JP2002249396A - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal

Info

Publication number
JP2002249396A
JP2002249396A JP2001043527A JP2001043527A JP2002249396A JP 2002249396 A JP2002249396 A JP 2002249396A JP 2001043527 A JP2001043527 A JP 2001043527A JP 2001043527 A JP2001043527 A JP 2001043527A JP 2002249396 A JP2002249396 A JP 2002249396A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon
crystal
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001043527A
Other languages
Japanese (ja)
Inventor
Tadashi Kanda
忠 神田
Shunji Kuragaki
俊二 倉垣
Masato Watanabe
匡人 渡邉
Minoru Eguchi
実 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Steel Corp
Original Assignee
NEC Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Sumitomo Metal Industries Ltd filed Critical NEC Corp
Priority to JP2001043527A priority Critical patent/JP2002249396A/en
Publication of JP2002249396A publication Critical patent/JP2002249396A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture at a high productivity a silicon single crystal, in which the external diameter of a latent area of oxidation induced stacking faults appearing in a crystal face is controlled to the range of 0-70% of its crystal diameter, and which is excellent in pressure resistant characteristics of oxide film, and especially to manufacture at a high productivity a single crystal consisting of a crystal area where crystal originated particles(COP) having the size of >=0.1 μm do not exist and neither does a dislocation cluster. SOLUTION: A pair of coils 6 for applying a magnetic field is so arranged around a chamber 8 that the coils are opposed to each other with a crucible 1 placed in between. A cusp magnetic field is formed in a molten liquid 4 in the crucible 1 by applying an electric current to the pair of an upper coil 6a and a lower coil 6b respectively so that the applied current circulates inversely to each other. An electric current is applied to the silicon molten liquid 4 in the quartz crucible 1a by applying a voltage between a pulling-rise and fall shaft 7 and a crucible lifting/lowering shaft by an electric power source 13 arranged outsider the chamber 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCZ法によるシリコ
ン単結晶の育成方法に関するものであり、具体的には、
シリコン溶融液に互いに直交する磁界と電流を印加する
ことにより坩堝内のシリコン溶融液を回転させながらシ
リコン単結晶を育成する方法に関するものである.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a silicon single crystal by the CZ method.
The present invention relates to a method for growing a silicon single crystal while rotating a silicon melt in a crucible by applying a magnetic field and a current perpendicular to the silicon melt.

【0002】[0002]

【従来の技術】半導体デバイスの製造に用いられるシリ
コンウエーハは、主にチョクラルスキー(CZ)法によ
り育成されたシリコン単結晶から製造されている。図3
は、CZ法に用いられる単結晶製造装置を模式的に示し
た断面図であり、図中1はチャンバ8内に配設された坩
堝である。坩堝1はシリコン溶融液を収容する石英坩堝
1aとこの石英坩堝1aの外周面を嵌合保持する黒鉛坩
堝1bから構成されており、回転並びに昇降可能な坩堝
昇降軸11の上端部に固定されている。
2. Description of the Related Art Silicon wafers used for manufacturing semiconductor devices are mainly manufactured from silicon single crystals grown by the Czochralski (CZ) method. FIG.
FIG. 1 is a cross-sectional view schematically showing a single crystal manufacturing apparatus used for the CZ method. In the figure, reference numeral 1 denotes a crucible provided in a chamber 8. The crucible 1 is composed of a quartz crucible 1a for accommodating a silicon melt and a graphite crucible 1b for fittingly holding the outer peripheral surface of the quartz crucible 1a. The crucible 1 is fixed to the upper end of a crucible elevating shaft 11 that can rotate and ascend and descend. I have.

【0003】坩堝1の外側には抵抗加熱式ヒーター2が
同心円状に配設されており、坩堝1内には所定重量の原
料をヒーター2により溶融させた溶融液4が充填され、
坩堝1の中心軸の上方には、坩堝昇降軸11と同一軸心
で逆方向或いは同方向に所定の速度で回転するワイヤー
あるいはシャフトからなる引上げ昇降軸7が配設されて
おり、引上げ昇降軸7には種結晶保持具10を介して種
結晶3が吊り下げられている。
[0003] A resistance heating type heater 2 is arranged concentrically outside the crucible 1, and a crucible 1 is filled with a melt 4 obtained by melting a predetermined weight of a raw material by the heater 2.
Above the central axis of the crucible 1, a pulling up / down shaft 7 made of a wire or a shaft rotating at a predetermined speed in the opposite direction or in the same direction as the crucible lifting / lowering shaft 11 is disposed. The seed crystal 3 is suspended from 7 via a seed crystal holder 10.

【0004】このような単結晶製造装置を使用してCZ
法によりシリコン単結晶を製造する場合には、まず、坩
堝1内に結晶用シリコン原料を投入し、装置内を不活性
ガス雰囲気中で減圧下にした後、結晶用シリコン原料を
坩堝1の周囲に配設したヒーター2にて溶融する。その
後、引上げ昇降軸7に吊り下げられた種結晶3を溶融液
4に浸漬し、坩堝昇降軸11及び引上げ昇降軸7を回転
させつつ、引上げ昇降軸7を上方に引上げて種結晶3の
下端にシリコン単結晶5を成長させる。
[0004] Using such a single crystal manufacturing apparatus, CZ
When producing a silicon single crystal by the method, first, a silicon raw material for crystal is put into the crucible 1 and the inside of the apparatus is reduced in pressure in an inert gas atmosphere. Is melted by the heater 2 arranged in the heater. Thereafter, the seed crystal 3 hung on the pulling up / down shaft 7 is immersed in the melt 4, and while rotating the crucible raising / lowering shaft 11 and the pulling up / down shaft 7, the pulling up / down shaft 7 is pulled up to lower end of the seed crystal 3. Then, a silicon single crystal 5 is grown.

【0005】ところで、CZ法によるシリコン単結晶の
製造では、坩堝1内に収容されたシリコン溶融液は,坩
堝1の周囲に設置した円筒状のヒーターから熱を受ける
ことから、融液内の温度分布を単結晶の引き上げ軸に対
して完全に軸対称的にするために坩堝1を機械的に回転
させる必要がある。
In the production of a silicon single crystal by the CZ method, the silicon melt contained in the crucible 1 receives heat from a cylindrical heater installed around the crucible 1, so that the temperature within the melt is increased. It is necessary to mechanically rotate the crucible 1 to make the distribution completely axisymmetric with respect to the single crystal pulling axis.

【0006】また、前述したとおりシリコン溶融液4を
収容する坩堝1aとして主に石英製の坩堝が用いられる
が、この石英坩堝1aはシリコン溶融液4と接すること
により表面が溶けて、溶融液4中に酸素を放出し、溶融
液4中の酸素はその一部が引上げ中に単結晶5中に取り
込まれることとなる。この単結晶5中に取り込まれる酸
素は半導体デバイスの製造における熱処理プロセスにお
いて、ウエーハ内部に酸素析出物を形成し,重金属不純
物を捕獲するゲッタリング作用を奏するものであり、シ
リコン単結晶には必要不可欠な不純物である.このため
シリコン単結晶中の酸素濃度を制御するためにも坩堝1
を回転させる必要がある。
As described above, a quartz crucible is mainly used as the crucible 1a for containing the silicon melt 4, but when the quartz crucible 1a comes into contact with the silicon melt 4, the surface of the crucible 1a is melted. Oxygen is released therein, and a part of the oxygen in the melt 4 is taken into the single crystal 5 during the pulling. The oxygen taken into the single crystal 5 forms a gettering effect of forming an oxygen precipitate inside the wafer and capturing heavy metal impurities in a heat treatment process in the manufacture of a semiconductor device, and is essential for a silicon single crystal. Impurities. Therefore, the crucible 1 is also used to control the oxygen concentration in the silicon single crystal.
Need to be rotated.

【0007】しかし、近年、大口径のシリコン単結晶の
提供が強く望まれ、単結晶引き上げ装置自体が大型化
し、使用する坩堝も大型化の一途を辿ってきたが、大径
の坩堝を機械的に回転させるには大掛かりな駆動装置な
どが必要になるなど、設備的な制約を受けるようになっ
てきた。
However, in recent years, it has been strongly desired to provide a large-diameter silicon single crystal, and the single crystal pulling apparatus itself has been increased in size, and the crucible to be used has been increasing in size. In order to rotate the motor at a high speed, a large-scale driving device and the like are required, so that the equipment is restricted.

【0008】このため、近年、坩堝を強制的に回転させ
ずに坩堝内のシリコン溶融液を回転させることにより、
結晶面内の不純物濃度が均一なシリコン単結晶を得るこ
とができる引き上げ方法として、例えば、特許第295
9543号公報や特許第2930080号公報などが提
案されている。具体的には、CZ法によるシリコン単結
晶の育成において、シリコン融液に磁界を印加し、その
磁界と直交する電流をシリコン溶融液に通電するように
シリコン溶融液表面に挿入した電極とシリコン単結晶間
に電流を流し、発生するローレンツ力により融液を回転
させる方法であって、電流磁場印加結晶育成法あるいは
EMCZ法と呼ばれるシリコン単結晶の育成方法であ
る。
Therefore, in recent years, by rotating the silicon melt in the crucible without forcibly rotating the crucible,
As a pulling method capable of obtaining a silicon single crystal having a uniform impurity concentration in a crystal plane, for example, Japanese Patent No. 295
Japanese Patent No. 9543 and Japanese Patent No. 2930080 have been proposed. Specifically, in growing a silicon single crystal by the CZ method, a magnetic field is applied to the silicon melt, and an electrode inserted on the surface of the silicon melt so that an electric current orthogonal to the magnetic field flows through the silicon melt. This is a method of flowing a current between crystals and rotating the melt by the generated Lorentz force, which is a method of growing a silicon single crystal called a current magnetic field applying crystal growing method or an EMCZ method.

【0009】[0009]

【発明が解決しようとする課題】上記したEMCZ法に
よれば、確かに坩堝を強制的に回転させることなく、坩
堝内のシリコン溶融液を回転・撹拌することができる。
しかしながら、これまで提案されているEMCZ法では
何れもシリコン溶融液表面に電極を挿入して電流を通電
する構造であることから、電極を挿入支持する付帯設備
が必要となり装置構造が複雑化する。また、電極をシリ
コン溶融液内に挿入するため、シリコン溶融液の回転が
電極によって部分的に遮られ、回転の対称性が低く単結
晶面内の酸素濃度分布およびドーパント不純物濃度分布
の均一化が困難であった。
According to the EMCZ method described above, the silicon melt in the crucible can be rotated and stirred without forcibly rotating the crucible.
However, any of the EMCZ methods proposed so far has a structure in which an electrode is inserted into the surface of a silicon melt and an electric current is applied. Therefore, additional equipment for inserting and supporting the electrode is required, and the structure of the device is complicated. In addition, since the electrodes are inserted into the silicon melt, the rotation of the silicon melt is partially obstructed by the electrodes, and the symmetry of rotation is low, so that the oxygen concentration distribution and the dopant impurity concentration distribution within the single crystal plane are made uniform. It was difficult.

【0010】本発明は、上述した従来のEMCZ法によ
るシリコン単結晶の育成方法に関する問題に鑑みてなさ
れたものであり、シリコン溶融液内に電極を挿入するこ
となく、坩堝内のシリコン溶融液を均一に撹拌させて、
単結晶面内の酸素濃度分布およびドーパント不純物濃度
分布が均一なシリコン単結晶の育成方法を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned problems relating to the conventional method of growing a silicon single crystal by the EMCZ method, and is intended to remove a silicon melt in a crucible without inserting an electrode into the silicon melt. Let it evenly mix,
It is an object of the present invention to provide a method for growing a silicon single crystal having a uniform oxygen concentration distribution and dopant impurity concentration distribution in a single crystal plane.

【0011】[0011]

【課題を解決するための手段】本発明者らはこのEMC
Z法において、シリコン溶融液に電極を挿入することな
く坩堝内のシリコン溶融液を回転・撹拌する方法につい
て鋭意研究した結果、坩堝を支持する坩堝昇降軸を電極
として採用し、シリコン溶融液に電流を流すことで坩堝
内のシリコン溶融液が撹拌することを知見し、本発明を
完成させた。
Means for Solving the Problems The present inventors have proposed this EMC.
In the Z method, as a result of diligent research on a method of rotating and stirring the silicon melt in the crucible without inserting an electrode into the silicon melt, the crucible lifting shaft supporting the crucible was adopted as an electrode, and current was applied to the silicon melt. And found that the silicon melt in the crucible was stirred by flowing, and completed the present invention.

【0012】本発明の要旨は、CZ法によりシリコン単
結晶を育成する方法において、坩堝内のシリコン溶融液
に磁界を印加し、かつ引き上げ昇降軸と坩堝昇降軸との
間に電圧を印加してシリコン溶融液内に前記磁界と直交
する成分を含む電流を流すことにより、坩堝内のシリコ
ン溶融液を撹拌させることを特徴とするものである。
The gist of the present invention is to provide a method of growing a silicon single crystal by the CZ method, wherein a magnetic field is applied to a silicon melt in a crucible, and a voltage is applied between a pulling up / down shaft and a crucible up / down shaft. The present invention is characterized in that a silicon melt in a crucible is agitated by flowing a current containing a component orthogonal to the magnetic field in the silicon melt.

【0013】本発明のシリコン単結晶の育成方法にあっ
ては、シリコン溶融液に印加する磁界が、縦磁場成分を
含む磁界であることが望ましく、特に、ウェーハ面内の
酸素濃度分布および抵抗率分布の均一性の観点からは、
カスプ磁界を印加することが望ましい。
In the method of growing a silicon single crystal according to the present invention, it is desirable that the magnetic field applied to the silicon melt is a magnetic field containing a vertical magnetic field component. In terms of uniformity of distribution,
It is desirable to apply a cusp magnetic field.

【0014】通常、シリコン溶融液を収容する坩堝は主
に石英で構成されるが、石英は室温では1015Ωm程
度の電気伝導率を持つ絶縁体である。しかしCZ法によ
る単結晶育成のような1500℃以上の高温度雰囲気下
にあっては、石英は102Ωm程度の電気伝導率を持つ
導電体となる。加えて、シリコン単結晶原料を石英坩堝
内に装填する際は、石英坩堝と黒鉛坩堝の接触面積は小
さいものの、原料溶解時以降は両坩堝ともシリコンの融
点(1420℃)を越える高温となり、石英坩堝が軟化
し、自重とシリコン溶融液の重みで黒鉛坩堝と密着する
こととなる。
Usually, a crucible for containing a silicon melt is mainly made of quartz. Quartz is an insulator having an electric conductivity of about 10 15 Ωm at room temperature. However, under a high-temperature atmosphere of 1500 ° C. or more, such as the growth of a single crystal by the CZ method, quartz becomes a conductor having an electric conductivity of about 102 Ωm. In addition, when the silicon single crystal raw material is loaded into the quartz crucible, the contact area between the quartz crucible and the graphite crucible is small, but after melting the raw material, both crucibles reach a high temperature exceeding the melting point of silicon (1420 ° C), The crucible softens and comes into close contact with the graphite crucible under its own weight and the weight of the silicon melt.

【0015】このため、単結晶引き上げ昇降軸と坩堝昇
降軸との間に電圧を印加することによりシリコン溶融液
内に十分に電流が流れ、シリコン溶融液に印加する磁界
とにより電磁力が働き坩堝内のシリコン溶融液が撹拌す
ることとなる。
[0015] Therefore, by applying a voltage between the single crystal pulling up / down shaft and the crucible up / down shaft, a sufficient current flows in the silicon melt, and an electromagnetic force is exerted by the magnetic field applied to the silicon melt so that the crucible works. The silicon melt inside is agitated.

【0016】本発明のシリコン単結晶の製造方法にあっ
ては、シリコン溶融液に印加するカスプ磁界の強度とし
ては、0.03T以上の磁場を印加することが望まし
い。0.03Tより小さい場合にはローレンツ力による
シリコン溶融液の攪拌効果が小さいために、単結晶面内
の酸素濃度分布およびドーパント不純物濃度分布の均一
化を図ることができない。なお、磁場強度は結晶品質面
からは強いほど好ましいが、装置の構造、能力上の制約
がある。
In the method for producing a silicon single crystal of the present invention, it is desirable to apply a magnetic field of 0.03 T or more as the cusp magnetic field applied to the silicon melt. If it is smaller than 0.03T, the effect of stirring the silicon melt by the Lorentz force is small, so that the oxygen concentration distribution and the dopant impurity concentration distribution in the single crystal plane cannot be made uniform. The strength of the magnetic field is preferably as high as possible in terms of crystal quality, but there are restrictions on the structure and performance of the apparatus.

【0017】本発明のシリコン単結晶の製造方法にあっ
ては、シリコン溶融液に流す電流値は、1〜20Aの範
囲内で通電することが望ましい。1Aより小さい場合に
はローレンツ力によるシリコン溶融液の回転が小さくな
りすぎて、単結晶面内の酸素濃度分布およびドーパント
不純物濃度分布の均一化が図れず、20Aを超えると、
通常のネック部径は3mm程度であってその抵抗が大き
いため、このネック部にジュール熱が発生してネック部
の強度が低下する懸念がある。
In the method for producing a silicon single crystal according to the present invention, it is desirable that the current supplied to the silicon melt is in the range of 1 to 20 A. If it is smaller than 1A, the rotation of the silicon melt due to Lorentz force becomes too small, so that the oxygen concentration distribution and the dopant impurity concentration distribution in the single crystal plane cannot be made uniform.
Since the diameter of a normal neck portion is about 3 mm and its resistance is large, there is a concern that Joule heat is generated in the neck portion and the strength of the neck portion is reduced.

【0018】本発明のシリコン単結晶の製造方法にあっ
ては、シリコン溶融液を撹拌させるためには、シリコン
溶融液に印加する磁界に対して直交する電流を通電する
ことが必要不可欠である。このためシリコン溶融液内を
流れる電流は、坩堝側壁に向かう電流をできるだけ大き
くし、坩堝底部に向かう電流をできるだけ小さくするこ
とが、低電力でシリコン溶融液を撹拌させるのに有効で
ある。
In the method for producing a silicon single crystal of the present invention, in order to stir the silicon melt, it is indispensable to supply a current perpendicular to the magnetic field applied to the silicon melt. For this reason, it is effective for the current flowing in the silicon melt to increase the current toward the crucible side wall as much as possible and to reduce the current toward the crucible bottom as small as possible to stir the silicon melt with low power.

【0019】例えば、石英坩堝底部の厚みを厚くした
り、石英坩堝の内表面または外表面の底部を電気抵抗率
の高い高融点材料でコーティングして、底部の電気抵抗
率を高めることにより石英坩堝側壁部への電流密度を増
大させる、あるいは石英坩堝の内外表面側壁部および上
端部を電気抵抗率の低い高融点材料でコーティングし
て、石英坩堝側壁部への電流密度を増大させることも、
本発明における小電力化技術として有効な手段となる。
For example, by increasing the thickness of the bottom of the quartz crucible or coating the bottom of the inner or outer surface of the quartz crucible with a high melting point material having a high electrical resistivity to increase the electrical resistivity of the bottom, the quartz crucible is increased. Increasing the current density to the side wall, or coating the inner and outer surface side walls and upper end of the quartz crucible with a high melting point material having a low electrical resistivity to increase the current density to the quartz crucible side wall,
This is an effective means as a low power technology in the present invention.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明のシリコン単結晶を得るた
めに適したシリコン単結晶育成装置を模式的に示す断面
図である。図中1はチャンバ8内に配設された坩堝であ
る。坩堝1はシリコン溶融液4を収容する石英坩堝1a
とこの石英坩堝1aの外周面を嵌合保持する黒鉛坩堝1
bから構成され、坩堝昇降軸11の上端部に固定されて
いる。坩堝1の外側には抵抗加熱式ヒーター2が同心円
状に配設され、坩堝1の中心軸の上方には、坩堝昇降軸
11と同一軸心で所定の速度で回転する引上げ昇降軸7
が配設されており、引上げ昇降軸7の下端には黒鉛製の
種結晶保持具10を介して種結晶3が吊り下げられてい
る。坩堝1の上方には引き上げ軸方向の温度分布を制御
するための熱遮蔽体9が育成中の単結晶5の周囲を囲繞
するように配置されている。
FIG. 1 is a sectional view schematically showing a silicon single crystal growing apparatus suitable for obtaining a silicon single crystal of the present invention. In the figure, reference numeral 1 denotes a crucible provided in the chamber 8. The crucible 1 is a quartz crucible 1a containing a silicon melt 4
And a graphite crucible 1 for fittingly holding the outer peripheral surface of the quartz crucible 1a.
b, and is fixed to the upper end of the crucible elevating shaft 11. A resistance heating type heater 2 is concentrically arranged outside the crucible 1, and a lifting elevating shaft 7 rotating at a predetermined speed on the same axis as the crucible elevating shaft 11 is provided above the central axis of the crucible 1.
The seed crystal 3 is suspended from the lower end of the pulling up / down shaft 7 via a graphite seed crystal holder 10. Above the crucible 1, a heat shield 9 for controlling the temperature distribution in the pulling axial direction is arranged so as to surround the single crystal 5 being grown.

【0022】チャンバ8の周囲には、坩堝1を介して上
方および下方に相対向するように磁場印加用のコイル6
が一対に設けられ、一対の上部コイル6aおよび下部コ
イル6bには互いに逆向きに回る電流を流すことによっ
て、坩堝1内の溶融液4にカスプ磁場が形成される。ま
た、チャンバ8の外部に設けた電源装置13により、引
き上げ昇降軸7と坩堝昇降軸11との間に電圧を印加し
て、石英坩堝1a内のシリコン溶融液4に電流が通電さ
れる。本発明例では、引き上げ軸7として高耐熱性に優
れるタングステン製のワイヤーを使用し、坩堝昇降軸1
1はチャンバ8内に晒される部分を黒鉛製とし下部はス
テンレス鋼とした。引き上げ昇降軸7と坩堝昇降軸11
は少なくともどちらか一方をチャンバ8と電気的に絶縁
しておく必要があり、本実施例では絶縁材(図示せず)
を引き上げ軸7と坩堝昇降軸11の両方に介在させてチ
ャンバ8と電気的に絶縁した。
A coil 6 for applying a magnetic field is provided around the chamber 8 so as to face upward and downward via the crucible 1.
Are provided in a pair, and a current circulating in opposite directions flows through the pair of upper coil 6a and lower coil 6b, whereby a cusp magnetic field is formed in the melt 4 in the crucible 1. In addition, a voltage is applied between the lifting shaft 7 and the crucible shaft 11 by the power supply device 13 provided outside the chamber 8, and a current is supplied to the silicon melt 4 in the quartz crucible 1 a. In the example of the present invention, a tungsten wire excellent in high heat resistance is used as the lifting shaft 7 and the crucible elevating shaft 1 is used.
In 1, the portion exposed to the inside of the chamber 8 was made of graphite, and the lower portion was made of stainless steel. Lifting shaft 7 and crucible lifting shaft 11
It is necessary that at least one of them is electrically insulated from the chamber 8, and in this embodiment, an insulating material (not shown)
Was interposed both in the lifting shaft 7 and the crucible elevating shaft 11 to be electrically insulated from the chamber 8.

【0023】次に本発明によるシリコン単結晶の育成方
法を順に追って説明する。本発明で育成するシリコン単
結晶の仕様は、酸素濃度が24ppma、電気抵抗率が
10Ωcm、直径200mm、直胴部長さ1200m
m、結晶方位<001>のシリコン単結晶とした。ま
ず、チャンバ8内を不活性ガス雰囲気中で減圧下にした
後、直径26インチの石英坩堝1a内に120kgの多
結晶シリコン原料を入れ、単結晶中の電気抵抗率が10
Ωcmとなるようにp型ドーパントのボロンを添加し
て、黒鉛坩堝1bの周囲に設置した円筒状の黒鉛ヒータ
ー2で石英坩堝1a内の多結晶シリコン原料を加熱溶融
してシリコン溶融液4を形成する。
Next, a method for growing a silicon single crystal according to the present invention will be described in order. The specification of the silicon single crystal grown in the present invention is such that the oxygen concentration is 24 ppma, the electric resistivity is 10 Ωcm, the diameter is 200 mm, and the straight body length is 1200 m.
m, a silicon single crystal having a crystal orientation <001>. First, after reducing the pressure in the chamber 8 in an inert gas atmosphere, 120 kg of a polycrystalline silicon raw material is put into a quartz crucible 1 a having a diameter of 26 inches, and the electric resistivity in the single crystal is 10%.
Boron as a p-type dopant is added so as to be Ωcm, and the polycrystalline silicon raw material in the quartz crucible 1a is heated and melted by the cylindrical graphite heater 2 installed around the graphite crucible 1b to form a silicon molten liquid 4. I do.

【0024】その後、カスプ磁場強度が0となるカスプ
磁場中心位置が溶融液表面から80mm下方の溶融液内
中心部に位置するようにコイル6の配置を調節して、融
液表面から40mm下の高さで坩堝1側壁と直交する水
平磁場強度が0.09T、引き上げ初期の坩堝1底壁中
心部での垂直磁場強度が0.08Tとなるようにカスプ
磁場を印加する。以後、種結晶3の下端部を溶融液4に
浸漬し、引き上げ軸7を回転させつつ上方に引き上げて
種結晶3の下端にシリコン単結晶5を成長させる。ここ
で、坩堝1は単結晶の成長に応じて上方に上昇するた
め、溶融液表面位置はヒータおよびカスプ印加位置に対
して常に一定に保たれる。
Thereafter, the arrangement of the coil 6 is adjusted so that the center position of the cusp magnetic field at which the cusp magnetic field intensity becomes 0 is located at the center of the melt, which is 80 mm below the surface of the melt. A cusp magnetic field is applied so that the horizontal magnetic field strength perpendicular to the side wall of the crucible 1 at the height is 0.09 T, and the vertical magnetic field strength at the center of the bottom wall of the crucible 1 at the initial stage of pulling is 0.08 T. Thereafter, the lower end of the seed crystal 3 is immersed in the melt 4 and pulled upward while rotating the pulling shaft 7 to grow the silicon single crystal 5 at the lower end of the seed crystal 3. Here, since the crucible 1 rises upward in accordance with the growth of the single crystal, the surface position of the melt is always kept constant with respect to the heater and the cusp application position.

【0025】次に、単結晶無転位化のためのシード絞り
をおこなった後、肩部を形成し、肩変えして目標直胴部
径とする。目標直胴部径に達した時点で、シリコン溶融
液4内を流れる電流値が4Aとなるように、電源装置1
3により引き上げ軸7と坩堝昇降軸11の間に電圧を印
加して、シリコン融液中に周方向のローレンツ力を発生
させることにより石英坩堝1a内のシリコン溶融液を回
転させながら単結晶の育成を行った。このときの単結晶
引き上げ速度は1.0mm/min、単結晶回転速度は
6rpm、坩堝回転速度は0rpmとした。また、本発
明例ではシリコン溶融液4への通電は単結晶直胴部の開
始時点から通電したが、種結晶着液時点から通電しても
何ら差し支えない。
Next, after performing seed drawing for eliminating single crystal dislocation, a shoulder is formed, and the shoulder is changed to obtain a target straight body diameter. At the time when the diameter reaches the target body diameter, the power supply 1
A voltage is applied between the pulling shaft 7 and the crucible elevating shaft 11 by 3 to generate a circumferential Lorentz force in the silicon melt, thereby growing the single crystal while rotating the silicon melt in the quartz crucible 1a. Was done. At this time, the single crystal pulling speed was 1.0 mm / min, the single crystal rotation speed was 6 rpm, and the crucible rotation speed was 0 rpm. Further, in the present invention, the electricity is supplied to the silicon melt 4 from the start of the single crystal straight body, but the electricity may be supplied from the time of the seed crystal deposition.

【0026】図2は、本発明例の従来例として使用した
従来のEMCZ法に適した単結晶育成装置を模式的に示
す断面図である。坩堝昇降軸に電圧を印加せずに電極1
2をシリコン溶融液に挿入して4Aの電流を印加した以
外は、本発明例と同一の装置および同一プロセス条件で
シリコン単結晶を育成した。
FIG. 2 is a cross-sectional view schematically showing a single crystal growing apparatus suitable for the conventional EMCZ method used as a conventional example of the present invention. Electrode 1 without applying voltage to crucible lifting shaft
A silicon single crystal was grown under the same apparatus and under the same process conditions as in the example of the present invention, except that 2 was inserted into the silicon melt and a current of 4 A was applied.

【0027】本発明例および従来例から得られたそれぞ
れのシリコン単結晶について、直胴部長さ100mm、
300mm、600mmの3カ所位置から結晶を径方向
に切り出し、それぞれの結晶部位について結晶半径方向
の酸素濃度分布およびドーパント不純物濃度分布を調査
した。酸素濃度分布はフーリエ変換赤外線吸収分光法
(FT−IR法)により求め、ドーパント不純物濃度分
布は拡がり抵抗法(SR法)により求めた。ここで、酸
素濃度およびドーパント濃度の結晶半径方向の分布は、
[(単結晶中心部での濃度―単結晶外周部での濃度)/
単結晶中心部での濃度]×100による値で表した。そ
の結果を表1に示す。
For each silicon single crystal obtained from the present invention example and the conventional example, the straight body length was 100 mm,
Crystals were cut radially from three positions of 300 mm and 600 mm, and the oxygen concentration distribution and the dopant impurity concentration distribution in the crystal radial direction were examined for each crystal part. The oxygen concentration distribution was determined by Fourier transform infrared absorption spectroscopy (FT-IR method), and the dopant impurity concentration distribution was determined by spreading resistance method (SR method). Here, the distribution of the oxygen concentration and the dopant concentration in the crystal radial direction is as follows.
[(Concentration at center of single crystal-concentration at outer periphery of single crystal) /
Concentration at the center of the single crystal] × 100. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、本発明例では、
何れも結晶半径方向の酸素濃度分布の不均一性は4%以
下であり、ド−パント不純物濃度分布の不均一性は5%
以下であった。一方、従来例では、電極がシリコン溶融
液内に挿入されるため、融液の回転がこの部分で変形し
軸対称性が悪くなってしまうため、何れも結晶半径方向
の酸素濃度分布の不均一性は6%以上、ド−パント不純
物濃度分布の不均一性は8%以上であり、酸素濃度とド
−パント不純物濃度分布の均一化が困難であることがわ
かる。
As is clear from Table 1, in the present invention,
In each case, the non-uniformity of the oxygen concentration distribution in the crystal radial direction is 4% or less, and the non-uniformity of the dopant impurity concentration distribution is 5% or less.
It was below. On the other hand, in the conventional example, since the electrode is inserted into the silicon melt, the rotation of the melt is deformed at this portion and the axial symmetry is deteriorated. The characteristics are 6% or more, and the non-uniformity of the dopant impurity concentration distribution is 8% or more, which indicates that it is difficult to make the oxygen concentration and the dopant impurity concentration distribution uniform.

【0030】[0030]

【本発明の効果】本発明によれば、シリコン溶融液に電
極を挿入しないため、シリコン溶融液の回転が電極によ
って妨げられることがなく、回転の対称性が高まること
から、育成した単結晶中の酸素濃度分布およびドーパン
ト不純物濃度分布が半径方向に均一化する。
According to the present invention, since no electrodes are inserted into the silicon melt, the rotation of the silicon melt is not hindered by the electrodes, and the symmetry of rotation is increased. Is uniform in the radial direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る単結晶育成装置を模
式的に示した断面図である。
FIG. 1 is a cross-sectional view schematically showing a single crystal growing apparatus according to an embodiment of the present invention.

【図2】従来のEMCZ法に係わる単結晶育成装置を模
式的に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing a single crystal growing apparatus according to a conventional EMCZ method.

【図3】従来の一般的な単結晶育成装置を模式的に示し
た断面図である。
FIG. 3 is a cross-sectional view schematically showing a conventional general single crystal growing apparatus.

【符号の説明】[Explanation of symbols]

1 坩堝 2 ヒータ 3 種結晶 4 溶融液 5 単結晶 6 磁場印加用コイル 7 引き上げ昇降軸 8 炉体 9 熱遮蔽体 10種結晶保持具 11坩堝昇降軸 12電極 13電源装置 DESCRIPTION OF SYMBOLS 1 Crucible 2 Heater 3 seed crystal 4 Melt 5 Single crystal 6 Magnetic field application coil 7 Pull-up / down shaft 8 Furnace 9 Heat shield 10 Seed crystal holder 11 Crucible up / down shaft 12 Electrode 13 Power supply device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉垣 俊二 佐賀県杵島郡江北町大字上小田2201番地 住友金属工業株式会社シチックス事業本部 内 (72)発明者 渡邉 匡人 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 江口 実 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 4G077 AA02 CF10 EH06 EJ01 EJ02 PA08 PF51 RA01 RA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shunji Kuragaki 2201 Kamioda, Kota-cho, Kishima-gun, Saga Prefecture Within the Sitix Division, Sumitomo Metal Industries, Ltd. (72) Inventor Masato Watanabe 5-chome, Shiba 5-chome, Minato-ku, Tokyo 1 NEC Corporation (72) Inventor Minoru Eguchi 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation F-term (reference) 4G077 AA02 CF10 EH06 EJ01 EJ02 PA08 PF51 RA01 RA03 RA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CZ法によりシリコン単結晶を育成する
方法において、坩堝内のシリコン溶融液に磁界を印加
し、かつ引き上げ昇降軸と坩堝昇降軸との間に電圧を印
加してシリコン溶融液内に前記磁界と直交する成分を含
む電流を流すことにより、坩堝内のシリコン溶融液を撹
拌させることを特徴とするシリコン単結晶の育成方法。
In a method for growing a silicon single crystal by the CZ method, a magnetic field is applied to a silicon melt in a crucible, and a voltage is applied between a pull-up / down shaft and a crucible up-and-down shaft to cause the silicon melt to grow. Flowing a current containing a component orthogonal to the magnetic field to agitate the silicon melt in the crucible.
【請求項2】 シリコン溶融液に印加する磁界が、縦磁
場成分を含むことを特徴とする請求項1記載のシリコン
単結晶の育成方法。
2. The method for growing a silicon single crystal according to claim 1, wherein the magnetic field applied to the silicon melt contains a vertical magnetic field component.
【請求項3】 シリコン溶融液に印加する磁界が、カス
プ磁界であることを特徴とする請求項2記載のシリコン
単結晶の育成方法。
3. The method for growing a silicon single crystal according to claim 2, wherein the magnetic field applied to the silicon melt is a cusp magnetic field.
JP2001043527A 2001-02-20 2001-02-20 Method for growing silicon single crystal Pending JP2002249396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043527A JP2002249396A (en) 2001-02-20 2001-02-20 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043527A JP2002249396A (en) 2001-02-20 2001-02-20 Method for growing silicon single crystal

Publications (1)

Publication Number Publication Date
JP2002249396A true JP2002249396A (en) 2002-09-06

Family

ID=18905672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043527A Pending JP2002249396A (en) 2001-02-20 2001-02-20 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2002249396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708830B2 (en) 2003-03-27 2010-05-04 Siltronic Ag Method and device for the production of a silicon single crystal, silicon single crystal, and silicon semiconductor wafers with determined defect distributions
JP7124938B1 (en) 2021-07-29 2022-08-24 信越半導体株式会社 Manufacturing method of silicon single crystal
JP7306536B1 (en) 2022-06-14 2023-07-11 信越半導体株式会社 Epitaxial wafer manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708830B2 (en) 2003-03-27 2010-05-04 Siltronic Ag Method and device for the production of a silicon single crystal, silicon single crystal, and silicon semiconductor wafers with determined defect distributions
JP7124938B1 (en) 2021-07-29 2022-08-24 信越半導体株式会社 Manufacturing method of silicon single crystal
WO2023008508A1 (en) * 2021-07-29 2023-02-02 信越半導体株式会社 Method for producing silicon single crystal
JP2023019420A (en) * 2021-07-29 2023-02-09 信越半導体株式会社 Method for manufacturing silicon single crystal
JP7306536B1 (en) 2022-06-14 2023-07-11 信越半導体株式会社 Epitaxial wafer manufacturing method

Similar Documents

Publication Publication Date Title
US5853480A (en) Apparatus for fabricating a single-crystal semiconductor
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP5240191B2 (en) Silicon single crystal pulling device
JPH10101482A (en) Production unit for single crystal silicon and its production
JP2017031004A (en) Method of manufacturing silicon single crystal
CN110914483A (en) Method for producing silicon single crystal
JP5417965B2 (en) Single crystal growth method
EP1640483A1 (en) Process for producing single crystal and single crystal
JP2002249396A (en) Method for growing silicon single crystal
JP2004099416A (en) Heater for producing crystal, and apparatus for and method of producing crystal
JP2004189559A (en) Single crystal growth method
TWI784314B (en) Manufacturing method of single crystal silicon
JP3132412B2 (en) Single crystal pulling method
JP4396505B2 (en) Method for producing silicon single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
JPH11263691A (en) Equipment and method for growing semiconductor crystal
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
WO2018116637A1 (en) Method for producing silicon single crystal
JP5051044B2 (en) Method for growing silicon single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore
CN111615569A (en) Silicon single crystal, method for producing same, and silicon wafer
JP7272343B2 (en) Method for producing n-type silicon single crystal
JP4360069B2 (en) Method for growing silicon single crystal
JPH0769778A (en) Equipment for single crystal growth
KR102037751B1 (en) Method and apparatus for manufacturing silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Effective date: 20070418

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070702

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814