JP2013001581A - Method for growing lithium tantalate single crystal - Google Patents

Method for growing lithium tantalate single crystal Download PDF

Info

Publication number
JP2013001581A
JP2013001581A JP2011131093A JP2011131093A JP2013001581A JP 2013001581 A JP2013001581 A JP 2013001581A JP 2011131093 A JP2011131093 A JP 2011131093A JP 2011131093 A JP2011131093 A JP 2011131093A JP 2013001581 A JP2013001581 A JP 2013001581A
Authority
JP
Japan
Prior art keywords
crystal
lithium tantalate
single crystal
tantalate single
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131093A
Other languages
Japanese (ja)
Inventor
Hiroshi Oyama
公士 大山
Takayuki Koike
孝幸 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011131093A priority Critical patent/JP2013001581A/en
Publication of JP2013001581A publication Critical patent/JP2013001581A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a lithium tantalate single crystal which is improved in productivity by suppressing the bending of the lithium tantalate single crystal during crystal growing.SOLUTION: In the growing method, a seed crystal 8 is brought into contact with a molten raw material liquid 10 held in a crucible 3 and lifted upward while being rotated to grow the lithium tantalate single crystal 11. When the straight cylinder part of the lithium tantalate single crystal is grown, the rotating direction of the single crystal is reversed at a constant interval of 5-800 min. By this growing method, since a phenomenon in which the lithium tantalate single crystal during crystal growing is bent to the X-axis direction can be suppressed, when a wafer is obtained from a grown lithium tantalate single crystal ingot, a diameter-defective wafer can hardly be generated. Accordingly, the number of obtainable wafers can be increased, so that the productivity of the wafer is improved eminently to contribute to cost reduction.

Description

本発明は、表面弾性波素子等に用いられるタンタル酸リチウム単結晶の育成方法に係り、特に、結晶育成時におけるタンタル酸リチウム単結晶の曲がりを抑制してその生産性を改善したタンタル酸リチウム単結晶の育成方法に関するものである。   The present invention relates to a method for growing a lithium tantalate single crystal used for a surface acoustic wave device or the like, and in particular, a lithium tantalate single crystal that has improved productivity by suppressing the bending of the lithium tantalate single crystal during crystal growth. The present invention relates to a crystal growth method.

タンタル酸リチウム結晶は、融点が約1650℃、キュリー温度が約600℃の強誘電体であり、この結晶を用いて製造されたタンタル酸リチウム基板の用途は、主に、携帯電話の信号ノイズ除去用表面弾性波(SAW)フィルタの材料である。   The lithium tantalate crystal is a ferroelectric with a melting point of about 1650 ° C. and a Curie temperature of about 600 ° C. The use of the lithium tantalate substrate manufactured using this crystal is mainly for removing signal noise from mobile phones. It is a material for surface acoustic wave (SAW) filters.

そして、タンタル酸リチウム単結晶は、「チョクラルスキー法」で育成するのが一般的である。以下、「チョクラルスキー法」による育成方法を説明すると、イリジウム等貴金属の坩堝の回りを耐火物で囲み、かつ、坩堝または上記耐火物の上に坩堝上部の温度勾配を適切に保つためのヒータ機能を持たせた貴金属構造物を設置した炉の中で、上記坩堝内に充填した原料となるタンタル酸リチウム結晶の塊を加熱溶融させ、この原料融液に種結晶を接触させた後に、所定の回転数で種結晶を回転させつつ上方に引き上げることで結晶の育成がなされている(例えば、特許文献1参照)。   The lithium tantalate single crystal is generally grown by the “Czochralski method”. Hereinafter, the growth method by the “Czochralski method” will be described. A heater for surrounding a noble metal crucible such as iridium with a refractory and maintaining an appropriate temperature gradient at the top of the crucible on the crucible or the refractory. In a furnace in which a noble metal structure having a function is installed, a mass of lithium tantalate crystals as a raw material filled in the crucible is heated and melted, and a seed crystal is brought into contact with the raw material melt. The crystal is grown by pulling it upward while rotating the seed crystal at a rotational speed of (see, for example, Patent Document 1).

ところで、結晶の引き上げ軸の方向は、表面弾性波の伝搬速度の関係から、36°〜50°回転Y軸(RY)方向に切り出された種結晶の方位と同一となるように設定される。しかし、このようにして結晶を成長させた場合、+X軸方向、すなわち<100>方向に2°前後、結晶の曲がりが発生する。そして、インゴットの直胴長が100mmを超えると、結晶の曲がりによって、ウエハーとした場合その一部に直径不良が発生するため、生産性が低下してしまう問題が存在した。   By the way, the direction of the pulling axis of the crystal is set so as to be the same as the orientation of the seed crystal cut in the 36 ° to 50 ° rotation Y-axis (RY) direction because of the propagation speed of the surface acoustic wave. However, when the crystal is grown in this way, the crystal is bent by about 2 ° in the + X-axis direction, that is, in the <100> direction. When the straight body length of the ingot exceeds 100 mm, a defect in diameter occurs in a part of the wafer due to the bending of the crystal, resulting in a decrease in productivity.

特開平10−36193号公報Japanese Patent Laid-Open No. 10-36193

本発明はこのような問題点に着目してなされたもので、その課題とするところは、タンタル酸リチウム単結晶の上記曲がりを抑制してウエハーの取得可能枚数を増大させ、これにより生産性を大きく改善させたタンタル酸リチウムの育成方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is to suppress the above-mentioned bending of the lithium tantalate single crystal and increase the number of wafers that can be obtained, thereby increasing productivity. The object is to provide a greatly improved method for growing lithium tantalate.

そこで、上記課題を解決するため本発明者が鋭意検討を行った結果、タンタル酸リチウム単結晶の曲がる方向が結晶成長の回転方向に依存していることを突き止めるに至った。   Therefore, as a result of intensive studies by the inventor in order to solve the above-mentioned problems, it has been found that the bending direction of the lithium tantalate single crystal depends on the rotation direction of crystal growth.

すなわち、タンタル酸リチウム単結晶の育成状態を真上から観察したとき、結晶成長が時計回りの場合は+X軸方向に、結晶成長が反時計回りの場合は−X軸方向にタンタル酸リチウム単結晶が曲がることが判明し、その曲がりの大きさは、およそ2°前後であることが確認された。   That is, when the growth state of the lithium tantalate single crystal is observed from directly above, the lithium tantalate single crystal is oriented in the + X axis direction when the crystal growth is clockwise, and in the −X axis direction when the crystal growth is counterclockwise. Was found to bend, and the magnitude of the bend was confirmed to be approximately 2 °.

このため、結晶成長の回転方向が一方向のみであった従来の育成法を見直すと共に、ある一定の間隔で回転方向を反転させた場合に結晶の曲がりを抑制できるとの予測の下、本発明者が鋭意実験を行なった結果、本発明を完成するに至った。   For this reason, while revising the conventional growth method in which the rotation direction of crystal growth is only one direction, and predicting that the bending of the crystal can be suppressed when the rotation direction is reversed at a certain interval, the present invention. As a result of intensive experiments, the inventors have completed the present invention.

すなわち、請求項1に係る発明は、
坩堝に収容された原料の溶融液に種結晶を接触させ、上記種結晶を回転させつつ上方に引き上げることでタンタル酸リチウム単結晶を育成する方法において、
タンタル酸リチウム単結晶の直胴部を育成するとき、該単結晶の回転方向を5〜800分の一定間隔で反転させることを特徴とする。
That is, the invention according to claim 1
In a method for growing a lithium tantalate single crystal by bringing a seed crystal into contact with a raw material melt contained in a crucible and pulling upward while rotating the seed crystal,
When the straight body portion of the lithium tantalate single crystal is grown, the rotation direction of the single crystal is reversed at regular intervals of 5 to 800 minutes.

次に、請求項2に係る発明は、
請求項1に記載の発明に係るタンタル酸リチウム単結晶の育成方法において、
上記回転方向の反転間隔が、120〜180分であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係るタンタル酸リチウム単結晶の育成方法において、
結晶の引き上げ軸の方向が、36°〜50°回転Y軸方向に切り出された種結晶の方位と同一となるように設定されていることを特徴とするものである。
Next, the invention according to claim 2
In the method for growing a lithium tantalate single crystal according to the invention of claim 1,
The inversion interval in the rotation direction is 120 to 180 minutes,
The invention according to claim 3
In the method for growing a lithium tantalate single crystal according to claim 1 or 2,
The direction of the crystal pulling axis is set to be the same as the orientation of the seed crystal cut in the Y-axis direction of 36 ° to 50 ° rotation.

本発明に係るタンタル酸リチウム単結晶の育成方法によれば、タンタル酸リチウム単結晶の直胴部を育成する際、該単結晶の回転方向を5〜800分の一定間隔で反転させているため、結晶育成中におけるタンタル酸リチウム単結晶がX軸方向へ曲がる現象を抑制することが可能となる。   According to the method for growing a lithium tantalate single crystal according to the present invention, when the straight body portion of the lithium tantalate single crystal is grown, the rotation direction of the single crystal is reversed at regular intervals of 5 to 800 minutes. This makes it possible to suppress the phenomenon that the lithium tantalate single crystal is bent in the X-axis direction during crystal growth.

そして、育成されたタンタル酸リチウム単結晶インゴットからウエハーを得る場合、直径不良のウエハーが発生し難いことからウエハーの取得可能枚数を増大できるため、ウエハーの生産性が大幅に向上してコスト削減に寄与できる効果を有する。   When wafers are obtained from the grown lithium tantalate single crystal ingot, it is difficult to generate wafers with defective diameters, so the number of wafers that can be acquired can be increased, thus greatly improving wafer productivity and reducing costs. It has an effect that can contribute.

タンタル酸リチウム単結晶の育成方法に用いられる製造装置の一例を示す概略構成断面図。The schematic structure sectional drawing which shows an example of the manufacturing apparatus used for the growth method of a lithium tantalate single crystal.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係るタンタル酸リチウム単結晶の育成方法は、坩堝内に収容された原料融液に種結晶を接触させて引き上げる「チョクラルスキー法」の常法に従って行うものである。そして、タンタル酸リチウム単結晶の結晶育成は、結晶肩部までは従来法と同様にして行われ、結晶直胴部の成長に入ってから、回転方向の反転を行うことを特徴とする。   First, the method for growing a lithium tantalate single crystal according to the present invention is carried out in accordance with an ordinary method of the “Czochralski method” in which a seed crystal is brought into contact with a raw material melt contained in a crucible and pulled up. Then, the crystal growth of the lithium tantalate single crystal is performed in the same manner as in the conventional method up to the crystal shoulder, and the rotation direction is reversed after the growth of the straight body of the crystal.

また、回転数は、通常行われている回転数をそのまま適用して行われるが、一定の間隔毎に回転方向を反転させることを特徴とする。回転方向を反転させる間隔は、あまり短い間隔で種結晶の回転方向を変更すると、融液の対流が複雑になり、結晶育成に重要な凸形状の固液界面形状を維持することが困難になる。このため、結晶の曲がりが発生しない範囲で、長い時間、回転方向を維持することが望ましい。   Further, the rotation speed is performed by applying the rotation speed that is normally performed as it is, and the rotation direction is reversed at regular intervals. If the rotation direction of the seed crystal is changed at a very short interval, the convection of the melt becomes complicated and it becomes difficult to maintain the convex solid-liquid interface shape important for crystal growth. . For this reason, it is desirable to maintain the rotation direction for a long time as long as no crystal bending occurs.

そして、回転方向の反転間隔を本発明者が鋭意分析した結果、5〜800分であれば融液対流に大きな影響を与えず、このため、固液界面にも大きな変動を与えることなく育成できることを発見するに至った。尚、この反転間隔が、上記範囲より外れても単結晶の育成は可能であるが、反転間隔が短過ぎると、固液界面がフラット若しくは凹形状になり、結晶中に転位が発生した場合に転位が集中し易くなることで多結晶化のリスクが高まる。また、反転間隔が長過ぎると、その間の成長により結晶の曲がりが発生する。反転間隔が120〜180分であると、多結晶化のリスクが抑えられ、高い単結晶化率が維持されると共に結晶の曲がりも抑制されるため、最終的なウエハーの収率が良好となり好ましい。   And as a result of inventor's earnest analysis of the reversal interval in the rotation direction, if it is 5 to 800 minutes, it does not significantly affect the melt convection, and therefore it can be grown without greatly changing the solid-liquid interface. It came to discover. Single crystals can be grown even if the inversion interval is outside the above range, but if the inversion interval is too short, the solid-liquid interface becomes flat or concave and dislocations occur in the crystal. The risk of polycrystallization increases due to the easy concentration of dislocations. If the inversion interval is too long, crystal bending occurs due to growth during that interval. When the inversion interval is 120 to 180 minutes, the risk of polycrystallization is suppressed, a high single crystallization rate is maintained, and the bending of the crystal is also suppressed, which is preferable because the final wafer yield is good. .

本発明方法による結晶の引き上げを行なった場合、結晶の曲がりがほとんど見られないため、種結晶の方位とほぼ同一方向にインゴットが引き上がる。このため、ウエハーに加工する際、直径不足となることが少なくなり、一本のインゴットから取れるウエハーの枚数を最大限に増加させることが可能となる。   When the crystal is pulled by the method of the present invention, since the crystal is hardly bent, the ingot is pulled in substantially the same direction as the orientation of the seed crystal. For this reason, when processing into a wafer, it becomes less likely that the diameter is insufficient, and the number of wafers that can be taken from one ingot can be maximized.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により何ら制限されるものではない。また、実施例等においてタンタル酸リチウム単結晶を育成する装置としては、図1に示す以下の製造装置を使用した。   Examples of the present invention will be specifically described below with reference to comparative examples, but the present invention is not limited to the following examples. Moreover, as an apparatus for growing a lithium tantalate single crystal in Examples and the like, the following manufacturing apparatus shown in FIG. 1 was used.

すなわち、この製造装置は、セラミックス製の坩堝台2と、上記坩堝台2の底部に設置されかつイリジウム製の坩堝3が配置されるアルミナ台4と、上記坩堝3を囲むように設置された断熱材5と、上記坩堝3の開放縁上に沿って取り付けられたドーナツ板形状のリフレクター9と、上記リフレクター9上に取り付けられた円筒状のアフターヒーター13と、上記アフターヒーター13の上方開放縁上に取り付けられかつ中央に引き上げ軸6を通すための開口部が設けられた蓋7と、上記引き上げ軸6の下方側に設けられかつ種結晶8を保持するための種結晶保持治具12と、上記坩堝台2を囲むように設けられかつ坩堝3を誘導加熱して内部に充填された原料を融解させる加熱コイル1とでその主要部が構成されており、上記原料の融液10に種結晶8を接触させると共に種結晶8を回転させつつ上方へ引き上げることで単結晶11を育成するものである。   That is, this manufacturing apparatus includes a ceramic crucible base 2, an alumina base 4 that is installed at the bottom of the crucible base 2 and on which the iridium crucible 3 is disposed, and heat insulation that is installed so as to surround the crucible 3. A material 5, a donut-shaped reflector 9 attached along the open edge of the crucible 3, a cylindrical afterheater 13 attached on the reflector 9, and an upper open edge of the afterheater 13 A lid 7 provided with an opening for passing the lifting shaft 6 in the center, a seed crystal holding jig 12 provided on the lower side of the lifting shaft 6 and for holding the seed crystal 8, The heating coil 1 is provided so as to surround the crucible base 2 and melts the raw material filled inside by induction heating of the crucible 3. While rotating the seed crystal 8 with contacting the two crystal 8 is intended to grow a single crystal 11 by pulling upward.

[実施例1]
直径180mmφ、高さ170mmのイリジウム製坩堝3の開放縁上に、外径180mmφ、内径120mmφ、厚さ2mmのドーナツ板形状のイリジウム製リフレクター9を取り付け、更に、上記リフレクター9上に、直径175mmφ、高さ170mmの円筒状のイリジウム製アフターヒーター13を取り付けた。
[Example 1]
On the open edge of the iridium crucible 3 with a diameter of 180 mmφ and a height of 170 mm, an iridium reflector 9 in the form of a donut plate with an outer diameter of 180 mmφ, an inner diameter of 120 mmφ and a thickness of 2 mm is attached. A cylindrical iridium after heater 13 having a height of 170 mm was attached.

そして、上記坩堝3内に、組成比がLi/Ta=0.943(モル比)の焼成原料18kgを、最初に12kgを入れ、追加チャージで残りの6kgを入れて溶融させた後、チョクラルスキー法により、直径4インチ径で直胴長110mmのタンタル酸リチウム単結晶の引き上げを行った。   In the crucible 3, 18 kg of the firing raw material having a composition ratio of Li / Ta = 0.944 (molar ratio) is first added, 12 kg is added, and the remaining 6 kg is added and melted by additional charge. By a ski method, a lithium tantalate single crystal having a diameter of 4 inches and a straight body length of 110 mm was pulled up.

また、種結晶8の方位は42°RY(Rotated Y)とし、インゴット肩部までは種結晶8の回転方向を時計方向に固定して引き上げを行い、インゴット直胴部に入ってからは、5分毎に種結晶8の回転方向を反転させて10回引き上げを行った。   The orientation of the seed crystal 8 is 42 ° RY (Rotated Y), and the seed crystal 8 is rotated up to the shoulder of the ingot while the rotation direction of the seed crystal 8 is fixed in the clockwise direction. The rotation direction of the seed crystal 8 was reversed every minute and pulled up 10 times.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

尚、上記単結晶化率(%)は、10回引上げを行った内の単結晶が得られたインゴット本数の割合を示し、ワイヤーソー終了後の加工重量収率(%)は、以下の式で定義され、上記最終重量収率(%)は、単結晶化率(%)と加工重量収率(%)を掛けたものとし、また、ウエハーの切断ピッチは0.5mmとした。   The single crystallization rate (%) indicates the ratio of the number of ingots from which single crystals were pulled 10 times, and the processed weight yield (%) after the wire saw was finished was expressed by the following formula: The final weight yield (%) was obtained by multiplying the single crystallization rate (%) by the processed weight yield (%), and the wafer cutting pitch was 0.5 mm.

加工重量収率(%)=[良品ウエハーの重量/インゴット重量]×100
そして、表1の結果から、実施例1では結晶曲がりが殆ど発生せず、かつ、加工重量収率(%)も70%と高い収率を達成できることが確認された。
Processing weight yield (%) = [weight of non-defective wafer / weight of ingot] × 100
From the results in Table 1, it was confirmed that almost no crystal bending occurred in Example 1, and a high processing weight yield (%) of 70% could be achieved.

但し、単結晶化率(%)は75%とやや低調であった。これは、回転方向の反転間隔が5分と短いため、融液中に上昇対流が発生し、固液界面形状がフラット若しくはやや凹形状になったためと考えられる。つまり、固液界面形状がフラット若しくはやや凹形状になったことにより転位が密集し易くなり、多結晶化の発生率が上昇したと推測される。   However, the single crystallization rate (%) was slightly low at 75%. This is probably because the reversal interval in the rotation direction is as short as 5 minutes, so that upward convection occurs in the melt and the solid-liquid interface shape is flat or slightly concave. In other words, it is presumed that the dislocations are easily concentrated due to the solid-liquid interface shape becoming flat or slightly concave, and the occurrence rate of polycrystallization is increased.

このため、最終重量収率(%)は53%となった。   Therefore, the final weight yield (%) was 53%.

[実施例2]
上記種結晶8の回転方向を120分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Example 2]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 120 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、実施例2では結晶曲がりが殆ど発生せず、かつ、加工重量収率(%)も70%と高い収率を達成できることが確認された。   From the results shown in Table 1, it was confirmed that in Example 2, crystal bending hardly occurred, and the processing weight yield (%) could be as high as 70%.

更に、単結晶化率(%)は92%と良好な結果であった。これは、回転方向の反転間隔が120分と長いために、融液中の上昇対流が減少し、固液界面形状が凸になったためと考えられる。すなわち、固液界面形状が凸になったことで転位が結晶の外側に抜け易くなり、これにより多結晶化が抑制され、単結晶化率が上昇したと考えられる。   Furthermore, the single crystallization rate (%) was a good result of 92%. This is considered to be because the reversal interval in the rotation direction is as long as 120 minutes, so that the rising convection in the melt decreases and the solid-liquid interface shape becomes convex. That is, it is considered that dislocations easily escape to the outside of the crystal due to the convex shape of the solid-liquid interface, thereby suppressing polycrystallization and increasing the single crystallization rate.

このため、最終重量収率(%)は64%であった。   For this reason, the final weight yield (%) was 64%.

[実施例3]
上記種結晶8の回転方向を150分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Example 3]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 150 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、実施例3でも結晶曲がりが殆ど発生せず、かつ、加工重量収率(%)も70%と高い収率を達成できることが確認された。   From the results shown in Table 1, it was confirmed that even in Example 3, crystal bending hardly occurred and a high processing weight yield (%) of 70% could be achieved.

更に、単結晶化率(%)、最終重量収率(%)ともに、実施例2と同等の結果となったことから、実施例2と同様の現象が実施例3でも起きていると考えられる。   Furthermore, since both the single crystallization rate (%) and the final weight yield (%) were the same as those in Example 2, it is considered that the same phenomenon as in Example 2 occurred in Example 3. .

[実施例4]
上記種結晶8の回転方向を180分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Example 4]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 180 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、実施例4でも結晶曲がりが殆ど発生せず、かつ、加工重量収率(%)も70%と高い収率を達成できることが確認された。   From the results shown in Table 1, it was confirmed that even in Example 4, crystal bending hardly occurred, and a high processing weight yield (%) of 70% could be achieved.

更に、単結晶化率(%)、最終重量収率(%)ともに、実施例2と同等の結果となったことから、実施例2と同様の現象が実施例4でも起きていると考えられる。   Furthermore, since both the single crystallization rate (%) and the final weight yield (%) were the same as in Example 2, it is considered that the same phenomenon as in Example 2 occurred in Example 4. .

[実施例5]
上記種結晶8の回転方向を200分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Example 5]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 200 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、実施例1〜4と比較して実施例5では結晶曲がりがやや大きくなったことが確認され、これに伴い、加工重量収率(%)も68%と若干低くなったことが確認された。これは、回転方向の反転時間が長くなることで、結晶曲がりの抑制効果が弱くなったためと考えられる。尚、単結晶化率(%)は91%と良好な結果であった。   From the results in Table 1, it was confirmed that the crystal bending was slightly increased in Example 5 as compared with Examples 1 to 4, and accordingly, the processing weight yield (%) was slightly lowered to 68%. It was confirmed. This is thought to be because the effect of suppressing the crystal bending is weakened due to the longer inversion time in the rotation direction. The single crystallization rate (%) was 91%, which was a good result.

そして、結晶曲がりが増加したことによる加工重量収率(%)の低下により、最終重量収率(%)は62%と実施例2〜4と較べ若干低下したことが確認された。   And it was confirmed that the final weight yield (%) was slightly reduced to 62% as compared with Examples 2 to 4 due to a decrease in the processed weight yield (%) due to an increase in crystal bending.

[実施例6]
上記種結晶8の回転方向を800分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Example 6]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 800 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、実施例1〜5と比較して実施例6では結晶曲がりが大きくなったことが確認され、これに伴い、加工重量収率(%)も65%と低くなったことが確認された。これは、実施例5と同様に回転方向の反転時間が長くなることで、結晶曲がりの抑制効果が更に弱くなったためと考えられる。尚、単結晶化率(%)は90%と良好な結果であった。   From the results of Table 1, it was confirmed that the crystal bending was increased in Example 6 as compared with Examples 1 to 5, and accordingly, the processing weight yield (%) was also reduced to 65%. confirmed. This is considered to be because the effect of suppressing the crystal bending is further weakened due to the longer inversion time in the rotational direction as in Example 5. The single crystallization rate (%) was 90%, which was a good result.

そして、結晶曲がりが増加したことによる加工重量収率(%)の低下により、最終重量収率(%)は59%と実施例2〜5と較べ低下したことが確認された。   It was confirmed that the final weight yield (%) was 59%, which was lower than in Examples 2 to 5, due to the decrease in the processed weight yield (%) due to the increase in crystal bending.

[比較例1]
種結晶8の回転方向を反転させずに時計方向で固定したことを除き、実施例1と同等の育成条件で引き上げを行った。
[Comparative Example 1]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was fixed in the clockwise direction without being reversed.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

実施例1〜6では結晶曲がりが殆ど発生しないか、発生しても加工重量収率(%)を大幅に低下させる程ではなく、加工重量収率(%)も53〜64%と高い収率を達成することができたのに対し、比較例1ではX軸方向に2°前後の結晶曲がりが発生し、加工重量収率(%)が45%と実施例1〜6と比較し大きく低下することが確認された。これは、結晶が曲がることに起因してウエハーの一部に直径不足になるものが発生し、この結果、良品枚数が減少したためである。   In Examples 1 to 6, almost no crystal bending occurs, or even if it occurs, the processed weight yield (%) is not significantly reduced, and the processed weight yield (%) is also a high yield of 53 to 64%. However, in Comparative Example 1, a crystal bending of about 2 ° in the X-axis direction was generated, and the processing weight yield (%) was 45%, which was significantly lower than Examples 1-6. Confirmed to do. This is because a portion of the wafer has a short diameter due to the bending of the crystal, resulting in a decrease in the number of non-defective products.

尚、単結晶化率(%)は90%と良好な結果であったが、最終重量収率(%)は41%と実施例1〜6と比較し大きく低下したことが確認された。   The single crystallization rate (%) was 90%, which was a good result, but it was confirmed that the final weight yield (%) was 41%, which was significantly lower than in Examples 1-6.

[比較例2]
上記種結晶8の回転方向を3分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Comparative Example 2]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 3 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、比較例2では結晶曲がりが殆ど発生せず、かつ、加工重量収率(%)も70%と高い収率を達成できることが確認された。   From the results in Table 1, it was confirmed that in Comparative Example 2, almost no crystal bending occurred, and the processing weight yield (%) could be as high as 70%.

但し、実施例1〜6と比較し、単結晶化率(%)が50%と大きく落ち込んでいることが確認された。これは、回転方向の反転間隔が3分と短いため、融液中に強い上昇対流が発生し、固液界面形状が強い凹形状になったためと考えられる。つまり、固液界面形状が強い凹形状になったことにより転位が密集し、多結晶化の発生率が大幅に上昇したと考えられる。   However, as compared with Examples 1 to 6, it was confirmed that the single crystallization rate (%) was greatly reduced to 50%. This is thought to be because the inversion interval in the rotation direction is as short as 3 minutes, so that strong upward convection occurs in the melt and the solid-liquid interface shape becomes a strong concave shape. That is, it is considered that dislocations are concentrated due to the solid-liquid interface shape becoming a strong concave shape, and the occurrence rate of polycrystallization is significantly increased.

このため、最終重量収率(%)は35%と実施例1〜6と比較し大幅に低下していることが確認された。   For this reason, it was confirmed that the final weight yield (%) is significantly reduced compared with Examples 1-6, 35%.

[比較例3]
上記種結晶8の回転方向を1000分毎に反転させて行なったことを除き、実施例1と同等の育成条件で引き上げを行った。
[Comparative Example 3]
The seed crystal 8 was pulled up under the same growth conditions as in Example 1 except that the rotation direction of the seed crystal 8 was reversed every 1000 minutes.

そして、X軸方向の曲がり(°)、単結晶化率(%)、ワイヤーソー終了後の加工重量収率(%)、および、最終重量収率(%)を求めたところ、表1に示すような結果となった。   Then, the bending in the X-axis direction (°), the single crystallization rate (%), the processed weight yield (%) after completion of the wire saw, and the final weight yield (%) were determined. The result was as follows.

表1の結果から、比較例1程ではないもののX軸方向に1.5〜2.3°の結晶曲がりが発生し、これに伴い、実施例1〜6と較べて加工重量収率(%)が50%と大きく低下したことが確認された。これは、比較例1と同様、結晶が曲がることに起因してウエハーの一部に直径不足になるものが発生し、この結果、良品枚数が減少したためである。   From the results of Table 1, although not as much as Comparative Example 1, a crystal bending of 1.5 to 2.3 ° occurred in the X-axis direction, and accordingly, the processing weight yield (%) compared to Examples 1-6. ) Was greatly reduced to 50%. This is because, as in Comparative Example 1, a portion of the wafer has a diameter shortage due to the bending of the crystal, resulting in a decrease in the number of non-defective products.

このため、最終重量収率(%)は45%と実施例1〜6と比較し大幅に低下していることが確認された。   Therefore, it was confirmed that the final weight yield (%) was 45%, which was significantly lower than those in Examples 1-6.

Figure 2013001581
Figure 2013001581

本発明によれば、タンタル酸リチウム単結晶の曲がりが抑制されてウエハーの取得可能枚数を大幅に増大させることが可能となるため、表面弾性波素子等に用いられるタンタル酸リチウム単結晶の育成に利用される産業上の利用可能性を有している。   According to the present invention, since the bending of the lithium tantalate single crystal is suppressed and the number of wafers that can be obtained can be greatly increased, the lithium tantalate single crystal used for a surface acoustic wave device or the like can be grown. Has industrial applicability.

1 加熱コイル
2 セラミックス製の坩堝台
3 坩堝
4 アルミナ台
5 断熱材
6 引き上げ軸
7 蓋
8 種結晶
9 リフレクター
10 融液
11 単結晶
12 種結晶保持治具
13 アフターヒーター
DESCRIPTION OF SYMBOLS 1 Heating coil 2 Ceramic crucible base 3 Crucible 4 Alumina base 5 Heat insulating material 6 Lifting shaft 7 Lid 8 Seed crystal 9 Reflector 10 Melt 11 Single crystal 12 Seed crystal holding jig 13 After heater

Claims (3)

坩堝に収容された原料の溶融液に種結晶を接触させ、上記種結晶を回転させつつ上方に引き上げることでタンタル酸リチウム単結晶を育成する方法において、
タンタル酸リチウム単結晶の直胴部を育成するとき、該単結晶の回転方向を5〜800分の一定間隔で反転させることを特徴とするタンタル酸リチウム単結晶の育成方法。
In a method for growing a lithium tantalate single crystal by bringing a seed crystal into contact with a raw material melt contained in a crucible and pulling upward while rotating the seed crystal,
A method for growing a lithium tantalate single crystal, wherein when the straight body portion of the lithium tantalate single crystal is grown, the rotation direction of the single crystal is reversed at a constant interval of 5 to 800 minutes.
上記回転方向の反転間隔が、120〜180分であることを特徴とする請求項1に記載のタンタル酸リチウム単結晶の育成方法。   2. The method for growing a lithium tantalate single crystal according to claim 1, wherein the inversion interval in the rotation direction is 120 to 180 minutes. 結晶の引き上げ軸の方向が、36°〜50°回転Y軸方向に切り出された種結晶の方位と同一となるように設定されていることを特徴とする請求項1または2に記載のタンタル酸リチウム単結晶の育成方法。   3. The tantalum acid according to claim 1, wherein the direction of the crystal pulling axis is set to be the same as the orientation of the seed crystal cut in the Y-axis direction of 36 ° to 50 ° rotation. 4. A method for growing lithium single crystals.
JP2011131093A 2011-06-13 2011-06-13 Method for growing lithium tantalate single crystal Withdrawn JP2013001581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131093A JP2013001581A (en) 2011-06-13 2011-06-13 Method for growing lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131093A JP2013001581A (en) 2011-06-13 2011-06-13 Method for growing lithium tantalate single crystal

Publications (1)

Publication Number Publication Date
JP2013001581A true JP2013001581A (en) 2013-01-07

Family

ID=47670520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131093A Withdrawn JP2013001581A (en) 2011-06-13 2011-06-13 Method for growing lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JP2013001581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081779A (en) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 Method of raising lithium tantalate single crystal
JP2017114725A (en) * 2015-12-24 2017-06-29 住友金属鉱山株式会社 Method for raising lithium tantalate single crystal
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal
JP2019034875A (en) * 2017-08-14 2019-03-07 住友金属鉱山株式会社 Single crystal growth method, and crucible for single crystal growth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081779A (en) * 2015-10-28 2017-05-18 住友金属鉱山株式会社 Method of raising lithium tantalate single crystal
JP2017114725A (en) * 2015-12-24 2017-06-29 住友金属鉱山株式会社 Method for raising lithium tantalate single crystal
JP2018002507A (en) * 2016-06-29 2018-01-11 住友金属鉱山株式会社 Method for growing oxide single crystal
JP2019034875A (en) * 2017-08-14 2019-03-07 住友金属鉱山株式会社 Single crystal growth method, and crucible for single crystal growth
JP7023458B2 (en) 2017-08-14 2022-02-22 住友金属鉱山株式会社 Single crystal growth method

Similar Documents

Publication Publication Date Title
JP5758986B2 (en) SiC single crystal manufacturing method and manufacturing apparatus
JP5831436B2 (en) Method for producing silicon single crystal
CN112301426B (en) Method for manufacturing silicon single crystal rod
JP6451700B2 (en) Oxide single crystal growth method
JP2013001581A (en) Method for growing lithium tantalate single crystal
JP2019147698A (en) Apparatus and method for growing crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP4957619B2 (en) Method for producing oxide single crystal
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP7294063B2 (en) Oxide single crystal growth method
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2018002568A (en) Raising method of lithium tantalate single crystal
KR101855814B1 (en) Process for producing single-crystal silicon
TWI791486B (en) Manufacturing method of polysilicon
JP4735594B2 (en) Oxide single crystal growth method
WO2014174752A1 (en) Method for producing silicon single crystal
JP5776587B2 (en) Single crystal manufacturing method
JP2012082121A (en) Method for manufacturing silicon single crystal
JP2011225408A (en) Method for manufacturing silicon single crystal
JP2010280525A (en) Lithium tantalate substrate and method for producing lithium tantalate single crystal
JP5500138B2 (en) Method for producing carbon-doped silicon single crystal
JP2004269335A (en) Production method for single crystal
JP2018100202A (en) METHOD FOR GROWING LiNbO3 SINGLE CRYSTAL
JP6520642B2 (en) Method of growing lithium tantalate single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902