JP2020147459A - Method for growing lithium niobate single crystal - Google Patents

Method for growing lithium niobate single crystal Download PDF

Info

Publication number
JP2020147459A
JP2020147459A JP2019045251A JP2019045251A JP2020147459A JP 2020147459 A JP2020147459 A JP 2020147459A JP 2019045251 A JP2019045251 A JP 2019045251A JP 2019045251 A JP2019045251 A JP 2019045251A JP 2020147459 A JP2020147459 A JP 2020147459A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
growing
raw material
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019045251A
Other languages
Japanese (ja)
Other versions
JP7275674B2 (en
Inventor
富男 梶ヶ谷
Tomio Kajigaya
富男 梶ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019045251A priority Critical patent/JP7275674B2/en
Publication of JP2020147459A publication Critical patent/JP2020147459A/en
Application granted granted Critical
Publication of JP7275674B2 publication Critical patent/JP7275674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for stably growing a high quality lithium niobate (LN) single crystal by the Czochralski method even when growing a large-sized crystal having a diameter of 4 inches or more.SOLUTION: A method for growing a LN single crystal by the Czochralski method, capable of contacting a seed crystal 1 to a raw material melt in a crucible 12 arranged in the chamber 11 of a single crystal growth apparatus 10 and pulling the seed crystal by a pulling shaft (a seed rod) 16 while rotating the seed crystal to grow a crystal shoulder part and a crystal straight body part followed thereby comprises: controlling a temperature atmosphere in a space above the crucible so that the average temperature gradient on the pulling shaft 16 from a position above 1 mm from the surface of the raw material melt to a position above 20 mm is 2-10°C/cm; and contacting the seed crystal to the raw material melt to grow a lithium niobate single crystal having 4 inches or more of the crystal diameter of the crystal straight body part.SELECTED DRAWING: Figure 1

Description

本発明は、表面弾性波素子の基板材料等に用いられるニオブ酸リチウム単結晶の育成方法に係り、特に、高収率で安定的に高品質のニオブ酸リチウム単結晶をチョコラルスキー法により育成する方法の改良に関するものである。 The present invention relates to a method for growing a lithium niobate single crystal used as a substrate material for a surface acoustic wave device, and in particular, grows a high-yield, stable and high-quality lithium niobate single crystal by the chocolate ralsky method. It is about improving the method.

ニオブ酸リチウム(LiNbO3;LNと略称する場合がある)単結晶は、融点が約1250℃、キュリー温度が約1140℃の人工の強誘電体結晶である。LN単結晶から切り出され、研磨加工して得られるLN単結晶基板は、主に移動体通信機器に搭載される表面弾性波素子(SAWフィルター)の材料として用いられている。 Lithium niobate (LiNbO 3 ; sometimes abbreviated as LN) single crystal is an artificial ferroelectric crystal having a melting point of about 1250 ° C. and a Curie temperature of about 1140 ° C. The LN single crystal substrate cut out from the LN single crystal and obtained by polishing is mainly used as a material for a surface acoustic wave element (SAW filter) mounted on a mobile communication device.

LN単結晶は、産業的には、主にチョコラルスキー(Czと略称する場合がある)法により、通常、白金坩堝を用いて、大気雰囲気下若しくは酸素濃度が20%程度の窒素−酸素混合ガス雰囲気下で育成されている。育成されたLN単結晶は、無色透明若しくは透明感の高い淡黄色を呈している。育成されたLN単結晶は、育成、冷却時の熱応力による残留歪みを取り除くための「アニール処理」と、結晶全体の電気的な極性を揃えて単一分極とするための「ポーリング処理」を行った後に基板加工工程へ引き渡される。 Industrially, the LN single crystal is a nitrogen-oxygen mixed gas in an atmospheric atmosphere or having an oxygen concentration of about 20%, mainly by the chocolate ralsky (sometimes abbreviated as Cz) method, usually using a platinum crucible. It is cultivated in an atmosphere. The grown LN single crystal is colorless and transparent or has a highly transparent pale yellow color. The grown LN single crystal undergoes an "annealing process" to remove residual strain due to thermal stress during growth and cooling, and a "polling process" to align the electrical polarity of the entire crystal to make it a single polarization. After that, it is handed over to the substrate processing process.

ここで、Cz法とは、坩堝内の原料融液表面に種結晶を接触させ、該種結晶を回転させながら連続的に引上げることで、種結晶と同一結晶方位の単結晶を得る方法である。所望のサイズ(結晶径×結晶長さ)まで結晶育成を行った後は、結晶の引上げ速度や融液温度の調整によって育成結晶を原料融液から切り離し、その後、室温近傍まで冷却を行って育成炉から結晶を取り出す。尚、Cz法による結晶育成においては、結晶成長界面で原料融液の固化によって発生する潜熱を効率良く種結晶を通して上方に伝導することが重要であるため、原料融液表面から上方に向って温度が低下するよう調整された温度勾配下で実施される。Cz法では、一般的に、種結晶の直径に対して数倍〜数十倍の直径を持つ単結晶を得ることができる。 Here, the Cz method is a method of obtaining a single crystal having the same crystal orientation as the seed crystal by bringing the seed crystal into contact with the surface of the raw material melt in the crucible and continuously pulling the seed crystal while rotating it. is there. After growing the crystal to the desired size (crystal diameter x crystal length), the grown crystal is separated from the raw material melt by adjusting the crystal pulling speed and melt temperature, and then cooled to near room temperature to grow. Remove the crystals from the furnace. In crystal growth by the Cz method, it is important to efficiently conduct the latent heat generated by the solidification of the raw material melt at the crystal growth interface upward through the seed crystal, so the temperature is upward from the surface of the raw material melt. It is carried out under a temperature gradient adjusted so that In the Cz method, it is generally possible to obtain a single crystal having a diameter several times to several tens of times the diameter of the seed crystal.

ところで、Cz法による結晶育成においては、育成環境の温度勾配を大きくすると、育成結晶の形状制御性が向上し、かつ、育成速度も高速にできる反面、結晶性の悪化による多結晶化や結晶内の温度差によって生じる熱応力に起因したクラック等の発生率が高くなる。反対に、育成環境の温度勾配を小さくすると、育成結晶の形状制御性が悪化(例えば、結晶が曲り、捩じれたりする)し、かつ、育成速度も低速にする必要があるため生産性が低下する。このため、効率良く所望形状の単結晶を得るには、育成環境の温度勾配を適正な範囲に調整する必要があり、特許文献1〜5において、LN単結晶をCz法で育成する際の「温度勾配」について様々な提案がなされている。 By the way, in crystal growth by the Cz method, if the temperature gradient of the growth environment is increased, the shape controllability of the growth crystal can be improved and the growth speed can be increased, but on the other hand, polycrystallization or intracrystal by deterioration of crystallinity The rate of occurrence of cracks and the like due to thermal stress caused by the temperature difference between the two increases. On the contrary, if the temperature gradient of the growing environment is reduced, the shape controllability of the growing crystal deteriorates (for example, the crystal bends or twists), and the growing speed also needs to be slowed down, so that the productivity decreases. .. Therefore, in order to efficiently obtain a single crystal having a desired shape, it is necessary to adjust the temperature gradient of the growing environment within an appropriate range. In Patent Documents 1 to 5, the "LN single crystal is grown by the Cz method". Various proposals have been made regarding "temperature gradient".

しかし、特許文献1〜4で提案された「温度勾配」は、育成する結晶径がφ3in(インチ)程度までの小型結晶を対象にしてなされたものである。例えば、特許文献1では、融液直上5mmまでの平均鉛直方向の温度勾配を40℃/cm以下とし、結晶径がφ2.6インチ(=66mm)の結晶を対象とし、特許文献2〜3では、融液界面の温度勾配を20℃〜60℃/cmとし、結晶径がφ1.26インチ(=32mm)程度の小型結晶を対象とし、特許文献4では、融液上方の平均温度勾配を15℃〜20℃/cmとし、結晶径がφ3.15インチ(=80mm)程度の結晶を対象としている。また、特許文献5では、結晶径がφ5.1インチ(=130mm)となる大型結晶を対象としているが、種結晶の上方に高価な貴金属(白金)製のリフレクターを取付けた特殊な育成炉を用いてLN結晶の育成がなされるものであった。 However, the "temperature gradient" proposed in Patent Documents 1 to 4 is intended for small crystals having a crystal diameter of up to about φ3 in (inch) to be grown. For example, Patent Document 1 covers a crystal having an average vertical temperature gradient of 40 ° C./cm or less up to 5 mm directly above the melt and a crystal diameter of φ2.6 inches (= 66 mm). The temperature gradient at the melt interface is set to 20 ° C to 60 ° C / cm, and a small crystal having a crystal diameter of about φ1.26 inch (= 32 mm) is targeted. In Patent Document 4, the average temperature gradient above the melt is 15. The target is a crystal having a crystal diameter of about φ3.15 inch (= 80 mm) at ° C. to 20 ° C./cm. Further, Patent Document 5 targets a large crystal having a crystal diameter of φ5.1 inch (= 130 mm), but a special growing furnace in which an expensive precious metal (platinum) reflector is attached above the seed crystal is used. LN crystals were grown using this.

近年、LN単結晶基板の大口径化、低価格化が進み、主流とするφ4in(インチ)基板からφ6in(インチ)基板に移行しつつあり、今後はより大口径の基板が求められると予想される。そして、大口径基板を得るための育成結晶も大型化しており、特許文献1〜4で提案された「温度勾配」条件では大型単結晶の育成が困難になっている。また、低価格化の要求に対し、特許文献5に記載された特殊な育成炉では対応できない。 In recent years, the diameter and price of LN single crystal substrates have been increasing and the prices have been reduced, and the mainstream φ4in (inch) substrate is shifting to φ6in (inch) substrates, and it is expected that larger diameter substrates will be required in the future. To. Further, the grown crystal for obtaining a large-diameter substrate has also become large in size, and it is difficult to grow a large single crystal under the "temperature gradient" condition proposed in Patent Documents 1 to 4. In addition, the special growing furnace described in Patent Document 5 cannot meet the demand for price reduction.

特開昭57−067099号公報(特許請求の範囲、公報2頁の左下欄7行−19行目参照)JP-A-57-067099 (Claims, see pages 7-19, lower left column of page 2) 特開平03−208882号公報(特許請求の範囲、実施例2参照)Japanese Patent Application Laid-Open No. 03-20882 (Claims, see Example 2) 特開平04−089398号公報(特許請求の範囲、実施例1参照)Japanese Patent Application Laid-Open No. 04-08939 (Claims, see Example 1) 特開平06−183896号公報(特許請求の範囲、実施例参照)Japanese Patent Application Laid-Open No. 06-183896 (Refer to Claims, Examples) 特開2003−221299号公報(段落番号0044、図1参照)Japanese Unexamined Patent Publication No. 2003-221299 (see paragraph No. 0044, FIG. 1)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、φ4in(インチ)以上の大型結晶を育成対象とする場合でも、高収率で安定的に高品質のニオブ酸リチウム単結晶をチョコラルスキー法により育成する方法を提供することにある。 The present invention has been made by paying attention to such a problem, and the subject thereof is stable and high quality in high yield even when a large crystal of φ4 in (inch) or more is targeted for growth. It is an object of the present invention to provide a method for growing a lithium niobate single crystal by a chocolate ralsky method.

すなわち、本発明は、
単結晶育成装置のチャンバー内に配置された坩堝の原料融液に種結晶を接触させ、該種結晶を回転させながら引上げ軸により引上げて結晶肩部とこれに続く結晶直胴部を育成するチョコラルスキー法によるニオブ酸リチウム単結晶の育成方法において、
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸上の平均温度勾配が2℃/cm〜10℃/cmとなるように坩堝上方空間の温度雰囲気を調整した後、上記種結晶を原料融液に接触させて結晶直胴部の結晶径が4インチ以上のニオブ酸リチウム単結晶を育成することを特徴とするものである。
That is, the present invention
A chocolate that brings the seed crystal into contact with the raw material melt of the 坩 堝 placed in the chamber of the single crystal growing device, and pulls the seed crystal by the pulling shaft while rotating it to grow the crystal shoulder and the subsequent crystal straight body. In the method for growing a lithium niobate single crystal by the Rusky method,
After adjusting the temperature atmosphere of the space above the crystal so that the average temperature gradient on the pulling shaft from the position 1 mm above the surface of the raw material melt to the position 20 mm above is 2 ° C / cm to 10 ° C / cm, the above species It is characterized in that a single crystal of lithium niobate having a crystal diameter of 4 inches or more is grown by bringing the crystal into contact with a raw material melt.

本発明に係るニオブ酸リチウム単結晶の育成方法によれば、
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸上の平均温度勾配が2℃/cm〜10℃/cmとなるように坩堝上方空間の温度雰囲気を調整した後にニオブ酸リチウム単結晶の育成がなされるため、捩じれやクラック等の無い大口径のニオブ酸リチウム単結晶を安定して育成することが可能となる。
According to the method for growing a lithium niobate single crystal according to the present invention.
Lithium niobate after adjusting the temperature atmosphere of the space above the crucible so that the average temperature gradient on the pull-up axis from the position 1 mm above the surface of the raw material melt to the position 20 mm above is 2 ° C / cm to 10 ° C / cm. Since the single crystal is grown, it is possible to stably grow a large-diameter lithium niobate single crystal without twisting or cracking.

従って、高品質で大口径のニオブ酸リチウム単結晶を用いたニオブ酸リチウム単結晶基板の製造が可能となるため、ニオブ酸リチウム単結晶基板の生産性が向上し、コストダウンを図ることが可能となる。 Therefore, it is possible to manufacture a lithium niobate single crystal substrate using a high-quality, large-diameter lithium niobate single crystal substrate, so that the productivity of the lithium niobate single crystal substrate can be improved and the cost can be reduced. It becomes.

チョコラルスキー法による単結晶育成装置の概略構成を模式的に示す断面図。The cross-sectional view which shows typically the schematic structure of the single crystal growth apparatus by the Chocolat ski method. 育成環境の温度分布を測定するため引上げ軸(シード棒)の先端に熱電対が取付けられたチョコラルスキー法による単結晶育成装置の概略構成を模式的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a schematic configuration of a single crystal growing apparatus by the chocolateal ski method in which a thermocouple is attached to the tip of a pulling shaft (seed rod) to measure the temperature distribution of the growing environment. 「融液表面からの距離(mm)」と「融液表面との温度差(℃)」の関係(温度分布)を示すグラフ図で、図3中、「条件1〜条件3」は、ワークコイルの形状、坩堝の形状、耐火材の構成、材質、および、ワークコイルと坩堝の相対位置等により調整された3種類の温度分布曲線を示す。It is a graph showing the relationship (temperature distribution) between "distance from the melt surface (mm)" and "temperature difference (° C) from the melt surface". In FIG. 3, "conditions 1 to 3" are workpieces. Three types of temperature distribution curves adjusted by the shape of the coil, the shape of the crucible, the composition and material of the refractory material, and the relative position between the work coil and the crucible are shown. 図4(A)は原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸上の「平均温度勾配が1.5℃/cm」となる条件で育成された比較例1に係るLN結晶に捩じれが発生した状態を示す写真図、図4(B)は原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸上の「平均温度勾配が2℃/cm〜10℃/cm」となる適正条件下で育成された捩じれの無いLN結晶を示す写真図。FIG. 4A relates to Comparative Example 1 grown under the condition that the “average temperature gradient is 1.5 ° C./cm” on the pulling shaft from the position 1 mm above the surface of the raw material melt to the position 20 mm above. A photographic diagram showing a state in which the LN crystal is twisted, FIG. 4B shows an "average temperature gradient of 2 ° C./cm-10" on the pull-up axis from a position 1 mm above the surface of the raw material melt to a position 20 mm above. The photograph which shows the untwisted LN crystal grown under the proper condition of "° C./cm".

以下、本発明の実施形態について図面を用いて詳細に説明する。尚、説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In order to facilitate the understanding of the description, the same components are designated by the same reference numerals as possible in each drawing, and duplicate description will be omitted.

[単結晶育成装置と単結晶育成方法の概要]
はじめに、図1を参照して、Cz法による単結晶育成装置10の構成例、および、単結晶育成方法の概要について説明する。
[Overview of single crystal growth device and single crystal growth method]
First, with reference to FIG. 1, a configuration example of the single crystal growing apparatus 10 by the Cz method and an outline of the single crystal growing method will be described.

図1は、高周波誘導加熱式単結晶育成装置10の概略構成を模式的に示す断面図であるが、LN単結晶の育成では抵抗加熱式単結晶育成装置も用いられている。高周波誘導加熱式単結晶育成装置と抵抗加熱式単結晶育成装置の違いは、高周波誘導加熱式の場合は、ワークコイル15によって形成される高周波磁場によりワークコイル15内に設置されている金属製坩堝12の側壁に渦電流が発生し、その渦電流によって坩堝12自体が発熱体となり、坩堝12内にある原料の融解や結晶育成に必要な温度環境の形成を行う。抵抗加熱式の場合は、坩堝の外周部に設置されている抵抗加熱ヒーターの発熱で原料の融解や結晶育成に必要な温度環境の形成を行っている。どちらの加熱方式を用いても、Cz法の本質は変わらないので、以下、高周波誘導加熱式単結晶育成装置による単結晶育成方法に関して説明する。 FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a high-frequency induction heating type single crystal growing device 10, but a resistance heating type single crystal growing device is also used for growing an LN single crystal. The difference between the high frequency induction heating type single crystal growth device and the resistance heating type single crystal growth device is that in the case of the high frequency induction heating type, the metal crucible installed in the work coil 15 by the high frequency magnetic field formed by the work coil 15. An eddy current is generated on the side wall of the twelve, and the crucible 12 itself becomes a heating element due to the eddy current, and a temperature environment necessary for melting the raw material and growing crystals in the crucible 12 is formed. In the case of the resistance heating type, the heat generated by the resistance heating heater installed on the outer periphery of the crucible is used to form the temperature environment necessary for melting the raw material and growing crystals. Since the essence of the Cz method does not change regardless of which heating method is used, the single crystal growing method using the high frequency induction heating type single crystal growing device will be described below.

図1に示すように、高周波誘導加熱式単結晶育成装置10は、チャンバー11内に坩堝12を配置する。坩堝12には、直径150mm〜300mm、深さ150mm〜300mm程度のものが用いられ、図1に示すように坩堝台13上に載置される。チャンバー11内には、坩堝12を囲むように耐火材14が配置されている。坩堝12を囲むようにワークコイル15が配置され、ワークコイル15が形成する高周波磁場によって坩堝12壁に渦電流が流れ、坩堝12自体が発熱体となる。チャンバー11の上部には引上げ軸(シード棒)16が回転可能かつ上下方向に移動可能に設けられている。引上げ軸(シード棒)16下端の先端部には、種結晶1を保持するためのシードホルダ17が取り付けられている。 As shown in FIG. 1, the high-frequency induction heating type single crystal growing device 10 arranges the crucible 12 in the chamber 11. The crucible 12 has a diameter of about 150 mm to 300 mm and a depth of about 150 mm to 300 mm, and is placed on the crucible stand 13 as shown in FIG. A refractory material 14 is arranged in the chamber 11 so as to surround the crucible 12. The work coil 15 is arranged so as to surround the crucible 12, and an eddy current flows through the wall of the crucible 12 due to the high frequency magnetic field formed by the work coil 15, and the crucible 12 itself becomes a heating element. A pull-up shaft (seed rod) 16 is provided on the upper portion of the chamber 11 so as to be rotatable and vertically movable. A seed holder 17 for holding the seed crystal 1 is attached to the tip of the lower end of the pulling shaft (seed rod) 16.

Cz法では、坩堝12内の単結晶原料18の融液表面に種結晶1となる単結晶片を接触させ、この種結晶1を引上げ軸(シード棒)16により回転させながら上方に引上げることにより、種結晶1と同一方位の円筒状単結晶を育成する。 In the Cz method, a single crystal piece to be the seed crystal 1 is brought into contact with the melt surface of the single crystal raw material 18 in the pit 12, and the seed crystal 1 is pulled upward while being rotated by the pulling shaft (seed rod) 16. As a result, a cylindrical single crystal having the same orientation as the seed crystal 1 is grown.

種結晶1の回転速度や引上げ速度は、育成する結晶の種類、育成時の温度環境に依存し、これ等の条件に応じて適切に選定する必要がある。また、結晶育成に際しては、成長界面で融液の結晶化によって生じる固化潜熱を、種結晶を通して上方に逃がす必要があるため、成長界面から上方に向って温度が低下する温度勾配下で行う必要がある。加えて、育成結晶の形状が曲がったり、捩れたりしないようにするため、原料融液内においても、成長界面から坩堝壁に向って水平方向に、かつ、成長界面から坩堝底に向って垂直方向に温度が高くなる温度勾配下で行う必要がある。 The rotation speed and pulling speed of the seed crystal 1 depend on the type of crystal to be grown and the temperature environment at the time of growth, and need to be appropriately selected according to these conditions. In addition, when growing crystals, it is necessary to release the latent heat of solidification generated by the crystallization of the melt at the growth interface upward through the seed crystal, so it is necessary to carry out under a temperature gradient in which the temperature drops upward from the growth interface. is there. In addition, in order to prevent the shape of the grown crystal from bending or twisting, even in the raw material melt, the horizontal direction from the growth interface toward the crucible wall and the vertical direction from the growth interface toward the crucible bottom. It is necessary to carry out under a temperature gradient where the temperature becomes high.

そして、LN単結晶を育成する場合は、LN結晶の融点が1250℃で、育成雰囲気に酸素が必要であることから、融点が1760℃程度で化学的に安定な白金(Pt)製の坩堝12が用いられる。育成時の引上げ速度は、一般的には数mm/H程度、回転速度は数〜数十rpm(例えば、3rpm〜10rpm)程度で行われる。また、育成時の炉内は、大気若しくは酸素濃度20%程度の窒素−酸素の混合ガス雰囲気とするのが一般的である。このような条件下で、所望の大きさまで結晶を育成した後、引上げ速度の変更や融液温度を徐々に高くする等の操作を行うことで、育成結晶を融液から切り離し、その後、育成炉のパワーを所定の速度で低下させることで徐冷し、炉内温度が室温近傍となった後に育成炉内から結晶を取り出す。 When growing an LN single crystal, the melting point of the LN crystal is 1250 ° C., and oxygen is required in the growing atmosphere. Therefore, the crucible 12 made of platinum (Pt) having a melting point of about 1760 ° C. and is chemically stable. Is used. The pulling speed at the time of growing is generally about several mm / H, and the rotation speed is about several to several tens of rpm (for example, 3 rpm to 10 rpm). In addition, the inside of the furnace at the time of growing is generally an atmosphere or a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of about 20%. Under such conditions, after growing the crystals to the desired size, the grown crystals are separated from the melt by performing operations such as changing the pulling speed and gradually increasing the melt temperature, and then the growing furnace. The crystals are slowly cooled by reducing the power of the above at a predetermined rate, and the crystals are taken out from the growing furnace after the temperature in the furnace becomes close to room temperature.

このような方法で育成され、炉から取り出された結晶は、結晶内の温度差に起因する残留歪を除去するためのアニール処理、結晶内の自発分極の方向を揃えるためのポーリング処理を行った後に、スライス、研磨等を行う基板加工工程へ引き渡される。 The crystals grown by such a method and taken out from the furnace were subjected to an annealing treatment for removing residual strain caused by a temperature difference in the crystals and a polling treatment for aligning the directions of spontaneous polarization in the crystals. Later, it is handed over to a substrate processing process for slicing, polishing, and the like.

[育成環境の温度分布の調整]
高周波誘導加熱式単結晶育成装置において、育成環境の温度分布(すなわち、坩堝上方空間の温度雰囲気)の調整は、高周波磁場を形成するワークコイル15の形状、発熱体となる坩堝12の形状、坩堝12を取り囲む耐火材14の構成、材質、および、ワークコイル15と坩堝12の相対位置の変更等により行われる。
[Adjustment of temperature distribution in the growing environment]
In the high-frequency induction heating type single crystal growing device, the temperature distribution of the growing environment (that is, the temperature atmosphere in the space above the crucible) is adjusted by adjusting the shape of the work coil 15 forming a high-frequency magnetic field, the shape of the crucible 12 serving as a heating element, and the crucible. This is done by changing the configuration and material of the refractory material 14 surrounding the 12 and the relative positions of the work coil 15 and the crucible 12.

そこで、ワークコイル15の形状、発熱体となる坩堝12の形状、坩堝12を取り囲む耐火材14の構成、材質等の条件、および、「育成環境の温度分布」の関係を調査するため、図2に示すように、高周波誘導加熱式単結晶育成装置の引上げ軸(シード棒)16先端部に熱電対20を取り付け、かつ、上記条件を変更して融液表面から上方空間の温度分布について測定を行った。測定範囲は、融液表面から200mm上方の位置までの範囲である。変更した3種類の条件(条件1〜条件3と記載)による温度分布の測定結果を図3に示す。 Therefore, in order to investigate the relationship between the shape of the work coil 15, the shape of the crucible 12 as a heating element, the configuration of the refractory material 14 surrounding the crucible 12, the conditions such as the material, and the "temperature distribution of the growing environment", FIG. As shown in, a thermocouple 20 is attached to the tip of the pulling shaft (seed rod) 16 of the high-frequency induction heating type single crystal growing device, and the above conditions are changed to measure the temperature distribution in the space above the surface of the melt. went. The measurement range is a range from the surface of the melt to a position 200 mm above. FIG. 3 shows the measurement results of the temperature distribution under the three changed conditions (described as conditions 1 to 3).

そして、図3のグラフ図から確認されるように、融液表面から上方空間の温度勾配は、融液表面から20mmまでの間は条件1〜条件3に依存して大きく変化しているが、20mmから更に上方の空間における温度勾配には大きな差がないことが判る。また、融液表面と融液表面から1mm上方位置の温度差が大きくなっているが、融液対流によって、融液表面温度の測定値は変動が大きく、融液表面と融液表面から1mm上方位置の温度差に関しては再現性に乏しかった。 As can be confirmed from the graph of FIG. 3, the temperature gradient in the space above the melt surface varies greatly depending on the conditions 1 to 3 from the melt surface to 20 mm. It can be seen that there is no significant difference in the temperature gradient in the space further above 20 mm. In addition, the temperature difference between the melt surface and the position 1 mm above the melt surface is large, but the measured value of the melt surface temperature fluctuates greatly due to the melt convection, and is 1 mm above the melt surface and the melt surface. The reproducibility was poor with respect to the temperature difference at the position.

これ等結果から、融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配を指標とし、LN単結晶の育成結果との関係を調査したところ、平均温度勾配が2℃/cm〜10℃/cmの範囲で育成を行うと高い単結晶化率が得られることが判った。また、平均温度勾配が2℃/cm未満の条件で育成を行った場合は、結晶形状の制御が困難になる上に、引上げ速度を低速化する必要が生じた。一方、平均温度勾配が10℃/cmを超える条件で育成を行った場合は、冷却中に育成結晶が割れてしまう確率が非常に高くなった。 From these results, the average temperature gradient on the pulling shaft (seed rod) from the position 1 mm above the melt surface to the position 20 mm above was used as an index to investigate the relationship with the growth result of the LN single crystal. It was found that a high single crystallization rate can be obtained by growing in a temperature gradient range of 2 ° C./cm to 10 ° C./cm. Further, when the growth was carried out under the condition that the average temperature gradient was less than 2 ° C./cm, it became difficult to control the crystal shape and it became necessary to reduce the pulling speed. On the other hand, when the growth was carried out under the condition that the average temperature gradient exceeded 10 ° C./cm, the probability that the grown crystals would crack during cooling became very high.

すなわち、ワークコイルの形状、坩堝の形状、坩堝を取り囲む耐火材の構成、材質等の条件を個別に設定して、原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が2℃/cm〜10℃/cmとなるように調整することにより、捩じれやクラック等の無い大口径のLN単結晶を安定して育成することが可能となる。 That is, the shape of the work coil, the shape of the crucible, the composition of the refractory material surrounding the crucible, the material, and other conditions are individually set, and the pulling shaft (seed) from a position 1 mm above the surface of the raw material melt to a position 20 mm above. By adjusting the average temperature gradient on the rod) to be 2 ° C./cm to 10 ° C./cm, it is possible to stably grow a large-diameter LN single crystal without twisting or cracking.

以下、本発明の実施例について比較例も挙げて具体的に説明する。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples.

[実施例1]
図1に示す高周波誘導加熱式単結晶育成装置を用い、原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が6℃/cmに調整された条件で、Cz法による128°RY−LN結晶の育成を行った。尚、128°RYとは結晶の育成方位(種結晶の結晶方位)のことである。
[Example 1]
Using the high-frequency induction heating type single crystal growing device shown in FIG. 1, the average temperature gradient on the pulling shaft (seed rod) from a position 1 mm above the surface of the raw material melt to a position 20 mm above is adjusted to 6 ° C./cm. Under these conditions, 128 ° RY-LN crystals were grown by the Cz method. The 128 ° RY is the crystal growth orientation (crystal orientation of the seed crystal).

まず、Pt製坩堝12内に原料18としてLN粉をチャージし、原料18を融解させた後、種結晶1の先端部を坩堝12内の原料融液に浸し、回転させながら2mm/Hで引上げることによりφ6インチ(=152mm)、直胴部長100mmのLN単結晶を育成した。育成したLN単結晶を原料融液から切り離し、該結晶を室温近傍まで冷却した後に結晶を取り出した。 First, LN powder is charged as a raw material 18 in the Pt crucible 12, the raw material 18 is melted, and then the tip of the seed crystal 1 is immersed in the raw material melt in the crucible 12 and pulled at 2 mm / H while rotating. By raising it, an LN single crystal having a diameter of 6 inches (= 152 mm) and a straight body length of 100 mm was grown. The grown LN single crystal was separated from the raw material melt, the crystal was cooled to near room temperature, and then the crystal was taken out.

そして、同一の条件で50回の育成を実施し、48本のLN単結晶を得た。単結晶化率は96%であった。また、育成された結晶は、図4(B)に示すように捩じれ等の無い高品質なLN単結晶であった。 Then, the growth was carried out 50 times under the same conditions to obtain 48 LN single crystals. The single crystallization rate was 96%. Further, the grown crystal was a high-quality LN single crystal without twisting or the like as shown in FIG. 4 (B).

[実施例2]
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が2℃/cmに調整されている以外は、実施例1と同様の条件で、φ6インチ、直胴部長100mmの128°RY−LN結晶を育成した。
[Example 2]
Φ6 under the same conditions as in Example 1 except that the average temperature gradient on the pull-up shaft (seed rod) from a position 1 mm above the surface of the raw material melt to a position 20 mm above is adjusted to 2 ° C./cm. A 128 ° RY-LN crystal having an inch length and a straight body length of 100 mm was grown.

そして、同一の条件で50回の育成を実施し、45本のLN単結晶を得た。単結晶化率は90%であった。不良となった5本の結晶は、晶癖線部から多結晶化していた。 Then, the growth was carried out 50 times under the same conditions to obtain 45 LN single crystals. The single crystallization rate was 90%. The five defective crystals were polycrystallized from the crystal habit line portion.

[実施例3]
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が10℃/cmに調整されている以外は、実施例1と同様の条件で、φ6インチ、直胴部長100mmの128°RY−LN結晶を育成した。
[Example 3]
Φ6 under the same conditions as in Example 1 except that the average temperature gradient on the pulling shaft (seed rod) from a position 1 mm above the surface of the raw material melt to a position 20 mm above is adjusted to 10 ° C./cm. A 128 ° RY-LN crystal having an inch length and a straight body length of 100 mm was grown.

そして、同一の条件で50回の育成を実施し、43本のLN単結晶を得た。単結晶化率は86%であった。不良となった7本の結晶は、全て育成結晶を融液から切離した後の冷却中にクラックが生じたものであった。 Then, the growth was carried out 50 times under the same conditions to obtain 43 LN single crystals. The single crystallization rate was 86%. All of the seven defective crystals had cracks during cooling after the grown crystals were separated from the melt.

[比較例1]
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が1.5℃/cmに調整されている以外は、実施例1と同様の条件で、φ6インチ、直胴部長100mmの128°RY−LN結晶を育成した。
[Comparative Example 1]
Under the same conditions as in Example 1 except that the average temperature gradient on the pull-up shaft (seed rod) from a position 1 mm above the surface of the raw material melt to a position 20 mm above is adjusted to 1.5 ° C./cm. A 128 ° RY-LN crystal having a diameter of 6 inches and a straight body length of 100 mm was grown.

そして、同一の条件で50回の育成を実施し、39本のLN単結晶を得た。単結晶化率は78%であったが、図4(A)に示すように、結晶直胴部後半の形状に捩れが生じ、平均有効長(φ150mmの単結晶基板が加工できる長さ)は50mm程度となった。また、不良となった11本の結晶は、全て、晶癖線部から多結晶化していた。 Then, the growth was carried out 50 times under the same conditions to obtain 39 LN single crystals. The single crystallization rate was 78%, but as shown in FIG. 4 (A), the shape of the latter half of the straight body of the crystal was twisted, and the average effective length (the length that a single crystal substrate of φ150 mm can be processed) was It became about 50 mm. In addition, all 11 defective crystals were polycrystallized from the crystal habit line portion.

[比較例2]
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸(シード棒)上の平均温度勾配が12℃/cmに調整されている以外は、実施例1と同様の条件で、φ6インチ、直胴部長100mmの128°RY−LN結晶を育成した。
[Comparative Example 2]
Φ6 under the same conditions as in Example 1 except that the average temperature gradient on the pull-up shaft (seed rod) from a position 1 mm above the surface of the raw material melt to a position 20 mm above is adjusted to 12 ° C./cm. A 128 ° RY-LN crystal having an inch length and a straight body length of 100 mm was grown.

そして、同一の条件で50回の育成を実施し、36本のLN単結晶を得た。単結晶化率は72%であった。不良となった14本の結晶は、全て育成結晶を融液から切離した後の冷却中にクラックが生じたものであった。 Then, the growth was carried out 50 times under the same conditions to obtain 36 LN single crystals. The single crystallization rate was 72%. All of the 14 defective crystals had cracks during cooling after the grown crystals were separated from the melt.

本発明に係るニオブ酸リチウム単結晶の育成方法によれば、捩じれやクラック等の無い大口径のニオブ酸リチウム単結晶を安定して育成できるため、表面弾性波フィルタの基板材料として使用されるニオブ酸リチウム単結晶の製造に用いられる産業上の利用可能性を有している。 According to the method for growing a lithium niobate single crystal according to the present invention, a large-diameter lithium niobate single crystal without twisting or cracking can be stably grown, and thus niobate used as a substrate material for a surface elastic wave filter. It has industrial potential for the production of lithium niobate single crystals.

1 種結晶
10 単結晶育成装置
11 チャンバー
12 坩堝
13 坩堝台
14、19 耐火物
15 ワークコイル
16 引上げ軸(シード棒)
17 シードホルダ
18 単結晶育成原料
20 熱電対
1 Seed crystal 10 Single crystal growing device 11 Chamber 12 Crucible 13 Crucible stand 14, 19 Refractory 15 Work coil 16 Pulling shaft (seed rod)
17 Seed holder 18 Single crystal growth raw material 20 Thermocouple

Claims (1)

単結晶育成装置のチャンバー内に配置された坩堝の原料融液に種結晶を接触させ、該種結晶を回転させながら引上げ軸により引上げて結晶肩部とこれに続く結晶直胴部を育成するチョコラルスキー法によるニオブ酸リチウム単結晶の育成方法において、
原料融液表面より1mm上方の位置から20mm上方の位置までの引上げ軸上の平均温度勾配が2℃/cm〜10℃/cmとなるように坩堝上方空間の温度雰囲気を調整した後、上記種結晶を原料融液に接触させて結晶直胴部の結晶径が4インチ以上のニオブ酸リチウム単結晶を育成することを特徴とするニオブ酸リチウム単結晶の育成方法。
A chocolate that brings the seed crystal into contact with the raw material melt of the 坩 堝 placed in the chamber of the single crystal growing device, and pulls the seed crystal by the pulling shaft while rotating it to grow the crystal shoulder and the subsequent crystal straight body. In the method for growing a lithium niobate single crystal by the Rusky method,
After adjusting the temperature atmosphere of the space above the crystal so that the average temperature gradient on the pulling shaft from the position 1 mm above the surface of the raw material melt to the position 20 mm above is 2 ° C / cm to 10 ° C / cm, the above species A method for growing a lithium niobate single crystal, which comprises contacting a crystal with a raw material melt to grow a lithium niobate single crystal having a crystal diameter of 4 inches or more in the straight body of the crystal.
JP2019045251A 2019-03-12 2019-03-12 Method for growing lithium niobate single crystal Active JP7275674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045251A JP7275674B2 (en) 2019-03-12 2019-03-12 Method for growing lithium niobate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045251A JP7275674B2 (en) 2019-03-12 2019-03-12 Method for growing lithium niobate single crystal

Publications (2)

Publication Number Publication Date
JP2020147459A true JP2020147459A (en) 2020-09-17
JP7275674B2 JP7275674B2 (en) 2023-05-18

Family

ID=72430262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045251A Active JP7275674B2 (en) 2019-03-12 2019-03-12 Method for growing lithium niobate single crystal

Country Status (1)

Country Link
JP (1) JP7275674B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263877A (en) * 1975-11-22 1977-05-26 Sumitomo Electric Ind Ltd Pulling up apparatus of single crystal
JPH06183896A (en) * 1992-12-17 1994-07-05 Tokin Corp Method for growing lithium niobate single crystal
JPH09328394A (en) * 1996-06-07 1997-12-22 Shin Etsu Chem Co Ltd Production of oxide single crystal
US20020009405A1 (en) * 2000-07-20 2002-01-24 Nankai University Doubly doped lithium niobate crystals
JP2003221299A (en) * 2002-01-31 2003-08-05 Mitsui Chemicals Inc Large lithium niobate single crystal for optical application, and method and apparatus of the same
CN101956236A (en) * 2010-10-21 2011-01-26 哈尔滨工程大学 Big-size doped lithium niobate crystal and preparation method thereof
CN106929917A (en) * 2017-04-25 2017-07-07 南开大学 A kind of 90 ° of double-doped lithium niobate crystals of phase matched of room temperature
US20170253994A1 (en) * 2016-03-01 2017-09-07 Nankai University Bismuth and magnesium co-doped lithium niobate crystal, preparation method thereof and application thereof
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263877A (en) * 1975-11-22 1977-05-26 Sumitomo Electric Ind Ltd Pulling up apparatus of single crystal
JPH06183896A (en) * 1992-12-17 1994-07-05 Tokin Corp Method for growing lithium niobate single crystal
JPH09328394A (en) * 1996-06-07 1997-12-22 Shin Etsu Chem Co Ltd Production of oxide single crystal
US20020009405A1 (en) * 2000-07-20 2002-01-24 Nankai University Doubly doped lithium niobate crystals
JP2003221299A (en) * 2002-01-31 2003-08-05 Mitsui Chemicals Inc Large lithium niobate single crystal for optical application, and method and apparatus of the same
CN101956236A (en) * 2010-10-21 2011-01-26 哈尔滨工程大学 Big-size doped lithium niobate crystal and preparation method thereof
US20170253994A1 (en) * 2016-03-01 2017-09-07 Nankai University Bismuth and magnesium co-doped lithium niobate crystal, preparation method thereof and application thereof
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal
CN106929917A (en) * 2017-04-25 2017-07-07 南开大学 A kind of 90 ° of double-doped lithium niobate crystals of phase matched of room temperature

Also Published As

Publication number Publication date
JP7275674B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
CN101445954A (en) Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP4193610B2 (en) Single crystal manufacturing method
JP7310339B2 (en) Method for growing lithium niobate single crystal
TW201012983A (en) Method for growing silicon single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal
JP6834493B2 (en) Oxide single crystal growing device and growing method
JP2013001581A (en) Method for growing lithium tantalate single crystal
JP6988624B2 (en) How to grow lithium niobate single crystal
JP2019210199A (en) Manufacturing method of silicon single crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP2019094251A (en) Method for manufacturing single crystal
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP4735594B2 (en) Oxide single crystal growth method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP7128124B2 (en) Polycrystalline silicon rod, polycrystalline silicon rod and manufacturing method thereof
JP2022001541A (en) Method for heating iridium crucible for single crystal growth
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2021155246A (en) Lithium niobate single crystal and method for manufacturing the same
JP2021080139A (en) Method for manufacturing single crystal
JP3659693B2 (en) Method for producing lithium borate single crystal
JP2019089671A (en) Method for growing lithium niobate single crystal
JP7310347B2 (en) Method for growing lithium niobate single crystal
JP2014058414A (en) Method for producing silicon single crystal for evaluation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7275674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150