a schematic diagram showing the distribution of crucible components precipitated in the single crystal. The main symbols in the figure are as follows.
Claims (1)
金属ルツボ直胴部周囲に磁界用コイルを設けて直流電流
を流し、酸化物の溶融物に磁界を与えながら単結晶を育
成することを特徴とする単結晶育成方法。When growing oxide single crystals using a metal crucible,
A single crystal growth method characterized by providing a magnetic field coil around the straight body of a metal crucible and flowing a direct current to grow a single crystal while applying a magnetic field to a molten oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28057089A JPH03141187A (en) | 1989-10-27 | 1989-10-27 | Growing method of single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28057089A JPH03141187A (en) | 1989-10-27 | 1989-10-27 | Growing method of single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03141187A true JPH03141187A (en) | 1991-06-17 |
Family
ID=17626873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28057089A Pending JPH03141187A (en) | 1989-10-27 | 1989-10-27 | Growing method of single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03141187A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06279174A (en) * | 1993-03-23 | 1994-10-04 | Natl Inst For Res In Inorg Mater | Production of oxide single crystal |
JPH07247200A (en) * | 1994-03-09 | 1995-09-26 | Natl Inst For Res In Inorg Mater | Production of titanium oxide single crystal |
WO2005041278A2 (en) * | 2003-10-23 | 2005-05-06 | Crystal Growing Systems Gmbh | Crystal growing unit |
US7524375B1 (en) * | 2001-04-24 | 2009-04-28 | The United States Of America As Represented By The Secretary Of The Air Force | Growth of uniform crystals |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104791A (en) * | 1980-01-28 | 1981-08-20 | Sony Corp | Growth of crystal |
JPS5841795A (en) * | 1981-09-02 | 1983-03-11 | Hitachi Metals Ltd | Manufacturing of single crystal |
JPS5921593A (en) * | 1982-07-23 | 1984-02-03 | Matsushita Electric Ind Co Ltd | Method for growing single crystal |
JPS6033287A (en) * | 1983-07-29 | 1985-02-20 | Toshiba Corp | Preparation of single crystal semiconductor |
JPS63285183A (en) * | 1987-05-18 | 1988-11-22 | Furukawa Electric Co Ltd:The | Production of compound semiconductor single crystal |
-
1989
- 1989-10-27 JP JP28057089A patent/JPH03141187A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104791A (en) * | 1980-01-28 | 1981-08-20 | Sony Corp | Growth of crystal |
JPS5841795A (en) * | 1981-09-02 | 1983-03-11 | Hitachi Metals Ltd | Manufacturing of single crystal |
JPS5921593A (en) * | 1982-07-23 | 1984-02-03 | Matsushita Electric Ind Co Ltd | Method for growing single crystal |
JPS6033287A (en) * | 1983-07-29 | 1985-02-20 | Toshiba Corp | Preparation of single crystal semiconductor |
JPS63285183A (en) * | 1987-05-18 | 1988-11-22 | Furukawa Electric Co Ltd:The | Production of compound semiconductor single crystal |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06279174A (en) * | 1993-03-23 | 1994-10-04 | Natl Inst For Res In Inorg Mater | Production of oxide single crystal |
JPH07247200A (en) * | 1994-03-09 | 1995-09-26 | Natl Inst For Res In Inorg Mater | Production of titanium oxide single crystal |
US7524375B1 (en) * | 2001-04-24 | 2009-04-28 | The United States Of America As Represented By The Secretary Of The Air Force | Growth of uniform crystals |
WO2005041278A2 (en) * | 2003-10-23 | 2005-05-06 | Crystal Growing Systems Gmbh | Crystal growing unit |
WO2005041278A3 (en) * | 2003-10-23 | 2005-07-07 | Crystal Growing Systems Gmbh | Crystal growing unit |
US7179331B2 (en) | 2003-10-23 | 2007-02-20 | Crystal Growing Systems Gmbh | Crystal growing equipment |
JP2007509026A (en) * | 2003-10-23 | 2007-04-12 | クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング | Crystal growth equipment |
JP4654193B2 (en) * | 2003-10-23 | 2011-03-16 | クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング | Crystal growth equipment |
EP2105522A3 (en) * | 2003-10-23 | 2011-11-02 | PVA TePla AG | Crystal growing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1930484B1 (en) | Process for producing silicon single crystal | |
JP3985144B2 (en) | Method for producing oxide ion conductive crystal | |
JPH03141187A (en) | Growing method of single crystal | |
EP1076120A1 (en) | Method for producing silicon single crystal | |
JPS61247683A (en) | Pulling device for single crystal sapphire | |
US4323418A (en) | Method for growing a pipe-shaped single crystal | |
JP3132412B2 (en) | Single crystal pulling method | |
EP1375705A1 (en) | Silicon semiconductor single crystal manufacturing apparatus and manufacturing method | |
JP3822150B2 (en) | Method for producing crystal of gallium iron oxide mixed crystal | |
JPH03141186A (en) | Production of single crystal | |
JPS63103889A (en) | Device for pulling up single crystal | |
JPH025691B2 (en) | ||
JPS5921593A (en) | Method for growing single crystal | |
JP7061911B2 (en) | Single crystal manufacturing method and single crystal manufacturing equipment | |
JP2818343B2 (en) | Substrate holder for single crystal growth | |
JP6819862B2 (en) | Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film | |
JP2007001775A (en) | Method for production of ferroelectric crystal | |
JPH10338594A (en) | Apparatus for growing single crystal by pulling up method | |
JPS6086092A (en) | Single crystal pulling device | |
CN118922591A (en) | Crucible, crystal production method, and single crystal | |
TW202346664A (en) | Crucible, crystal production method and single crystal | |
KR0130403B1 (en) | Method for production of mono crystal by travelling zon method | |
JPH0692781A (en) | Production of single crystal and apparatus therefor | |
JP2002249396A (en) | Method for growing silicon single crystal | |
JP2020147459A (en) | Method for growing lithium niobate single crystal |